
Data/Feature Distributed Stochastic Coordinate Descent
for Logistic Regression

Dongyeop Kang
KAIST Institute

dykang@itc.kaist.ac.kr

Woosang Lim
KAIST

quasar17@kaist.ac.kr

Kijung Shin
Seoul National University
koreaskj@snu.ac.kr

Lee Sael
SUNY Korea & Stony Brook

University
sael@sunykorea.ac.kr

U Kang
KAIST

ukang@cs.kaist.ac.kr

ABSTRACT
How can we scale-up logistic regression, or L1 regularized loss
minimization in general, for Terabyte-scale data which do not fit in
the memory? How to design the distributed algorithm efficiently?
Although there exist two major algorithms for logistic regression,
namely Stochastic Gradient Descent (SGD) and Stochastic Coor-
dinate Descent (SCD), they face limitations in distributed environ-
ments. Distributed SGD enables data parallelism (i.e., different ma-
chines access different part of the input data), but it does not allow
feature parallelism (i.e., different machines compute different sub-
sets of the output), and thus the communication cost is high. On
the other hand, Distributed SCD allows feature parallelism, but it
does not allow data parallelism and thus is not suitable to work in
distributed environments.

In this paper we propose DF-DSCD (Data/Feature Distributed
Stochastic Coordinate Descent), an efficient distributed algorithm
for logistic regression, or L1 regularized loss minimization in gen-
eral. DF-DSCD allows both data and feature parallelism. The ben-
efits of DF-DSCD are (a) full utilization of the capabilities provided
by modern distributing computing platforms like MapReduce to an-
alyze web-scale data, and (b) independence of each machine in up-
dating parameters with little communication cost. We prove the
convergence of DF-DSCD both theoretically, and also show empir-
ical evidence that it is scalable, handles very high-dimensional data
with up to 29 millions of features, and converges 2.2× faster than
competitors.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing
General Terms
Algorithms, Design, Experimentation
Keywords
Logistic Regression; L1 regularized loss minimization; Distributed
Computing; Coordinate Descent; MapReduce; Hadoop

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CIKM ’14, November 03-07 2014, Shanghai, China
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00
http://dx.doi.org/10.1145/2661829.2662082.

1. INTRODUCTION
How can we scale-up logistic regression, or L1 regularized loss

minimization in general, for Terabyte-scale data which do not fit in
the memory? How to design the distributed algorithm efficiently?
Logistic regression, or L1 regularized loss minimization in gen-
eral, is a crucial task with many applications including biologi-
cal data mining [11], threat classification [7], text processing [9],
matrix factorization [6, 25], anomaly detection [19], etc. The ma-
jor algorithms for learning the parameter for the logistic regression
problem are descent based algorithms, including Stochastic Gradi-
ent Descent (SGD) and Stochastic Coordinate Descent (SCD). Due
to the growing size of the data, there have been expanding inter-
ests in developing parallel or distributed version of the SGD and
SCD [5, 28]. Ideally, the distributed algorithm for the logistic re-
gression should have two desired parallelism properties in the dis-
tributed computing environment. The first property is data or input
parallelism, which we define as follows.

Definition 1 (Data Parallelism). Data parallelism is the prop-
erty of distributed algorithm that different machines access differ-
ent parts of the input data, and the processing of the input data in
a machine is not affected by those of other machines.

Algorithms satisfying data parallelism are run in distributed sys-
tems efficiently, since the data can be divided into machines, and
each machine focuses only on the piece of the whole data it re-
ceives. The second property is feature or output parallelism which
we define as follows.

Definition 2 (Feature Parallelism). Feature parallelism is the
property of distributed algorithm that different machines compute
different subsets of the output features, and the computation of the
output in a machine is not affected by those of other machines.

Algorithms satisfying feature parallelism can handle high dimen-
sional features efficiently since the task of updating the features is
distributed over machines. Also, the communication cost for ex-
changing the features becomes much smaller since there is no need
to aggregate the features from machines to finalize the features.

