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Abstract. Recent graph computation approaches have demonstrated that a sin-
gle PC can perform efficiently on billion-scale graphs. While these approaches
achieve scalability by optimizing I/O operations, they do not fully exploit the ca-
pabilities of modern hard drives and processors. To overcome their performance,
in this work, we explore a bimodal block processing strategy (BBP) that is able
to boost the computation speed by minimizing I/O cost. With this strategy, we
achieved the following contributions: (1) a scalable and general graph computa-
tion framework named M-Flash; (2) a flexible and simple programming model
to easily implement popular and essential graph algorithms, including the first
single-machine billion-scale eigensolver; and (3) extensive experiments on real
graphs with up to 6.6 billion edges, demonstrating M-Flash’s consistent and sig-
nificant speedup over state-of-the-art approaches.

Keywords: graph algorithms, single machine scalable graph computation, Bi-
modal Block Processing model

1 Introduction
Large graphs with billions of nodes and edges are increasingly common in many do-
mains and applications, such as in studies of social networks, transportation route net-
works, citation networks, and many others. Distributed frameworks (find a thorough
review in the work of Lu et al. [12]) have become popular choices for analyzing these
large graphs. However, distributed approaches may not always be the best option, be-
cause they can be expensive to build [10], and hard to maintain and optimize.

These potential challenges prompted researchers to create single-machine, billion-
scale graph computation frameworks that are well-suited to essential graph algorithms,
such as eigensolver, PageRank, connected components and many others. Examples are
GraphChi [10] and TurboGraph [4]. Frameworks in this category define sophisticated
processing schemes to overcome challenges induced by limited main memory and poor
locality of memory access observed in many graph algorithms. However, when studying
previous works, we noticed that despite their sophisticated schemes and novel program-
ming models, they do not optimize for disk operations and data locality, which are the
core of performance in graph processing frameworks.
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In the context of single-node, billion-scale, graph processing frameworks, we present
M-Flash, a novel scalable framework that overcomes critical issues found in existing
works. The innovation of M-Flash confers it a performance many times faster than the
state of the art. More specifically, our contributions include:

1. M-Flash Framework & Methodology: we propose a novel framework named M-
Flash that achieves fast and scalable graph computation. M-Flash uses a bimodal
block model that significantly boosts computation speed and reduces disk accesses
by dividing a graph and its node data into blocks (dense and sparse) to minimize
the cost of I/O. The complete code of M-Flash is released as an open-source project
at https://github.com/M-Flash.

2. Programming Model: M-Flash provides a flexible and simple programming model,
made possible by our innovative bimodal block processing strategy. We demon-
strate how popular and essential graph algorithms may be easily implemented (e.g.,
PageRank, connected components, the first single-machine eigensolver over billion-
node graphs, etc.), and how a number of others can be supported.

3. Extensive Experimental Evaluation: we compared M-Flash with state-of-the-art
frameworks using large graphs, the largest one having 6.6 billion edges (YahooWeb
https://webscope.sandbox.yahoo.com). M-Flash was consistently and sig-
nificantly faster than GraphChi [10], X-Stream [15], TurboGraph [4], MMap [11],
GridGraph [20], and GraphTwist [19] across all graph sizes. Furthermore, it sus-
tained high speed even when memory was severely constrained (e.g., 6.4X faster
than X-Stream, when using 4GB of RAM).

2 Related work
A typical approach to scalable graph processing is to develop a distributed framework.
This is the case of Gbase [6], Powergraph, Pregel, and others [12]. Among these ap-
proaches, Gbase is the most similar to M-Flash. Despite the fact that Gbase and M-
Flash use a block model, Gbase lacks an adaptive edge processing scheme to optimize
its performance. Such scheme is the greatest innovation of M-Flash, conferring to it the
highest performance among existing approaches, as demonstrated in Section 4.

Differently to distributed approaches, in this work, we aim to scale up by maximiz-
ing what a single machine can do, which is considerably cheaper and easier to manage.
Single-node processing solutions have recently reached comparative performance to
distributed systems for similar tasks.

Among the existing works designed for single-node processing, some of them are
restricted to SSDs. These works rely on the remarkable low-latency and improved I/O of
SSDs compared to magnetic disks. This is the case of TurboGraph [4], which relies on
random accesses to the edges — not well supported over magnetic disks. Our proposal,
M-Flash, avoids this drawback by avoiding random accesses.

