
DART: Diversified and Accurate Long-Tail
Recommendation

Jeongin Yun, Jaeri Lee, and U Kang⋆

Seoul National University, Seoul, South Korea
{yji00828, jlunits2, ukang}@snu.ac.kr

Abstract. How can we accurately recommend unpopular items and in-
crease their exposure to users? Previous models fail to handle the skewed
distribution of item interactions, resulting in an overemphasis on pop-
ular items and inadequate recommendations of unpopular tail items.
Existing approaches that address this imbalance often sacrifice overall
accuracy to boost the accuracy of recommending tail items, or over-
look the limited presence of tail items in the recommendations. In this
paper, we propose DART (Diversified and AccuRate Long-Tail Recom-
mendation), an accurate and diversified recommendation method which
evenly recommends items across all popularity groups while maintain-
ing high accuracy within each group. We increase the interactions of
tail items by generating synthetic sequences which preserve original user
preferences. DART improves the representation of tail items through
contrastive learning which facilitates the learning of the relationships
between similar head and tail items. Additionally, we ensure that only
reliable information is learned in the embedding of tail items through a
popularity-based negative sampling. Experimental results demonstrate
that DART achieves up to 44.7% higher Coverage@10 and 47.5% higher
nDCG@10 for tail items as ground-truth compared to the best competi-
tor while improving the overall nDCG@10 by up to 22%.

Keywords: Sequential Recommendation · Diversified Recommendation
· Long-tail Distribution · Contrastive Learning

1 Introduction

How can we accurately recommend unpopular items and increase their expo-
sure to users? Recommending less popular items is essential not only for bal-
anced inventory management but also for helping users to make serendipitous
discoveries. However, this task is challenging owing to the long-tail distribution
of real-world transaction datasets. A few head items dominate purchases, leav-
ing the majority of items as tail items with significantly fewer interactions, as
shown in Fig. 1a. Models that fail to account for this distribution predominantly
recommend popular items while rarely exposing tail items. A representative rec-
ommendation model, SASRec [9], rarely recommends unpopular items while ex-
cessively recommending popular items, as shown in Fig. 1c. Moreover, Fig. 1b
⋆ Corresponding author

2 Yun et al.

Popularity Ranking
20 40 60 80 90

100k

200k

300k

400k SASRec
DART (proposed)

Overall Head Tail

Fr
eq

ue
nc

y
Yelp
Books
Beauty
MovieLens

Overall Head Tail

of

 r
ec

om
m

en
da

tio
ns

20 40 60 80 90

0.01

0.03

0.1 0.5 1.0

0.5

1.0

nD
C

G
@

10

SASRec DART (proposed) DART (proposed)SASRec

(a) (b) (c)
Popularity rankingPopularity ranking

Fig. 1: (a) Long-tail distributions of real-world datasets. Values on each axis are
normalized. (b) Performance on overall, head, and tail items. (c) Recommenda-
tion frequency according to item popularity.

demonstrates that SASRec exhibits poor accuracy when the ground-truth items
are tail items with a significant performance gap compared to popular items.

The challenges in recommending tail items arise from insufficient and dis-
torted training of their embeddings. The inherently infrequent occurrence of tail
items limits their learning opportunities, as their embeddings are trained only
when interactions with those items occur. Recent efforts to address this issue
merely supplement the insufficient information of tail items with additional con-
tent (such as item text or category) [1,8,17,22] or data from head items [13,18].
Additionally, tail items are susceptible to distortion from random negative sam-
pling, a common technique in recommendation models. Owing to the limited
training data available for tail items, even a single weight update from inac-
curate negative examples critically impacts the model’s performance on them.
However, existing tail recommendation models [13,26] employ random negative
sampling without addressing these effects on tail items.

In this paper, we propose DART (Diversified and AccuRate Long-Tail Rec-
ommendation), an accurate and diversified sequential recommendation model.
DART evenly recommends both head and tail items as shown in Fig. 1c, and
achieves high accuracy for both types of items in Fig. 1b. To handle the skewed
distribution, DART generates synthetic sequences that increase the occurrence of
tail items; these sequences maintain the preferences of base sequences by finding
similarity relationships between head and tail items. Additionally, DART pre-
cisely trains the embeddings of tail items via contrastive learning, which enables
the learning of the similarity relationship. DART ensures undistorted training
of tail item embeddings via popularity-based negative sampling.