Previous works on parallel or distributed version of SGD and
SCD satisfy only one of the two desired parallelism properties.
Zinkevich et al. [28] developed Parallel SGD (PSGD). The PSGD
algorithm provides data parallelism, but it does not provide fea-
ture parallelism. Therefore, it is impossible for each machine to
select a subset of the output features and update it independently.
In the SCD side, Bradley et al. [5] developed ShotGun, a Parallel



1.5 * 2e−161.5 * 2e−8 1.5 1.5 * 2e+8

10
1

10
2

10
3

10
4

Job
Failure

Data size in GB

T
im

e 
in

 s
ec

on
ds

 

 

D−Shotgun
D−SGD
DF−DSCD

(a) Data Scalability

0 500 1000 1500 2000
79

80

81

82

83

84

85

86

Time in seconds

A
cc

ur
ac

y

 

 

D−Shotgun
D−SGD
DF−DSCD

(b) High-Dimensional Data
Processing

0 1000 2000 3000
91.5

92

92.5

93

93.5

94

94.5

Time in seconds

A
cc

ur
ac

y

 

 

D−Shotgun
D−SGD
DF−DSCD

(c) Convergence

Figure 1: Performance of proposed DF-DSCD. (a) DF-DSCD outperforms D-Shotgun: DF-DSCD successfully analyzes the synthetic S1+4
data spanning 207 GB while D-Shotgun fails. (b) DF-DSCD outperforms D-SGD: DF-DSCD runs on 1.3 million-dimensional New20 data
while D-SGD fails to run on it. (c) DF-DSCD converges 2.2× faster than D-SGD on RCV1 data: D-SGD requires 2.2× more time than
DF-DSCD to achieve the same accuracy. Note that in (b,c), D-Shotgun failed running after the first iteration due to the network overhead.

Table 1: Comparison of methods. Our proposed DF-DSCD is
the only one that 1) handles very large data, 2) process high-
dimensional data, and 3) provides fast convergence.

DF-DSCD D-SGD D-Shotgun

Scalable to Large Data X X
High Dim. Data X

Fast Convergence X

Stochastic Coordinate Descent (PSCD) algorithm in a shared mem-
ory setting. ShotGun provides feature parallelism since each core
works independently on subsets of the features. However, it does
not provide data parallelism; i.e., each core should read all the data.

In this paper, we tackle the following problem: how can we de-
sign a distributed logistic regression, or L1 regularized loss min-
imization, algorithm that provides both data and feature paral-
lelism? Our solution is DF-DSCD, a distributed algorithm that
achieves both data and feature parallelism, overcoming the limi-
tations PSGD and PSCD. DF-DSCD provides data parallelism by
letting each machine work on different parts of the data indepen-
dently; furthermore, DF-DSCD provides feature parallelism by let-
ting each machine work on different features. We give theoret-
ical analysis about the convergence property of DF-DSCD. We
also show extensive experimental results showing that DF-DSCD is
scalable, handles very high dimensional data, and converges faster
(up to 2.2×) than its competitors. Table 1 shows the advantage of
DF-DSCD compared to other competitors. The main contributions
are the followings.

Table 2: Table of symbols.

Symbol Definition

n number of data instances
d number of features
xi ith d-dimensional predictor variable instance
X n by d design matrix whose ith row is xi
yi ith response variable instance
θ d-dimensional weight parameters

iθ
(t)
j jth element of θ updated from ith machine at time t
η learning rate
ρ spectral radius of XT X
M number of machines
T number of iterations
P number of features updated by each machine in DF-DSCD
C number of features updated at each iteration in (D-)Shotgun
s average proportion of nonzero feature values per example

• Design. We carefully design DF-DSCD, a data/feature dis-
tributed stochastic coordinate descent algorithm for large scale
logistic regression. Unlike Distributed Stochastic Gradient
Descent (D-SGD) and Distributed Shotgun (D-Shotgun) which
provide either data or feature parallelism, resp., in distributed
environment, DF-DSCD provides both data and feature par-
allelism.

• Scalability. DF-DSCD is highly scalable on the data size:
DF-DSCD successfully analyzes 207 GB data while D-Shotgun
fails to analyze it, as shown in Figure 1(a). Furthermore,
DF-DSCD processes very high-dimensional data effectively:
DF-DSCD runs on the data with more than millions of fea-
tures, while D-SGD and D-Shotgun fail to run on it as shown
in Figure 1(b).

• Convergence. We analyze the convergence properties of
DF-DSCD both theoretically and empirically. Theoretically,
we prove that DF-DSCD decreases the loss function of the
logistic regression at every iteration. Empirically, we present
results that DF-DSCD converges up to 2.2× faster than its
competitors, as shown in Figure 1(c).

The rest of this paper is organized as follows. Section 2 presents
the preliminaries of logistic regression. Section 3 describes our
proposed DF-DSCD algorithm. Sections 4 analyzes the conver-
gence properties and the time complexity of DF-DSCD. Section 5
presents the experimental results. After reviewing related works in
Section 6, we conclude in Section 7. Table 2 lists the symbols used
in this paper.

2. PRELIMINARIES
In this section, we describe the preliminaries of logistic regres-

sion and its algorithms.