GraphChi [10] was one of the first single-node approaches to avoid random disk/edge
accesses, improving the performance for mechanical disks. GraphChi partitions the
graph on disk into units called shards, requiring a preprocessing step to sort the data
by source vertex. GraphChi uses a vertex-centric approach that requires a shard to fit
entirely in memory, including both the vertices in the shard and all their edges (in and
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out). As we demonstrate, this fact makes GraphChi less efficient when compared to our
work. M-Flash requires only a subset of the vertex data to be stored in memory.

MMap [11] introduced an interesting approach based on OS-supported mapping
of disk data into memory (virtual memory). It allows graph data to be accessed as if
they were stored in unlimited memory, avoiding the need to manage data buffering. Our
framework uses memory mapping when processing edge blocks but, with an improved
engineering, M-Flash consistently outperforms MMap, as we demonstrate.

GridGraph [20] divides the graphs into blocks and processes the edges reusing the
vertices’ values loaded in main memory (in-vertices and out-vertices). Furthermore,
it uses a two-level hierarchical partitioning to increase the performance, dividing the
blocks into small regions that fit in cache. When comparing GridGraph with M-Flash,
both divide the graph using a similar approach with a two-level hierarchical optimiza-
tion to boost computation. However, M-Flash adds a bimodal partition model over the
block scheme to optimize even more the computation for sparse blocks in the graph.

GraphTwist [19] introduces a 3D cube representation of the graph to add support for
multigraphs. The cube representation divides the edges using three partitioning levels:
slice, strip, and dice. These representations are equivalent to the block representation
(2D) of GridGraph and M-Flash, with the difference that it adds one more dimension
(slice) to organize the edge metadata for multigraphs. The slice dimension filters the
edges’ metadata optimizing performance when not all the metadata are required for
computation. Additionally, GraphTwist introduces pruning techniques to remove some
slices and vertices that they do not consider relevant in the computation.

FlashGraph [18] uses a semi external approach that stores vertex states in memory
and adjacency lists on SSDs. Despite the fact that FlashGraph works with very big
graphs, it requires expensive resources (lots of RAM and arrays of SSDs) that are not
available in current commodity machines.

M-Flash also draws inspiration from the edge streaming approach introduced by X-
Stream’s processing model [15], improving it with fewer disk writes for dense regions
of the graph. Edge streaming is a sort of stream processing referring to unrestricted data
flows over a bounded amount of buffering. As we demonstrate, this leads to optimized
data transfer by means of less I/O and more processing per data transfer.

3 M-Flash

The design of M-Flash considers the fact that real graphs have a varying density of
edges; that is, a given graph contains dense regions with many more edges than other
regions that are sparse. In the development of M-Flash, and through experimentation
with existing works, we noticed that these dense and sparse regions could not be pro-
cessed in the same way. We also noticed that this was the reason why existing works
failed to achieve superior performance. To cope with this issue, we designed M-Flash
to work according to two distinct processing schemes: Dense Block Processing (DBP)
and Streaming Partition Processing (SPP). Hence, for full performance, M-Flash uses
a theoretical I/O cost based optimization scheme to decide the kind of processing to
use in face of a given block, which can be dense or sparse. The final approach, which
combines DBP and SPP, was named Bimodal Block Processing (BBP).
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Fig. 1: Organization of edges and vertices in M-Flash. Left (edges): example of a
graph’s adjacency matrix (in light blue color) organized in M-Flash using 3 logical
intervals (β = 3); G(p,q) is an edge block with source vertices in interval I(p) and des-
tination vertices in interval I(q); SP(p) is a source-partition contaning all blocks with
source vertices in interval I(p);DP(q) is a destination-partition contaning all blocks with
destination vertices in interval I(q). Right (vertices): the data of the vertices as k vectors
(γ1 ... γk), each one divided into β logical segments.

3.1 Graph Representation in M-Flash
A graph in M-Flash is a directed graph G = (V,E) with vertices v ∈ V labeled with
integers from 1 to |V |, and edges e = (source,destination), e ∈ E. Each vertex has a set
of attributes γ = {γ1,γ2, . . . ,γK}.

Blocks in M-Flash: Given a graph G, we divide its vertices V into β intervals denoted
by I(p), where 1≤ p≤ β . Note that I(p)∩I(p′) =∅ for p 6= p′, and

⋃
p I(p) =V . Thus, as

shown in Figure 1, the edges are divided into β 2 blocks. Each block G(p,q) has a source
node interval p and a destination node interval q, where 1≤ p,q≤ β . In Figure 1, for
example, G(2,1) is the block that contains edges with source vertices in the interval I(2)

and destination vertices in the interval I(1). In total, we have β 2 blocks. We call this
on-disk organization of the graph as partitioning. Since M-Flash works by alternating
one entire block in memory for each running thread, the value of β is automatically
determined by equation:

β =

⌈
2φT |V |

M

⌉
(1)

in which, M is the available RAM, |V | is the total number of vertices in the graph, φ

is the amount of data needed to store each vertex, and T is the number of threads. For
example, for 1 GB RAM, a graph with 2 billion nodes, 2 threads, and 4 bytes of data
per node, β = d(2×8×2×2∗109)/(230)e= 30, thus requiring 302 = 900 blocks.