Our contributions are summarized as follows:
– Diversified tail recommendation. DART accurately recommends a diverse

range of tail items while also enhancing the overall recommendation accuracy,
unlike existing methods, which focus only on tail or overall accuracy.

– Specialized contrastive learning. We design a contrastive learning ap-
proach aimed at the accurate training of tail items, ensuring the transfer of
the proposed clustering information to item embeddings.

– Performance. We show that DART achieves up to 44.7% higher Tail Cover-
age@10 and 47.5% higher Tail nDCG@10 compared to the best competitor.
The code is available at https://github.com/snudatalab/DART.

https://github.com/snudatalab/DART

DART 3

2 Preliminaries and Related Works

2.1 Sequential Tail Recommendation

Problem definition. Let u ∈ U and i ∈ I denote a user and item, respectively.
Given a set S of sequences, where each sequence su = (i1, i2, ..., im) of user u is
chronologically ordered with length m, and im ∈ I denotes the item purchased
at timestamp m, the task is to recommend to each user u a ranked list of top-
K items that the user will interact with at timestamp (m + 1). The goal is to
maximize 1) tail accuracy (accuracy when the ground-truth item is a tail item)
and 2) tail coverage (proportion of recommended tail items for all users to the
tail item set) without compromising the overall accuracy.

Distinguishing between head and tail items. Items are sorted by purchase
frequency in descending order, with the bottom β% defined as the tail item set
Iτ and the remainder as the head item set Iη. We set β to 80 according to the
well-known Pareto Principle [20]. Note that Iτ ∩ Iη = ∅ and Iτ ∪ Iη = I.

2.2 Sequential Recommendation Framework

General sequential recommendation models [6, 12, 14, 15] encode a sequence
into a representation vector. The sequence representation vector esu = fθ(su)
is generated by encoding the sequence su of user u with the sequence encoder
fθ(·). The matching score ru,i = e⊤suei between user u and item i is computed
by the dot product of eu and the embedding vector ei of item i.

2.3 Tail Recommendation

Long-tail distribution is critical in recommendation systems as recommen-
dations influence users’ decisions and exacerbate skewness [5, 11]. Approaches
to address this include leveraging head items [13, 18], incorporating external
data [19], and using sequence augmentation [25]. CoLTRec [18] and MELT [13]
infer tail item information from head items. LOAM [25] generates synthetic se-
quences by weighting tail items in item graphs. The proposed approach enhances
both overall and tail accuracy while also improving tail coverage, whereas pre-
vious studies typically focus on enhancing one of them. We achieve this using
self-supervised signals from user interactions without additional data.

2.4 Contrastive Learning

Contrastive learning [7] enhances representations by pulling similar samples
closer and pushing unrelated ones apart. It has recently been applied to sequen-
tial recommendation systems to refine sequence representations. CL4SRec [24]
learns robust representations via augmented sequences, ICLRec [2] captures la-
tent user intent, and DCRec [26] mitigates popularity bias. In contrast, we ad-
dress the long-tail problem by proposing a positive pairing strategy that incor-
porates cluster information to capture the relationships between items.

4 Yun et al.

Fig. 2: Overall structure of DART. t(i) and h(j) denote a tail item with id i and
head item with id j, respectively.

3 Proposed Method

3.1 Overview

There are several challenges associated with designing a sequential recom-
mendation model that maximizes both tail accuracy and tail coverage.
C1. Highly skewed interactions. Models trained on skewed datasets have

limited opportunities to train embeddings of tail items. How can we increase
the training opportunities for tail items?

C2. Unknown characteristics of tail items. The limited number of interac-
tions with tail items provides insufficient informative signals to adequately
represent them. How can we accurately capture their characteristics?

C3. Distorted information learning for tail item embeddings. Random
negative sampling distorts the embedding learning for tail items. How can
we mitigate this distortion?

The main ideas of DART are summarized as follows:
I1. Preference-aware synthetic sequence. DART generates synthetic se-

quences that elevate the proportion of tail items while maintaining the in-
tegrity of the original interest.

I2. Relationship learning via contrastive learning. We identify similarities
between tail and head items and design a contrastive learning scheme to
reflect these similarities in the embedding vectors.