2.1 Logistic Regression
Logistic regression is a special case of the general problem called

the L1 regularized loss minimization. Let S = {(xi ∈ R
d, yi ∈ R)}ni=1

be a set of n training examples where {xi ∈ R
d} are d-dimensional

inputs, and {yi ∈ R} are target labels. Let X be an n by d design
matrix whose ith row is xi. In the logistic regression, the target
variable y takes discrete values; for the sake of simplicity we focus
on binary classification where y takes either −1 or 1; multi-class
generalization is straightforward, too. The probability that y takes
the value 1 is given by p(y = 1|x; θ) = 1

1+e−θT x , where θ ∈ Rd are
the weight parameters. p(y = −1|x; θ) is defined naturally: p(y =



−1|x; θ) = 1 − p(y = 1|x; θ). The logistic regression problem is
to find θ that minimizes the following loss function based on the
negative log likelihood:

F(θ) =

n∑
i=1

− log p(yi|xi; θ) + λ||θ||1

=

n∑
i=1

log(1 + exp(−yixT
i θ)) + λ||θ||1. (1)

where λ is a regularization term to penalize large weight parame-
ters.

2.2 Algorithms for Logistic Regression
We review algorithms for learning the parameter θ in the logis-

tic regression. The goal is to minimize the loss function F(θ).
There are two lines of learning algorithms for the logistic regres-
sion: Newton-Rhapson method and descent based methods. The
Newton-Rhapson’s method is not used practically since the matrix
inversion it involves is very expensive, and many of the design ma-
trices are not invertible. For the reason, we focus on the descent
based methods which can handle large data.

2.2.1 Gradient Descent
The Gradient Descent (GD) algorithm starts with an initial guess

θ(0) of the parameter θ, and iteratively updates θ by moving it to-
ward the direction of negative gradient. Since the loss function
F(θ) of the logistic regression is convex [12], the GD algorithm al-
ways converges to the global minimum. It can be shown that the
partial derivative of F(θ) with regard to θ j, after reformulation with
duplicate features as explained in Section 3.3, is given by

(∇F(θ)) j :=
∂

∂θ j
F(θ) = [

n∑
i=1

(yiXi j(pi − 1))] + λ, (2)

where pi = 1/(1 + exp(−yixT
i θ)). Thus, the GD algorithm is given

by iteratively updating θ using the equation θ ← θ−η∇F(θ), where
η is the positive learning rate. Notice that the parameter θ is updated
incrementally over instances.

Stochastic Gradient Descent (SGD) randomizes iterating through
the instances. SGD gets a random approximation of the partial
derivatives in much less than O

(
nd

)
time where n is the number

of instances and d is the number of features, and thus the param-
eters are updated much more rapidly than in GD. Moreover, if jth
feature of a training example x is 0, then updating θ j based on x can
be skipped. This means that the time for each iteration is O

(
nsd

)
where s is the density (average proportion of nonzero feature val-
ues per example). Therefore, for sparse data, SGD is very efficient
in practice.

2.2.2 Coordinate Descent
Coordinate Descent (CD) also optimizes for the set of parame-

ters. However, instead of optimizing all parameters at a time, CD
updates a single parameter (or a coordinate) θ j at a time using all
the data. That is, θ j ← θ j − η(∇F(θ)) j.

Often, CD converges too slowly to be useful. However, CD can
be useful in problems where computing solutions over all of the
features is difficult, but computing solutions over a subset of fea-
tures is relatively easy. Therefore, between the non-parallel version
of these two variants (SGD and CD), SGD is the faster algorithm.
Stochastic Coordinate Descent (SCD) is a variant of CD where the
coordinate to be updated is randomly chosen at each iteration.

2.2.3 Parallel Stochastic Gradient Descent
Mann et al. [15] proposed Parallel Stochastic Gradient Descent

(PSGD) by partitioning the data of size n into n
R pieces where R

is the number of parallel processors. Further, Zinkevich et al. [28]
showed detailed analysis and experimental evidence. In the work,
each processor independently learns the parameters of the opti-
mization problem using SGD for multiple iterations. Finally after
the last iteration by all processors, the parameters from all proces-
sors are collected and averaged to give a final single set of parame-
ters. This method achieves the scalability by dividing the large data
into smaller manageable size for each processor. The advantage
of only combining the parameters at the end of all iterations re-
duces the communication overhead of exchanging parameters. The
MapReduce version of Parallel Stochastic Gradient Descent is pro-
posed in Section 3.