3.2 The M-Flash Processing Model
This section presents our proposed M-Flash. We first describe two novel strategies tar-
geted at processing dense and sparse blocks. Next, we present the novel cost-based
optimization strategy used by M-Flash to take the best of them.
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Fig. 2: M-Flash’s computation schedule for a graph with 3 intervals. Vertex intervals
are represented by vertical (Source I) and horizontal (Destination I) vectors. Blocks
are loaded into memory, and processed, in a vertical zigzag manner, indicated by the
sequence of red, orange and yellow arrows. This enables the reuse of input (e.g., when
going from G(3,1) to G(3,2), M-Flash reuses source node interval I(3)), which reduces
data transfer from disk to memory, boosting the speed.

Dense Block Processing (DBP): Figure 2 illustrates the DBP processing; notice that
vertex intervals are represented by vertical (Source I) and horizontal (Destination I)
vectors. After partitioning the graph into blocks, we process them in a vertical zigzag
order, as illustrated in Figure 2. There are three reasons for this order: (1) we store the
computation results in the destination vertices; so, we can “pin” a destination interval
(e.g., I(1)) and process all the vertices that are sources to this destination interval (see
the red vertical arrow); (2) using this order leads to fewer reads because the attributes
of the destination vertices (horizontal vectors in the illustration) only need to be read
once, regardless of the number of source intervals. (3) after reading all the blocks in
a column, we take a “U turn” (see the orange arrow) to benefit from the fact that the
data associated with the previously-read source interval is already in memory, so we
can reuse that.

Within a block, besides loading the attributes of the source and destination intervals
of vertices into RAM, the corresponding edges e= 〈source,destination,edge properties〉
are sequentially read from disk, as explained in Figure 3. These edges, then, are pro-
cessed using a user-defined function so to achieve a given desired computation. After
all blocks in a column are processed, the updated attributes of the destination vertices
are written to disk.
Streaming Partition Processing (SPP): The performance of DBP decreases for graphs
with very low density (sparse) blocks; this is because, for a given block, we have to read
more data from the source intervals of vertices than from the very blocks of edges. For
such situations, we designed the SPP technique. SSP processes a given graph using
partitions instead of blocks. A graph partition can be a set of blocks sharing the same
source node interval – a line in the logical partitioning, or, similarly, a set of blocks shar-
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Fig. 3: Example I/O operations to process the dense block G(2,1).

Fig. 4: Example I/O operations for step 1 of source-partition SP3. Edges of SP1 are
combined with their source vertex values. Next, edges are divided by β destination-
partitions in memory; and finally, edges are written on disk. On Step 2 ,destination-
partitions are processed sequentially. Example I/O operations for step 2 of destination-
partition DP(1).

ing the same destination node interval – a column in the logical partitioning. Formally, a
source-partition SP(p) =

⋃
q G(p,q) contains all blocks with edges having source vertices

in the interval I(p); a destination-partition DP(q) =
⋃

p G(p,q) contains all blocks with
edges having destination vertices in the interval I(q). For example, in Figure 1, DP(3) is
the union of the blocks G(1,3), G(2,3) and G(3,3). For processing the graph using SPP, we
divide the graph in β source-partitions. Then, we process partitions using a two-steps
approach (see Figure 4). In the first step for each source-partition, we load vertex values
of the interval I(p); next, we read edges of the partition SP(p) sequentially from disk,
storing in a temporal buffer edges together with their in-vertex values until the buffer
is full. Later, we shuffle the buffer in-place, grouping edges by destination-partition.
Finally, we store to disk edges in β different files, one by destination-partition. After
we process the β source-partitions, we get β destination-partitions containing edges
with their source values. In the second step for each destination-partition, we initialize
vertex values of interval I(q); next, we read edges sequentially, processing their values
through a user-defined function. Finally, we store vertex values of interval I(q) on disk.
The SPP model is an improvement of the edge streaming approach used in X-Stream;
different from former proposals, SSP uses only one buffer to shuffle edges, reducing
memory requirements.