I3. Popularity-based negative sampling. We reduce the inclusion of uncer-
tain information in the embeddings of tail items through popularity-based
negative sampling.

Fig. 2 shows an overview of DART. We identify similarity relationships of items
by clustering items exploiting collaborative signals and transaction time. With
the cluster information, we generate synthetic sequences that mitigate the imbal-
ance between head and tail items. We integrate these sequences with contrastive
learning, which brings item embeddings in the same cluster closer. Algorithm 1
summarizes the training process of DART. After clustering items (line 1), DART
iterates over sequence batches until accuracy converges (lines 2 - 3). DART syn-
thesizes sequences by replacing α percent of items in each sequence and com-
putes the binary cross-entropy loss Lrec (lines 4 - 5). DART performs strong

DART 5

Algorithm 1 Training of DART
Input: Untrained model parameters θ, item set I, sequence set S, balancing hyper-

parameter λ, and replacement ratios α, αst, and αw, where 0 < αw < α < αst < 1
Output: Trained model parameters θ
1: C← Clusters of items I based on S (see Section 3.2)
2: while Accuracy has not converged do
3: for each sequence batch SB in the sequence dataset S do
4: Sreplace

B ← replace(SB, α) (see Section 3.2)
5: Compute binary cross-entropy loss Lrec with Sreplace

B (see Section 3.5)
6: Sst

B ← replace(SB, αst) (see Section 3.3)
7: Sw

B ← replace(SB, αw) (see Section 3.3)
8: Compute contrastive learning loss Lcl with Sst

B and Sw
B (see Section 3.3)

9: Update model parameters θ by minimizing Lrec + λLcl

10: end for
11: end while

replacement with αst and weak replacement with αw on the sequence batch and
computes the contrastive learning loss Lcl (lines 6 - 8). Then, DART updates
the model parameters θ by minimizing the final loss Lrec + λLcl (line 9).

3.2 Preference-aware Synthetic Sequence

How can we mitigate the imbalance ratio of head items to tail items in the
dataset? To answer this question, we generate synthetic sequences by replacing
head items with tail items to elevate the proportion of tail items. We preserve
the preferences of the original sequences by substituting items with similar ones.
Specifically, we sample α percent of head items ηsu from a user’s sequence and
replace each with a similar tail item. We determine item similarities by clustering
the items, as explained later. Given a sequence su = (i1, i2, . . . , it, . . . , i|su|) of
user u, the replacement method replace(·) is formulated as follows:

replace(su;α) = (̃i1, ĩ2, ..., ĩt, ..., ĩ|su|),

ĩt =

{
τ (it ∈ ηsu , τ ∼ U(Iτ ∩ C(it)))
it (it /∈ ηsu)

,
(1)

where U(·) denotes uniform sampling, C(it) denotes the item cluster to which
item it belongs, and τ is a randomly sampled tail item from the cluster C(it).

Two-stage clustering. To replace head items with tail items within the same
cluster, each cluster must be appropriately balanced between head and tail items.
Without a sufficient distribution of both types, clusters containing only head
items will not have the necessary tail items for replacement. However, a naive
clustering method based on embedding distance results in the separate clustering
of head and tail items (see Fig. 6 in Section 4.4). Instead, we propose two-stage
clustering that balances the number of head and tail items in each cluster. First,
we apply k-means clustering to the embeddings of head items. Second, tail items
are assigned to the pre-formed clusters based on their distance to the centroids.

Measuring similarity. Items must be grouped based on their actual relevance
to preserve the original sequences’ preferences. We combine two types of dis-

6 Yun et al.

tances between items for clustering: collaborative signal and time distance. The
sum of the two distances after z-score normalization is used for item clustering.

Collaborative signal. We measure item similarity by the L2 distance between
pre-trained item embedding vectors. To efficiently capture user-item relation-
ships computationally, we employ a Multi-Layer Perceptron (MLP) model:

ŷui = a(WL(. . . a(W1

[
pu

qi

]
+ b1) . . .) + bL), (2)

where ŷu,i is the interaction score between user u and item i. pu and qi are
the learnable embedding vectors for a user u and item i, respectively. Wx ∈
Rdout×din and bx ∈ Rdout×1 are the weight and bias in the xth linear layer,
respectively. din and dout denote the input and output dimensions of each linear
layer, respectively. a(·) is the ReLU activation function, and L is the number of
linear layers. After training the model, we calculate the collaborative distance
g(i, i′) between items i and i′ as follows: g(i, i′) = ∥qi − qi′∥2.