2.2.4 Parallel Stochastic Coordinate Descent
Bradley et al. [5] proposed ShotGun, a Parallel Stochastic Co-

ordinate Descent (PSCD) algorithm which updates parameters in
parallel. Assume that C processors exist in a multi-processor ma-
chine. At each iteration, Shotgun randomly selects C coordinates
to update, and assigns each coordinate to a distinct processor. Each
processor then solves for the assigned parameter using coordinate
descent. Each time a parameter changes, it is written to a data struc-
ture that is shared by all other processors. Given that reads will not
result in any data inconsistency and each processor only writes to
parameters that they are responsible for, the data remain consistent.
Algorithm 1 shows the Shotgun algorithm [5] which uses the dupli-
cate feature notation described in Section 3.3. In line 6, the β = 1

4
is a constant, and the (∇F(θ)) j is as defined in Eq. (2).

Algorithm 1: Shotgun: Parallel SCD

Input : Set S = {(xi ∈ R
d, yi ∈ {0, 1})}ni=1 of n training

examples,
Number C of parameters to update per iteration.

Output: θ.
1 θ ← 0 ;
2 while not converged do
3 Choose random subset of C weights in {1, ..., 2d} ;
4 In parallel on C processors
5 // In each processor, update the assigned coordinate

using S ;
6 Get assigned weight j ;
7 θ j ← θ j + max{−θ j,−(∇F(θ)) j/β} ;
8 end
9 end

Shotgun achieves scalability by dividing the high dimensional
feature space into blocks of features. The MapReduce version of
Parallel Stochastic Coordinate Descent is proposed in Section 3.

Comparing PSGD and PSCD, PSGD scales with the number of
instances while PSCD scales with the number of features. To take
the advantages of both approaches, we propose DF-DSCD algo-
rithm in Section 3.

3. PROPOSED METHOD
In this section, we describe DF-DSCD, our proposed algorithm

for fast and scalable logistic regression in distributed environment.
We first propose two preliminary algorithms: Distributed Stochas-
tic Gradient Descent (D-SGD) and Distributed Shotgun (D-Shotgun).
D-SGD is a MapReduce version of Parallel Stochastic Gradient De-
scent [28] in distributed environment. D-Shotgun is a MapReduce



version of Parallel Coordinate Descent [5] in distributed environ-
ment. Unfortunately, each of them has a drawback: D-SGD does
not provide feature parallelism, and D-Shotgun does not provide
data parallelism. To overcome the problem, in Section 3.3 we
propose DF-DSCD which couples the best of both D-SGD and D-
Shotgun to provide both data and feature parallelism.

3.1 Distributed SGD
Distributed Stochastic Gradient Descent (D-SGD) is a data par-

allel version of the Stochastic Gradient Descent algorithm. The
MapReduce algorithm of D-SGD is shown in Algorithm 2.

Algorithm 2: MapReduce algorithm for D-SGD

Input : Set S = {(xi ∈ R
d, yi ∈ {0, 1})}ni=1 of n training

examples,
Weight θ(t) ∈ Rd at time t,
Learning rate η.

Output: Weight θ(t+1) ∈ Rd at time t + 1.

1 D-SGD-Map1(Key k, Value v)
2 begin
3 (xi, yi)← (k, v) ;
4 p← rand() % number_reducer ;
5 Output(p, (xi, yi)) ;
6 end
7 D-SGD-Reduce1(Key k, Value v[1..r])
8 begin
9 kθ

(t+1) ← θ(t);
10 foreach (xi, yi) ∈ v[1..r] do
11 kθ

(t+1) ←k θ
(t+1) − η∇F(kθ

(t+1)) ;
12 end
13 Output(k, kθ

(t+1)) ;
14 end

Given the set S = {(xi ∈ R
d, yi ∈ {0, 1})}ni=1 of n training ex-

amples, each machine receives an equal number |S |M of instances in
D-SGD where M is the number of machines. This is done by as-
signing data in mappers. Then, the ith reducer gets S i which is the
ith piece of S after dividing it into M equal pieces. The parame-
ter update is performed in lines 9-12, which is exactly the standard
Stochastic Gradient Descent (SGD). The mapper D-SGD-Map1()
and the reducer D-SGD-Reduce1() are run for total T iterations.

After one iteration of D-SGD-Map1() and D-SGD-Reduce1()
procedure, the kth reducer outputs weight kθ

(t+1) where k ∈ [1..M].
The final weight θ(t+1) is calculated by averaging all kθ

(t+1) from re-
ducers, because each weight is updated from an independent set of
training instances (data parallelism). That is, θ(t+1) ← 1

M

∑M
k=1 kθ

(t+1).
The weight parameters in D-SGD are passed to the reducers by

the distributed cache functionality of MapReduce. D-SGD is illus-
trated in Figure 2(a), where each black box denotes a piece of data
assigned to each machine, and the red rectangles are the features
updated from each machine.