Bimodal Block Processing (BBP): Schemes DBP and SPP improve the graph per-
formance in opposite directions. How can we decide which processing scheme to use
when we are given a graph block to process? To answer this question, we propose to
join DBP and SSP into a single scheme – the Bimodal Block Processing (BBP). The
combined scheme uses the theoretical I/O cost model proposed by Aggarwal and Vitter
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[1] to decide for SBP or SPP. In this model, I/O cost for an algorithm is equal to the
number of blocks with size B transferred between disk and memory plus the number of
non-sequential seeks.

For processing a graph G, DBP performs the following operations over disk: one
read of the edges, β reads of the vertices, and one writing of the updated vertices.
Hence, the I/O cost for DBP is given by:

Θ (DBP(G)) =Θ

(
(β +1) |V |+ |E|

B
+β

2
)

(2)

In turn, SPP performs the following operations over disk: one read of the vertices and
one read of the edges grouped by source-partition; next, it shuffles edges by destination-
partition in memory, writing the new version Ê on disk; finally, it reads the new edges
from disk, calculating the new vertex values and writing them on disk. The I/O cost for
SPP is:

Θ (SPP(G)) =Θ

(
2 |V |+ |E|+2

∣∣Ê∣∣
B

+β

)
(3)

Equations 2 and 3 define the I/O cost for one processing iteration over the whole graph
G. However, in order to decide in relation to blocks, we are interested in the costs of
Equations 2 and 3 divided according to the number of blocks β 2. The result, after the
appropriate algebra, reduces to Equations 4 and 5.

Θ

(
DBP

(
G(p,q)

))
=Θ

(
ϑφ (1+1/β )+ξ ψ

B

)
(4)

Θ

(
SPP

(
G(p,q)

))
=Θ

(
2ϑφ/β +2ξ φψ +ξ ψ

B

)
(5)

in which, ξ is the number of edges in G(p,q), ϑ is the number of vertices in the interval,
and φ and ψ are, respectively, the number of bytes to represent a vertex and an edge e.
Once we have the costs per block of DBP and SPP, we can decide between one and the
other by simply analyzing the ratio SPP/DBP:

Θ

(
SPP
DBP

)
=Θ

(
1
β
+

2ξ ψ

ϑ

)
(6)

This ratio leads to the final decision equation:

BlockType
(

G(p,q)
)
=

{
sparse, Θ

(
SPP
DBP

)
< 1

dense, otherwise
(7)

We apply Equation 6 to select the best option according to Equation 7. With this
scheme, BBP is able to select the best processing scheme for each block of a given
graph. In Section 4, we demonstrate that this procedure yields a performance superior
than the current state-of-the-art frameworks.
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Algorithm 1 MAlgorithm: Algorithm Interface for coding in M-Flash
initialize (Vertex v)
gather (Vertex u, Vertex v, EdgeData data)
process (Accum v 1, Accum v 2, Accum v out)
apply (Vertex v)

Algorithm 2 PageRank in M-Flash
degree(v): = out degree for Vertex v
initialize(v): v.value = 0
gather(u, v, data): v.value += u.value/ degree(u)
process(v 1, v 2, v out): v out = v 1 + v 2
apply(v): v.value = 0.15 + 0.85 * v.value

3.3 Programming Model in M-Flash

M-Flash’s computational model, which we named MAlgorithm (short for Matrix Algo-
rithm Interface) is shown in Algorithm 1. Since MAlgorithm is a vertex-centric model, it
stores computation results in the destination vertices, allowing for a vast set of iterative
graph computations, such as PageRank, Random Walk with Restarts (RWR), Weakly
Connected Components (WCC), and diameter estimation.

The MAlgorithm interface has four operations: initialize, gather, process, and ap-
ply. The initialize operation loads the initial value of each destination vertex; the gather
operation collects data from neighboring vertices; the process operation processes the
data gathered from the neighbors of a given vertex – the desired processing is defined
here; finally, the apply operation stores the new computed values of the destination ver-
tices to the hard disk, making them available for the next iteration. Note that initialize
and apply operations are not mandatory, while process operation is used only in multi-
threading executions.

To demonstrate the flexibility of MAlgorithm, we show in Algorithm 2 the pseudo
code of how the PageRank algorithm (using power iteration) can be implemented. The
input to PageRank is made of two vectors, one storing node degrees, and another one for
storing intermediate PageRank values, initialized to 1/ |V |. The algorithm’s output is a
third nodes vector that stores the final computed PageRank values. For each iteration,
M-Flash executes the MAlgorithm operations on the output vector as follows:

– initialize: the vertices’ values are set to 0;
– gather: accumulates the intermediate PageRank values of all in-neighbors u of ver-

tex v;
– process: sums up intermediate PageRank values – M-Flash supports multiple threads,

so the process operation combines the vertex status for threads running concur-
rently;

– apply: calculates the new PageRank values of the vertices (with the usual damping
factor of 0.85).