Time distance. We also measure item similarity based on the interval between
purchase times. Two items are related if the difference in their purchase times in
a user’s sequence is in a window size of w. Sliding the window across sequences,
we compute the time distance T[i][i′] between items i and i′ as follows:

T[i][i′] =


1

c
(if c ̸= 0)

1 (if c = 0)
, (3)

where c represents the number of times that items i and i′ are purchased within
window w across all sequences.

3.3 Relationship Learning via Contrastive Learning

How can we accurately capture the characteristics of tail items? The scarcity
of interactions with tail items results in an insufficient number of informative
signals to accurately represent them. We supplement their inadequate informa-
tion with the relationships of items identified by clustering. We design a positive
pair for contrastive learning that brings the embeddings of items in the same
cluster closer. Specifically, we generate two synthetic sequences for each user
to train them as positive pairs by performing head-to-tail replacement at two
levels: strong replacement with a high replacement ratio αst and weak replace-
ment with a relatively small ratio αw. Contrastively learning these positive pairs
brings item embeddings in the same cluster closer together (see Fig. 5 in Sec-
tion 4.3). This results from sequences being nearly identical, with only a few
differing items, leading the model to make the replaced items similar to each
other. Additionally, head items with sufficient information supplement tail items
with limited information when tail items become closer to head items.

Fig. 3 illustrates an example, where head items h(2) and h(4) are replaced
with tail items t(11) and t(10), respectively, in the sequence sstu , where strong
replacement is applied, while only the head item h(2) is replaced with the tail
item t(10) in the sequence swu with weak replacement. Contrastively learning the
two synthetic sequences sstu and swu as a positive pair brings the embeddings of

DART 7

Fig. 3: DART contrastively learns the two synthetic sequences, sstu and swu , as a
positive pair, bringing the embeddings of items in the same cluster closer.

items t(10) and h(4) closer, as well as those of t(11) and t(10) closer. We exploit
InfoNCE [21], a general loss function in contrastive learning, as follows:

Lcl(sstu , swu) = − log
exp(ϕ(esstu , eswu))

exp(ϕ(esstu , eswu)) +
∑

u′∈UB
u′ ̸=u

∑
s−∈S−

exp(ϕ
(
esstu , es−

)
)
, (4)

where esu is the representation vector of the sequence su from Section 2.2, ϕ(·, ·)
is the cosine similarity function, S− = {sstu′ ∪ swu′}, and UB is the set of users in
the batch B.

3.4 Popularity-aware Negative Sampling

We address the sensitivity of tail items to distortion caused by negative sam-
pling to prevent the model from learning inaccurate information. Even a single
weight update from inaccurate negative examples significantly affects their repre-
sentations because tail items have limited training data. However, many existing
models sample negative items uniformly while treating all items equally. We sam-
ple negative items proportionally to their popularity to avoid the selection of tail
items as negatives while encouraging the selection of popular items as negative
samples. For example, it can be reasonably inferred that it does not match their
preferences if a user does not purchase a popular product. In contrast, it is un-
reasonable to draw such a conclusion for less popular items based solely on the
absence of purchase. The probability Ppop(i) of item i being selected for negative
sampling is defined as Ppop(i) =

count(i)∑
i∈I count(i) , where count(i) is the total number

of times that item i has been purchased in the entire dataset.

3.5 Objective Function

To learn the user-item relationship, we exploit the binary cross-entropy loss:

Lrec = −
∑

u∈UB

{
log (σ(ru,i+,)) +

∑
i−∈I− log (1− σ(ru,i−))

}
, (5)

where σ is the sigmoid function, i+ is the target item that user u consumed at
timestamp (m + 1), ru,i+ is the relatedness score between user u and item i+,
and UB is the set of users in a batch B. The negative item i− that user u did not
consume at timestamp (m + 1) is sampled by the negative sampling approach
described in Section 3.4. We define the final objective function for a batch B as
Lfinal = Lrec + λLcl, where λ is a balancing hyperparameter that adjusts the
weight of the contrastive learning loss Lcl in Equation (4).