D-SGD achieves data parallelism by dividing the data into pieces
and assigning each piece into each machine. Each machine can
independently work on its own data. However, D-SGD does not
achieve feature parallelism: i.e., each machine is not allowed to
select a subset of features to update.

3.2 Distributed Shotgun
Distributed Shotgun (D-Shotgun) is a distributed version of the

Shotgun [5] (Parallel SCD) algorithm. In D-Shotgun, each machine
receives all the data instances, and then updates the parameters as-
signed to it independently from each other. Of course, this incurs

(a) D-SGD (b) D-Shotgun (c) DF-DSCD

Figure 2: Illustration of D-SGD, D-Shotgun and DF-DSCD. Each
black box denotes a piece of data assigned to each machine, and the
red rectangles are the features updated from each machine. While
D-SGD enables only data parallelism by partitioning data instances
into machines, and D-Shotgun enables only feature parallelism by
computing a subset of the output (d) from each machine, DF-DSCD
enables both data and feature parallelism by partitioning data in-
stances to machines and computing a subset of the output from each
machine.

heavy network traffic since the data instances should be broadcast
to all the machines. We will see how to overcome this problem in
Section 3.3.

The MapReduce algorithm of D-Shotgun is as follows. The main
program selects C coordinates to update, and write each of the co-
ordinates in a separate command file; thus, total C command files
are created. Each of the file is read by a mapper, and the mapper
reads all the data instance in HDFS to perform coordinate descent
for the assigned coordinates. Since mappers perform all the com-
putation needed for the coordinate descent, no reducer is needed.
D-Shotgun is illustrated in Figure 2(b), where the large black box
is all the data, and the red rectangles are outputs from each ma-
chine.

D-Shotgun achieves the feature parallelism: i.e., each machine
randomly selects a subset of features, and updates them. As demon-
strated in Bradley et al. [5] theoretically and empirically, D-Shotgun
has strong convergence bound and linear speedup. The upper bound
of number of parallel updates is d

2ρ where d is size of feature dimen-
sion and ρ is the spectral radius of XT X [5]. Thus, by choosing the
optimal number of coordinate to update w.r.t. the given data, D-
Shotgun can be effectively optimized. However, D-Shotgun has a
significant problem to be used in a distributed environment: it does
not provide data parallelism, and thus each machine is forced to
access all the data which can be a significant bottleneck, as we will
see experimentally in Section 5.

3.3 DF-DSCD: Data/Feature Distributed
Stochastic Coordinate Descent

Even though D-SGD and D-Shotgun achieve respectively data
or feature parallelism, none of them achieves both. Then, a natural
question arises: can we design an algorithm that has both data and
feature parallelism? In this section, we propose Data/Feature Dis-
tributed Stochastic Coordinate Descent (DF-DSCD), a distributed
algorithm for logistic regression which achieves the goal. DF-
DSCD takes the best properties of D-SGD and D-Shotgun. As in
D-SGD, DF-DSCD let each machine receive the equal number |S |M
of instances where S is the set of training data and M is the number
of machines. In other words, the ith machine gets S i which is the
ith piece of S after dividing it into M equal pieces. Also, as in D-
Shotgun, DF-DSCD let total PM coordinates be equally assigned
to M machines, so that each machine gets P coordinates.

Before describing DF-DSCD algorithm in detail, we transform
the original problem into an equivalent problem to ease the descrip-
tion and analysis [5,23]. We let θ̂ ∈ R2d

+ , and use duplicated features



Algorithm 3: DF-DSCD: Data/feature distributed stochastic
coordinate descent.

Input : Set S = {(x̂i ∈ R
2d, yi ∈ {0, 1})}ni=1 of n training

examples,
Number P of coordinates to update per machine.

Output: θ̂.
1 θ̂ ← 0 ;
2 while not converged do
3 Choose PM unique coordinates randomly, and divide it

into equal sized sets P1, ..., PM ;
4 Split S into equal sized sets S 1, ..., S M ;
5 For each machine Mi, assign Pi and S i ;
6 In M distributed machines
7 // In machine Mk, update coordinates in Pk using S k;
8 foreach j ∈ Pk do
9 Set η to satisfy Eq. (6) in Section 4;

10 θ̂ j ← θ̂ j + η · max{−θ̂ j,−(∇Fk(θ̂)) j/β} ;
11 end
12 end
13 end

x̂i = [xi;−xi] ∈ R2d. The design matrix turns into an n by 2d matrix
X̂ whose ith row is x̂i. Then the objective function becomes

F(θ̂) =

n∑
i=1

log(1 + exp(−yix̂T
i θ̂)) + λ||θ̂||1 (3)

If θ̂ ∈ R2d
+ minimizes Eq. (3), then θ ∈ Rd, where θi = θ̂i − θ̂d+i,

minimizes Eq. (1) [23]. Thus, from this point we aim to find θ̂
which minimizes the loss function in Eq. (3).