The input for the next iteration is the output from the current one. The algorithm
runs until the PageRank values converge; it may also stop after executing one certain
number of iterations defined by the user.
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Many other graph algorithms can be decomposed into or take advantage of the same
four operations and implemented in similar ways, including Weakly Connected Com-
ponents, Sparse Matrix Vector Multiplication SpMV, eigensolver, diameter estimation,
and random walk with restart.

3.4 System Design & Implementation
This section details the implementation of M-Flash, which starts by processing an in-
put graph that will be transformed into one flat array format in which each edge has
a constant size. At the same time that this graph preprocessing takes place, M-Flash
divides the edges in β source-partitions and it counts the number of edges by block.
An edge e = (vsource,vdestination,data) belongs to block G(p,q) when vsource ∈ I(p) and
vdestination ∈ I(q). Blocks are classified in sparse or dense using Equation 7. Note that M-
Flash does not sort edges by source or destination, it simply splits edges up to β 2 blocks,
β 2� |V |. The sorting of graphs whose size takes up an entire TB disk is a very costly
preprocessing task demanded by some previous frameworks, as discussed in Section 2.
One of the contributions of M-Flash is that it does not demand such kind of prepro-
cessing. After all edges are preprocessed, whenever a source-partition contains dense
blocks, M-Flash splits each source-partition with sparse blocks into a sparse partition
and into dense blocks. The sparse partition contains all the edges of the sparse blocks
in the source-partition. The I/O cost for preprocessing is 4|E|

B , where B is the size of
each block transferred between disk and memory. Algorithm 3 shows the pseudo-code
of M-Flash. The aforementioned preprocessing refers to Step 4 of the algorithm. Sparse
partitions are processed using SPP and dense blocks are processed using DBP.

4 Evaluation
We compare M-Flash with multiple state-of-the-art approaches: GraphChi, TurboGraph,
X-Stream, MMap, GridGraph, and GraphTwist. For a fair comparison, we used exper-
imental setups recommended by the authors of GraphChi, TurboGraph, X-Stream, and
MMap (Subsection 4.1). GridGraph and GraphTwist did not publish nor share the code
of their frameworks, so the comparison is based on the results reported in their respec-
tive publications we notice that, in every case, our experimental hardware is inferior to
those used in the original experimentations of GridGraph and GraphTwist. That is, we
provide, at least, a fair comparison. We use four graphs at different scales (See Table 1),
and we compare the runtimes of all approaches for two well-known essential algorithms
PageRank (Subsection 4.2) and Weakly Connected Components (Subsection 4.3). To
demonstrate how M-Flash generalizes to more algorithms, we implemented the Lanczos
algorithm (with selective orthogonalization), which is one of the most computationally
efficient approaches to compute eigenvalues and eigenvectors [14, 7] (Subsection 4.4).
To the best of our knowledge, M-Flash provides the first design and implementation
of Lanczos that can handle graphs with more than one billion nodes, when the graph
does not fit in RAM. Next, in Subsection 4.5, we show that M-Flash keeps up its high
speed even when the machine has little RAM (including extreme cases, like 4GB), in
contrast to other methods that slow down in such circumstance. Finally, through a theo-
retical analysis of I/O, we show the reasons for the performance increase using the BBP
strategy (Subsection 4.6).
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Algorithm 3 Main Algorithm of M-Flash

Input: Graph G(V,E) and vertex attributes γ

Input: user-defined MAlgorithm program
Input: memory size M and number of iterations iter
Output: vector v with vertex results
1: set φ from γ attributes, β using equation 1. ϑ = |V |/β

2: execute graph preprocessing and partitioning
3: for i = 1 to iter do
4: Make processing for sparse partitions using SPP
5: for q = 1 to β do
6: load vertex values of destination interval I(q)

7: initialize I(q) of v using MAlgorithm.initialize
8: if exist sparse partition associated to I(q) then
9: for each edge

10: invoke MAlgorithm.gather storing
11: calculations on vector v
12: if q is odd then
13: partition-order = {1 to β}
14: else
15: partition-order = {β to 1}
16: for p = {partition-order} do
17: if G(p,q) is dense then
18: load vertex values of interval I(p)

19: for each edge in G(p,q)

20: invoke MAlgorithm.gather storing on v
21: invoke MAlgorithm.process for I(q) of v
22: invoke MAlgorithm.apply for I(q) of v
23: store interval I(q) of vector v