8 Yun et al.

Table 1: Summary of datasets.
Dataset Users Items Interactions

MovieLens1 6,040 3,616 661,028
Amazon Books2 3,740 14,187 275,586
Yelp 3 50,423 36,591 1,338,087

1 https://grouplens.org/datasets/movielens/,
2 https://nijianmo.github.io/amazon/index.html,
3 https://www.yelp.com/dataset

4 Experiments

We performed experiments to answer the following questions:
Q1. Performance (Section 4.2). Does DART show high tail accuracy and tail

coverage without compromising the overall accuracy?
Q2. Ablation study (Section 4.3). How do the main ideas of DART affect

the performance?
Q3. Comparison of clustering (Section 4.4). How does the clustering method

of DART affect the performance compared to other clustering methods?

4.1 Experimental Setup

Datasets. We use three real-world rating datasets, as summarized in Table 1.
Books is from Amazon, a large e-commerce platform. Yelp is a review dataset
for restaurants, and MovieLens-1M contains user ratings for movies. We filter
out users and items that have fewer than five interactions.

Evaluation metrics. Following prior studies [3, 16], we employ the leave-one-
out protocol, where the last item in each user’s sequence is removed for testing.
Accuracy is evaluated using nDCG@K [4, 10] and Tail nDCG@K; the latter
measures the performance when the ground-truth item is a tail item. Diversity
is measured using Coverage@K, which represents the proportion of items recom-
mended to all users in the top-K reecommendation list relative to the entire item
set, and Tail Coverage@K, which represents the proportion of recommended tail
items relative to the tail item set. We set K to 10.

Baselines. We compare DART with the following baselines, where the first
three focus on accuracy, while the last three focus on tail performance:
– SASRec [9] is a sequential recommendation model based on the Transformer.
– FMLP [27] is an MLP-based sequential model with learnable filters that re-

duce the noise information.
– BERT4Rec [23] is a sequential recommendation model that utilizes the bidi-

rectional encoder representations from the BERT architecture.
– CoLTRec [18] is a sequential recommendation model that enhances tail accu-

racy through the aggregation of embeddings.
– MELT [13] is a model-agnostic sequential recommendation model that allevi-

ates both the long-tail user and item problems.
– DCRec [26] is a state-of-the-art sequential recommendation model that miti-

gates popularity bias with contrastive learning.

https://grouplens.org/datasets/movielens/
https://nijianmo.github.io/amazon/index.html
https://www.yelp.com/dataset

DART 9

Fig. 4: Performance comparison. DART shows the best performance in all
datasets, closest to the best point marked by an orange star.

Implementation. For a fair comparison, we replace CoLTRec’s base model
from ComiRec to SASRec, as our setting excludes category information used
by ComiRec. For MELT, we use SASRec as the base model. We use public hy-
perparameters for existing datasets, while new datasets utilize a random search
within ranges proposed by each model. The models are trained for 500 epochs,
with early stopping after 30 epochs without improvement. We run five experi-
ments with different random seeds and report the average results.

4.2 Performance (Q1)

We present a comparison between the DART and baseline models in Fig. 4.
DART consistently outperforms baselines in both overall and tail performance.
DART surpasses the best competitor, DCRec, with 22% higher nDCG@10 while
improving Coverage@10 by 11.9% on the Books dataset. DART achieves a 35.1%
improvement in tail nDCG@10 and a 30.4% increase in Tail Coverage@10 com-
pared to the best competitor in the MovieLens dataset. These results highlight
that DART not only improves the overall accuracy and tail accuracy but also
enhances the aggregate-level diversity.

4.3 Ablation Study (Q2)

We evaluate the effectiveness of each component in DART by integrating
them individually into the base model SASRec. Table 2 shows that all com-
ponents improve performance across datasets. SASRec + S incorporates the
sequence synthesis (Section 3.2), SASRec+C includes the contrastive learning
(Section 3.3), and SASRec + N adds the popularity-based negative sampling
(Section 3.4) to SASRec. SASRec + S, which addresses the low frequency of
tail items in the dataset, enhances both the overall coverage and tail coverage.
SASRec+C boosts tail accuracy and coverage by enhancing the quality of tail
item representation through their relationships with head items. SASRec + N
improves tail accuracy by facilitating accurate learning of tail item embeddings.

10 Yun et al.

Table 2: Ablation study of DART. All the components of DART help improve
the performance. Asterisk (*) denotes higher performance than SASRec.