Let X̂k and yk be the set of x̂ and y in S k, respectively. With-
out loss of generality, we can express X̂ after some permutation as
follows:

X̂ ∈ Rn×2d =


X̂1

X̂2
...

X̂M

 , X̂T =

X̂
T
1 X̂T

2 · · · X̂T
M

 (4)

We next define the partial loss function Fk(θ̂) computed from the
data in S k:

Fk(θ̂) =
∑
i∈X̂k

log(1 + exp(−yix̂T
i θ̂)) +

λ

M
||θ̂||1, (5)

where we use the notation i ∈ X̂k to specify the row indices of X̂
belonging to X̂k. Then, F(θ̂) is given by

F(θ̂) =

M∑
k=1

Fk(θ̂).

The DF-DSCD algorithm is shown in Algorithm 3. The coordi-
nates and data are assigned to machines in lines 3-5. Then, each
machine performs parallel SCD on the assigned data where the up-
date equation (line 10) is slightly changed from the standard update
equation (line 7 of Algorithm 1). As we will see in Section 4, the
objective function F() decreases over iterations in DF-DSCD.

The MapReduce algorithm of DF-DSCD is shown in Algorithm 4.
The data assignment is performed in the mapper. The reducer up-
dates the assigned coordinates using the same equation expressed

Algorithm 4: MapReduce algorithm for DF-DSCD

Input : Set S = {(x̂i ∈ R
2d, yi ∈ {0, 1})}ni=1 of n training

examples,
Weight θ̂

(t)
∈ R2d at time t,

Coordinate sets P1, ..., PM with |Pi| = P.
Output: Weight θ̂

(t+1)
∈ R2d at time t + 1.

1 DF-DSCD-Map1(Key k, Value v);
2 begin
3 (x̂i, yi)← (k, v) ;
4 p← rand() % number_reducer ;
5 Output(p, (x̂i, yi)) ;
6 end
7 DF-DSCD-Reduce1(Key k, Value v[1..r]);
8 begin
9 foreach j ∈ Pk do

10 k θ̂
(t+1)
j ← θ̂(t)

j ;
11 end
12 foreach j ∈ Pk do
13 Set η to satisfy Eq. (6) in Section 4;
14 k θ̂

(t+1)
j ←k θ̂

(t+1)
j + η · max{−θ̂ j,−(∇Fk(θ̂)) j/β};

15 end
16 foreach j ∈ Pk do
17 Output( j, k θ̂

(t+1)
j ) ;

18 end
19 end

in line 10 of Algorithm 3. Since each reducer updates different co-
ordinates, there is no need to sum up the updated parameters from
different reducers. DF-DSCD is illustrated in Figure 2(c), where
each black shaded box is a piece of data assigned to each machine,
and the red rectangles are outputs from each machine.

DF-DSCD achieves the data parallelism by dividing the data into
pieces and assigning each piece into each machine. Each machine
can independently work on its own data. Moreover, DF-DSCD
achieves the feature parallelism since each machine is allowed to
select a subset of features to update.

4. ANALYSIS
In this section, we give a theoretical convergence analysis and

time complexity of DF-DSCD.

4.1 Convergence Analysis
We prove that DF-DSCD decreases the loss function F() of the

logistic regression problem at each iteration. Since DF-DSCD ran-
domly chooses coordinates, it is necessary to bound the expecta-
tion of the loss function where the expectation is over the random
choices of the coordinates. Our main result is Theorem 1 which
states that the expectation of the loss function decreases at each it-
eration when DF-DSCD is run with a proper small step size. We
first present several lemmas, and use them to prove Theorem 1.

Without loss of generality, we assume that diag(X̂T X̂) = 1, fol-
lowing [5]. The Hessian of F(θ̂) is given by

∂2F(θ̂)
∂θ̂ jθ̂k

=

n∑
i=1

X̂i jX̂ik(1 − p̂i)p̂i,

where p̂i = 1/(1 + ext(−yix̂T
i θ̂)). Let ∆θ̂ be the change of θ̂ at each

iteration, and ∆k
θ̂ j

be the jth coordinate of ∆θ̂ updated from machine

k. We first show the upper bound of F(θ̂ + ∆θ̂) − F(θ̂).