4.1 Experimental Setup

All experiments were run on a laptop Lenovo Y40 with an Intel i7-4500U CPU (3
GHz), 16 GB RAM and 1 TB Samsung 850 Evo SSD disk. Note that M-Flash does
not require an SSD to run, but this is not the case for all frameworks, like TurboGraph.
Hence, we used an SSD to make sure that all methods can perform at their best. Table 1
shows the datasets used in our experiments. GraphChi, X-Stream, MMap, and M-Flash
were run on Linux Ubuntu 14.04 (x64). TurboGraph was run on Windows (x64) since
it only supports Windows [4]. All the reported runtimes were given by the average time
of three cold runs, that is, with all caches and buffers purged between runs to avoid any
potential advantage gained due to caching or buffering effects.

Table 1: Graph datasets used in our experiments.
Graph Nodes Edges Size

LiveJournal [2] 4,847,571 68,993,773 Small
Twitter [9] 41,652,230 1,468,365,182 Medium
YahooWeb 1,413,511,391 6,636,600,779 Large
R-Mat (Synthetic graph) 4,000,000,000 12,000,000,000 Large
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GraphChi X-Stream TurboGraph MMap GridGraph M-Flash

PageRank
LiveJournal (10 iter.) 33.1 10.5 7.9 18.2 6.4 5.3
Twitter (10 iter.) 1199 962 241 186 269 173
YahooWeb (1 iter.) 642 668 628 1245 235.95 195
R-Mat (1 iter.) 2145 1360 - - - 745

Connected Components
LiveJournal (Union Find) 3.2 5.7 4.4 10.7 4.4 1.3
Twitter (Union Find) 70 1038 128 45 287 25
YahooWeb (WCC - 1 iter.) 668 889 - - - 125
R-Mat (WCC - 1 iter.) 3334 2167.63 - - - 663.17

Table 2: Runtime (in seconds) with 8GB of RAM. The symbol “-” indicates that the
corresponding system failed to process the graph or the information is not available in
the respective papers.

We ran all the methods at their best configurations since we wanted to truly ver-
ify performance at the most competitive circumstances. As we show in the following
sections, M-Flash exceeded the competing works both empirically and theoretically. At
the end of the experiments, it became clear that the design of M-Flash considering the
density of blocks of the graph granted the algorithm improved performance.

4.2 PageRank
Table 2 presents the PageRank runtime of all the methods, as discussed next.

LiveJournal (small graph): Since the whole graph fits in RAM, all approaches fin-
ish in seconds. Still, M-Flash was the fastest, up to 6X faster than GraphChi, 3X than
MMap, and 2X than X-Stream.

Twitter (medium graph): The edges of this graph do not fit in RAM (it requires
11.3GB) but its node vectors do. M-Flash had a similar performance if compared to
MMap, however, MMap is not a generic framework, rather it is based on dedicated
implementations, one for each algorithm. Still, M-Flash was faster. In comparison to
GraphChi and X-Stream, the related works that offer generic programming models,
M-Flash was fastest, 5.5X and 7X faster, respectively.

YahooWeb (large graph): For this billion-node graph, neither its edges nor its node
vectors fit in RAM; this challenging situation is where M-Flash notably outperforms the
other methods. The results of table 2 confirm this claim, showing that M-Flash provides
a speed that is 3X to 6.3X faster that those of the other approaches.

R-Mat (Synthetic large graph): For our big graph, we compared only GraphChi,
X-Stream, and M-Flash because TurboGraph and MMap require indexes or auxiliary
files that exceed our current disk capacity. GridGraph was not considered because the
paper does not provide information about R-Mat graphs with a similar scale. Table 2
shows that M-Flash is 2X and 3X faster that X-Stream and GraphChi respectively.

4.3 Weakly Connected Components (WCC)
When there is enough memory to store all the vertex data, the Union Find algorithm
[16] is the best option to find all the WCCs in one single iteration. Otherwise, with



12 Gualdron, H et al.

memory limitations, an iterative algorithm produces identical solutions. Hence, in this
round of experiments, we use Algorithm Union Find to solve WCC for the small and
medium graphs, whose vertices fit in memory; and we use an iterative algorithm for the
YahooWeb graph.

Table 2 shows the runtimes for the LiveJournal and Twitter graphs with 8GB RAM;
all approaches use Union Find, except X-Stream. This is because of the way that X-
Stream is implemented, which handles only iterative algorithms.