Dataset Metric Model
SASRec SASRec+ S SASRec+ C SASRec+N

Books

nDCG@10 0.0383 0.0562* 0.0589* 0.0571*

Tail nDCG@10 0.0271 0.0419* 0.0477* 0.0460*

Head nDCG@10 0.0729 0.0916* 0.0865* 0.0845*

Coverage@10 0.4444 0.7041* 0.7549* 0.7736*

Tail Coverage@10 0.4010 0.6634* 0.7369* 0.7616*

MovieLens

nDCG@10 0.1267 0.1405* 0.1133 0.1266
Tail nDCG@10 0.0271 0.0419* 0.0477* 0.0460*

Head nDCG@10 0.1634 0.1673* 0.1106 0.1370
Coverage@10 0.5397 0.6869* 0.9065* 0.8506*

Tail Coverage@10 0.4274 0.6087* 0.8835* 0.8132*

Fig. 5: The distance between
item embeddings in clusters.

Fig. 6: t-SNE visualizations of the embeddings of
head and tail items from the pretrained MLP.

Furthermore, we evaluate the effect of contrastive learning in bringing the
item embeddings within the same cluster closer together. The similarity is quan-
tified by calculating the average L2 distance between pairs of items in each cluster
and averaging these distances across all clusters. Fig. 5 shows a reduction in the
average distance between items in clusters after the application of the proposed
contrastive learning, confirming the effectiveness of the proposed approach.

4.4 Comparison of Clustering (Q3)

We compare the proposed clustering against three baselines: naive k-means,
two-stage, and random clustering. Each method replaces the clustering step in
DART. k-means method performs k-means clustering on all items using pre-
trained embeddings. The two-stage method performs two-stage clustering only
with the pre-trained embeddings, excluding temporal distance. Random cluster-
ing divides items into k random groups. Table 3 shows that the proposed method
outperforms all baselines across all metrics. This is because DART balances head
and tail items in clusters by leveraging head items to enhance tail performance.
Fig. 6 shows the t-SNE visualization of the item embeddings from the pre-trained
MLP, showing that head and tail items tend to cluster separately. This causes
k-means to group tail items together, degrading performance. Random cluster-
ing partially mitigates this issue. The two-stage approach underperforms other
clustering methods owing to insufficient information in tail item embeddings,
while DART solves this issue by incorporating temporal distance.

DART 11

Table 3: Performance of different clustering methods. DART demonstrates the
best performance. k −m, 2− st, and rd denote k-means clustering, two-stage
clustering, and random clustering, respectively.

Dataset Metric Model

DARTk−m DART2−st DARTrd DART

Books
nDCG@10 0.0552 0.0549 0.0589 0.0611
Tail nDCG@10 0.0446 0.0443 0.0481 0.0493
Head nDCG@10 0.0814 0.0813 0.0859 0.0906

MovieLens
nDCG@10 0.1226 0.1250 0.1274 0.1305
Tail nDCG@10 0.1036 0.1040 0.1073 0.1081
Head nDCG@10 0.1332 0.1367 0.1385 0.1429

5 Conclusion
We propose DART (Diversified and AccuRate Long-Tail Recommendation),

a recommendation model that accurately recommends tail items while providing
a broader range of items to users. DART increases the proportion of tail items
by replacing head items with tail items in sequences, maintaining the original
preferences. DART also strengthens the representation of tail items by propos-
ing positive pairs considering the relationships between head and tail items for
contrastive learning. We apply popularity-based negative sampling to make only
trustworthy information contribute to the embedding of tail items. We show
that DART achieves up to 44.7% higher Tail Coverage@10 and 47.5% higher
Tail nDCG@10 compared to the best competitor.

Acknowledgments. This work was supported by Jung-Hun Foundation, Institute of
Information & communications Technology Planning & Evaluation(IITP) grant funded
by the Korea government(MSIT) [No.RS-2021-II211343, Artificial Intelligence Gradu-
ate School Program (Seoul National University)], and [NO.RS-2021-II212068, Artificial
Intelligence Innovation Hub (Artificial Intelligence Institute, Seoul National Univer-
sity)]. The Institute of Engineering Research at Seoul National University provided
research facilities, and the ICT at Seoul National University provides research facilities
for this study. U Kang is the corresponding author.