Lemma 1. For any X̂, F(θ̂+∆θ̂)−F(θ̂) ≤ (∆θ̂)T∇F(θ̂)+ β

2 (∆θ̂)T X̂T X̂∆θ̂,
where β = 1

4 is a constant.

Proof. See the supplementary material [1].

Next, we give the relation between ∇F(θ̂) and ∇Fk(θ̂).

Lemma 2. ∇F(θ̂) =
∑M

k=1 ∇Fk(θ̂).

Proof. See the supplementary material [1].

Next, we give a loose bound of the difference between E[F(θ̂ +

∆θ̂)] and E[F(θ̂)].

Lemma 3. For M ≥ 2, E[F(θ̂ + ∆θ̂) − F(θ̂)] is bounded by

E[F(θ̂ + ∆θ̂) − F(θ̂)] ≤ PE j[
M∑

k=1

∆k
θ̂ j
∇F(θ̂) j +

β(1 + ε)
2

M∑
k=1

(∆k
θ̂ j

)2],

where ε =
(PM−1)(ρ−1)

2d−1 and ρ is the spectral radius of X̂T X̂.

Proof. See the supplementary material [1].

Let P(θ̂) be a diagonal matrix with P(θ̂)i,i = p̂i. And let Pk(θ̂) be
a sub-matrix of P(θ̂) corresponding to X̂k and yk is a sub-vector of y
corresponding to X̂k. The gradients of F(θ̂) and Fk(θ̂) are expressed
by P(θ̂) and Pk(θ̂) as follows:

∂F(θ̂)
∂θ̂ j

= (X̂T (P(θ̂) − I)y + λ1) j

∂Fk(θ̂)
∂θ̂ j

= (X̂T
k (Pk(θ̂) − Ik)yk +

λ

M
1) j

=

(
(X̂T

k ) j(Pk(θ̂) − Ik)yk +
λ

M

)
We give an upper bound of

∑M
k=1(∇Fk(θ̂) j)2 in the following Lemma.

Lemma 4. For λ ≤ M,
∑M

k=1(∇Fk(θ̂)) j)2 has the following upper
bound:

M∑
k=1

(∇Fk(θ̂) j)2 ≤ 2
(
‖(P(θ̂) − I)y‖22 + λ

)
.

Proof. See the supplementary material [1].

Now we provide the main theorem about the convergence prop-
erties of DF-DSCD.

Theorem 1. In DF-DSCD, for any iteration, feature j, and θ̂,
there exists a step size η such that the expectation of the loss func-
tion of DF-DSCD decreases: i.e.,

E[F(θ̂ + ∆θ̂) − F(θ̂)] < 0

Proof. See the supplementary material [1].

Note that the step size η can be any value satisfying the following
condition (see [1] for details).

η <
(∇F(θ̂) j)2

c(1 + ε)
(
‖(P(θ̂) − I)y‖22 + λ

) . (6)

4.2 Complexity Analysis
Table 3 shows the time complexity of DF-DSCD. Per iteration,

each mapper requires O(n/M) number of operations to split the
original n data instances into M machines. The number of oper-
ations each reducer requires to update the assigned coordinates is
O(nsd/M) where s is the density and d is the dimension of the
data. Thus, DF-DSCD for T iterations has the time complexity
O(T (n/M + nsd/M)). Note that DF-DSCD runs linearly on the
number of data instances and the dimension of the data. D-SGD
has the same time complexity as DF-DSCD. However, the actual
number of operations is smaller in the case of DF-DSCD because
each machine only updates P parameters instead of d parameters
in DF-DSCD, where P << d. Also, as we will show empirically
in Section 5.3, DF-DSCD requires a smaller number of iterations
to converge compared to D-SGD. Compared to D-Shotgun whose
time complexity is O(Tnsd), DF-DSCD runs M times faster.

Table 3: Time complexity of DF-DSCD and other methods. DF-
DSCD’s time complexity is lower than that of D-Shotgun by M
times. Although DF-DSCD’s time complexity is the same as that
of D-SGD, the actual number of operations is smaller in the case
of DF-DSCD because each machine only updates P parameters in-
stead of d parameters in DF-DSCD, where P << d. Also, DF-
DSCD converges more quickly than D-SGD (see Section 5.3).