In the WCC problem, M-Flash is again the fastest method with respect to the entire
experiment: for the LiveJournal graph, M-Flash is 3x faster than GraphChi, 4.3X than
X-Stream, 3.3X than TurboGraph, and 8.2X than MMap. For the Twitter graph, M-
Flash’s speed is 2.8X faster than GraphChi, 41X than X-Stream, 5X than TurboGraph,
2X than MMap, and 11.5X than GridGraph.

In the results of the YahooWeb graph, one can see that M-Flash was significantly
faster than GraphChi, and X-Stream. Similarly to the PageRank results, M-Flash is
pronouncedly faster: 5.3X faster than GraphChi, and 7.1X than X-Stream.

4.4 Spectral Analysis using The Lanczos Algorithm
Eigenvalues and eigenvectors are at the heart of numerous algorithms, such as singular
value decomposition (SVD) [3], spectral clustering, triangle counting [17], and tensor
decomposition [8]. Hence, due to its importance, we demonstrate M-Flash over the
Lanczos algorithm, a state-of-the-art method for eigen computation. We implemented
it using method Selective Orthogonalization (LSO). To the best of our knowledge, M-
Flash provides the first design and implementation that can handle Lanczos for graphs
with more than one billion nodes when the vertex data cannot fully fit in RAM. M-Flash
provides functions for basic vector operations using secondary memory. Therefore, for
the YahooWeb graph, we are not able to compare it with the other competing frame-
works using only 8GB of memory, as in the case of GraphChi.

To compute the top 20 eigenvectors and eigenvalues of the YahooWeb graph, one
iteration of LSO over M-Flash takes 737s when using 8GB of RAM. For a comparative
panorama, to the best of our knowledge, the closest comparable result of this compu-
tation comes from the HEigen system [5], at 150s for one iteration; note however that,
it was for a much smaller graph with 282 million edges (23X fewer edges), using a
70-machine Hadoop cluster, while our experiment with M-Flash used a single com-
modity desktop computer and a much larger graph.

4.5 Effect of Memory Size
Since the amount of available RAM strongly affects the computation speed of single-
node graph processing frameworks, here, we study the effect of memory size. Figure 5
summarizes how all approaches perform under 4GB, 8GB, and 16GB of RAM when
running one iteration of PageRank over the YahooWeb graph. M-Flash continues to run
at the highest speed even when the machine has very little RAM, 4GB in this case. Other
methods tend to slow down. In special, MMap does not perform well due to thrashing, a
situation when the machine spends a lot of time on mapping disk-resident data to RAM
or unmapping data from RAM, slowing down the overall computation. For 8GB and
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Fig. 5: Runtime comparison for PageRank over the YahooWeb graph. M-Flash is sig-
nificantly faster than all the state of the art for three different memory settings, 4GB,
8GB, and 16GB.

16GB, respectively, M-Flash outperforms all the competitors for the most challenging
graph, the YahooWeb. Notice that all the methods, but for M-Flash and X-Stream, are
strongly influenced by restrictions in memory size; according to our analyzes, this is due
to the higher number of data transfers needed by the other methods when not all the data
fits in the memory. Despite that X-Stream worked well for any memory setting, it still
has worse performance if compared to M-Flash because it demands three full disk scans
in every case – actually, the innovations of M-Flash, as presented in Section 3, were
designed to overcome such problems, which we diagnosed in a series of experiments.

4.6 Theoretical (I/O) Analysis
Following, we show the theoretical scalability of M-Flash when we reduce the available
memory (RAM) at the same time that we demonstrate why the performance of M-Flash
improves when we combine DBP and SPP into BBP, instead of using DBP or SSP
alone. Here, we use a measure that we named t-cost; 1 unit of t-cost corresponds to three
operations, one reading of the vertices, one writing of the vertices, and one reading of
the edges. In terms of computational complexity, t-cost is defined as follows:

t-cost(G(E,V )) = 2 |V |+ |E| (8)

Notice that this cost considers that reading and writing the vertices have the same cost;
this is because the evaluation is given in terms of computational complexity. For more
details, please refer to the work of McSherry et al. [13], who draws the basis of this
kind of analysis.

We use measure t-cost to analyze the theoretical scalability for processing schemes
DBP only, SPP only, and BBP (the combination of DBP and SPP). We perform these
analyzes by means of MathLab simulations that were validated empirically. We consid-
ered the characteristics of the three datasets used so far, LiveJournal, Twitter, and Ya-
hooWeb. For each case, we calculated the t-cost (y-axis) as a function of the available
memory (x-axis), which, as we have seen, is the main constraint for graph processing
frameworks.
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Fig. 6: I/O cost using DBP, SPP, and BBP for LiveJournal, Twitter and YahooWeb
Graphs using different memory sizes. BBP model always performs fewer I/O operations
on disk for all memory configurations.