References

1. Bai, B., Fan, Y., Tan, W., Zhang, J.: DLTSR: A deep learning framework for
recommendations of long-tail web services. IEEE Trans. Serv. Comput. (2020)

2. Chen, Y., andJia Li, Z.L., McAuley, J.J., Xiong, C.: Intent contrastive learning for
sequential recommendation. In: WWW (2022)

3. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering.
In: WWW (2017)

4. Jeon, H., Jang, J.G., Kim, T., Kang, U.: Accurate bundle matching and generation
via multitask learning with partially shared parameters. PLOS ONE (2023)

5. Jeon, H., Kim, J., Lee, J., Lee, J., Kang, U.: Aggregately diversified bundle
recommendation via popularity debiasing and configuration-aware reranking. In:
PAKDD (2023)

12 Yun et al.

6. Jeon, H., Kim, J., Yoon, H., Lee, J., Kang, U.: Accurate action recommendation
for smart home via two-level encoders and commonsense knowledge. In: CIKM
(2022)

7. Jeon, H., Lee, J., Yun, J., Kang, U.: Cold-start bundle recommendation via
popularity-based coalescence and curriculum heating. In: WWW (2024)

8. Johnson, J., Ng, Y.: Enhancing long tail item recommendations using tripartite
graphs and markov process. In: WI (2017)

9. Kang, W., McAuley, J.J.: Self-attentive sequential recommendation. In: ICDM
(2018)

10. Kim, D., Tanwar, S., Kang, U.: Accurate multi-behavior sequence-aware recom-
mendation via graph convolution networks. PLOS ONE (2025)

11. Kim, J., Jeon, H., Lee, J., Kang, U.: Diversely regularized matrix factorization for
accurate and aggregately diversified recommendation. In: PAKDD (2023)

12. Kim, J., Kang, U.: Sequentially diversified and accurate recommendations in
chronological order for a series of users. In: WSDM (2025)

13. Kim, K., Hyun, D., Yun, S., Park, C.: MELT: mutual enhancement of long-tailed
user and item for sequential recommendation. In: SIGIR (2023)

14. Koo, B., Jeon, H., Kang, U.: Accurate news recommendation coalescing personal
and global temporal preferences. In: PAKDD (2020)

15. Koo, B., Jeon, H., Kang, U.: PGT: news recommendation coalescing personal and
global temporal preferences. Knowl. Inf. Syst. (2021)

16. Lee, J., Yun, J., Kang, U.: Towards true multi-interest recommendation: Enhanced
scheme for balanced interest training. In: BigData (2024)

17. Li, J., Lu, K., Huang, Z., Shen, H.T.: Two birds one stone: On both cold-start and
long-tail recommendation. In: ACM Multimedia (2017)

18. Liu, Y., Zhang, X., Zou, M., Feng, Z.: Co-occurrence embedding enhancement for
long-tail problem in multi-interest recommendation. In: RecSys (2023)

19. Liu, Z., Mei, S., Xiong, C., Li, X., Yu, S., Liu, Z., Gu, Y., Yu, G.: Text match-
ing improves sequential recommendation by reducing popularity biases. In: CIKM
(2023)

20. Markwood, P.S.: The long tail: Why the future of business is selling less of more.
Learn. Publ. (2010)

21. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive
predictive coding. CoRR (2018)

22. Sreepada, R.S., Patra, B.K.: Mitigating long tail effect in recommendations using
few shot learning technique. Expert Syst. Appl. (2020)

23. Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In:
CIKM (2019)

24. Xie, X., Sun, F., Liu, Z., Wu, S., Gao, J., Zhang, J., Ding, B., Cui, B.: Contrastive
learning for sequential recommendation. In: ICDE (2022)

25. Yang, H., Choi, Y., Kim, G., Lee, J.: LOAM: improving long-tail session-based
recommendation via niche walk augmentation and tail session mixup. In: SIGIR
(2023)

26. Yang, Y., Huang, C., Xia, L., Huang, C., Luo, D., Lin, K.: Debiased contrastive
learning for sequential recommendation. In: WWW (2023)

27. Zhou, K., Yu, H., Zhao, W.X., Wen, J.: Filter-enhanced MLP is all you need for
sequential recommendation. In: WWW (2022)

	 DART: Diversified and Accurate Long-Tail Recommendation