Figure 6 shows that, for all the graphs, DBP-only processing is the least efficient
when memory is reduced; however, when we combine DBP (for dense region process-
ing) and SPP (for sparse region processing) into BBP, we benefit from the best of both
worlds. The result corresponds to the best performance, as seen in the charts. Figure 7
shows the same simulated analysis – t-cost (y-axis) in function of the available memory
(x-axis), but now with an extra variable: the density of hypothetical graphs, which is
assumed to be uniform in each analysis. Each plot, from (a) to (d) considers a different
density in terms of average vertex degree, respectively, 3, 5, 10, and 30. In each plot,
there are two curves, one corresponding to DBP-only, and one for SSP-only; and, in
dark blue, we depict the behavior of M-Flash according to the combination BBP. No-
tice that as the amount of memory increases, so does the performance of DBP, which
takes less and less time to process the whole graph (decreasing curve). SPP, in turn, has
a steady performance, as it is not affected by the amount of memory (light blue line).
In dark blue, one can see the performance of BBP; that is, which kind of processing
will be chosen by Equation 7 at each circumstance. For sparse graphs, Figures 7(a) and
7(b), SSP answers for the greater amount of processing; while the opposite is observed
in denser graphs, Figures 7(c) and 7(d), when DBP defines almost the entire dark blue
line of the plot.

These results show that the graph processing must take into account the density of
the graph at each moment (block) so to choose the best strategy. It also explains why
M-Flash improves the state of the art. It is important to note that no former algorithm
considered the fact that most graphs present varying density of edges (dense regions
with many more edges than other regions that are sparse). Ignoring this fact leads to
a decreased performance in the form of a higher number of data transfers between
memory and disk, as we empirically verified in the former sections.

4.7 Preprocessing time
Table 3 shows the preprocessing times for each graph using 8GB of RAM. As it can
be seen, M-Flash has a competitive preprocessing runtime. It reads and writes two
times the entire graph on disk, which is the third best performance, after MMap and
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Fig. 7: I/O cost using DBP, SPP, and BBP for a graph with densities k = {3,5,10,30}.
|E| ≈ k|V |.

X-Stream. GridGraph and GraphTwist, in turn, demand a preprocessing that divides
the graph using blocks in a way similar to M-Flash. We did not compare preprocess-
ing with these frameworks because we do not have their source codes and the per-
formance of preprocessing can vary significantly depending on the original format of
the graphs (text plain or binary). Despite the extra preprocessing time required by M-
Flash – if compared to MMap and X-Stream, the total processing time (preprocessing
+ processing with only one iteration) for algorithms PageRank and WCC over the Ya-
hooWeb graph, is of 1460s and 1390s, still, 29% and 4% better than the total time of
MMap and X-Stream respectively. Note that the algorithms are iterative and M-Flash
needs only one iteration to overcome its competitors.

Table 3: Preprocessing time (seconds).
LiveJournal Twitter YahooWeb R-Mat

GraphChi 23 511 2781 7440
X-Stream 5 131 865 2553
TurboGraph 18 582 4694 -
MMap 17 372 636 -
M-Flash 10 206 1265 4837

5 Conclusions

We proposed M-Flash, a single-machine, billion-scale graph computation framework
that uses a block partition model to maximize disk access speed.M-Flash uses an in-
novative design that takes into account the variable density of edges observed in the
different blocks of a graph. Its design uses Dense Block Processing (DBP) when the
block is dense, and Streaming Partition Processing (SPP) when the block is sparse. In
order to take advantage of both worlds, it uses the combination of DBP and SPP accord-
ing to scheme Bimodal Block Processing (BBP), which is able to analytically determine
whether a block is dense or sparse and trigger the appropriate processing. To date, our
proposal is the first framework that considers a bimodal approach for I/O minimization,
a fact that, as we demonstrated, granted M-Flash the best performance compared to the
state of the art.

M-Flash was designed so that it is possible to integrate a wide range of popular
graph algorithms according to its Matrix Algorithm Interface model, including the first
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single-machine billion-scale eigensolver. We conducted extensive experiments using
large real graphs. M-Flash consistently and significantly outperformed all state-of-the-
art approaches, including GraphChi, X-Stream, TurboGraph, MMap, GridGraph, and
GraphTwist. M-Flash runs at high speed for graphs of all sizes, including the YahooWeb
graph with 6.6 billion edges, even when the size of the memory is limited.
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