DF-DSCD D-SGD D-Shotgun

O(T (n/M + nsd/M)) O(T (n/M + nsd/M)) O(Tnsd)

5. EXPERIMENTS
We perform experiments to answer the following questions:

• Q1 (Scalability): What is the scalability of DF-DSCD com-
pared to other algorithms w.r.t the number of data instances,
the number of features, and both of them?

• Q2 (Convergence): Does DF-DSCD converge faster than
other algorithms?

• Q3 (Parameter): What is (empirically) the optimal number
P of coordinates to update for DF-DSCD?

We present extensive experimental results for the questions. Af-
ter describing the experimental setting in Section 5.1, we answer
the first question Q1 in Section 5.2: with synthetic data of vari-
ous sizes, we compare scalability of DF-DSCD with those of D-
SGD and D-Shotgun. The second question Q2 is answered in Sec-
tion 5.3: with real-world datasets, we compare likelihood conver-
gence and accuracy improvement of DF-DSCD with those of D-
SGD and D-Shotgun. Finally, the third question Q3 is answered in
Section 5.4: we evaluate the performance when the number P of
coordinates to update in DF-DSCD changes.

5.1 Experimental Settings
We describe the settings: cluster, data, and algorithms.

Cluster.
We run experiments in a 60-node Hadoop cluster. Each node in

the cluster has Intel Xeon E5620 2.4GHz CPU and 24GB memory.

Data.
We use both real-world and synthetic datasets listed in Table 4.
Scalability Experiments. To validate scalability in Section 5.2,

we test our algorithms on synthetically generated binary datasets.
We generate the synthetic data as similar as real world data such as
Netflix [3] with different sizes of scales. The Netflix data provides



Table 4: The properties of real-world and synthetic dataset: num-
ber of instances (n), number of features (d), density (s), number of
nonzero items (nz), and size in disk (size).

Real world dataset.
n d s (%) size (MB)

KDDa 8, 407, 752 20, 216, 830 0.0002 2, 607
KDDb 19, 264, 097 29, 890, 095 0.0001 5, 011
News20 17, 996 1, 355, 191 0.03 137
RCV1 20, 242 47, 236 0.5 36

Synthetic dataset: S1 (scale both instances and features),
S2 (scale only instances), and S3 (scale only features).

k=thousand, m=million.
n d nz size (MB)

S1-8 480k ∗ 2−4 18k ∗ 2−4 100m ∗ 2−8 44
S1-4 480k ∗ 2−2 18k ∗ 2−2 100m ∗ 2−4 752
S1-0 480k 18k 100m 12, 559
S1+4 480k ∗ 2+2 18k ∗ 2+2 100m ∗ 2+4 207, 174

S2-8 480k ∗ 2−8 18k 100m ∗ 2−8 48
S2-4 480k ∗ 2−4 18k 100m ∗ 2−4 784
S2-0 480k 18k 100m 12, 559
S2+4 480k ∗ 2+4 18k 100m ∗ 2+4 200, 951

S3-8 480k 18k ∗ 2−8 100m ∗ 2−8 52
S3-4 480k 18k ∗ 2−4 100m ∗ 2−4 764
S3-0 480k 18k 100m 12, 559
S3+4 480k 18k ∗ 2+4 100m ∗ 2+4 222, 766

a training dataset of 100, 480, 507 ratings (1.18 percent density)
that 480, 189 users gave to 17, 770 movies. Similarly, we generate
a synthetic data, which consists of 480, 000 instances and 18, 000
features with 1 percent of non-zero items where a value of each
item is restricted between 0 and 1. Then, we change the number of
instances and features both equally (S1), only instances (S2), and
only features (S3). Each data with different orders of magnitude has
its own name for convenience. For example, when changing both
instances and features in S1, we scale down/up the size of instances
and features by 2−4 (S1-8), 2−2 (S1-4), 20 (S1-0), and 2+2 (S1+4),
respectively.

Convergence and Accuracy Experiments. To validate the like-
lihood convergence and accuracy in Sections 5.3 and 5.4, we evalu-
ate our algorithms on real-world datasets: KDDa, KDDb, News20,
and RCV1.

1. KDDa/KDDb: KDD Cup 2010 dataset obtained from Carnegie
Learning and DataShop [27]. Very large number of instances
(19, 264, 097) and features (29, 890, 095) with up to 0.0002
density.

2. News20: size-balanced two-class variant of the UCI 20 News-
groups dataset [10]. Very large number of features (1, 355, 191)
with 0.03% density.

3. Reuters Corpus Volume I (RCV1): an archive of over 800, 000
manually categorized newswire stories made by Reuters for
research purposes [13]. Large number of instances (20, 242)
and large number of features (47, 236) with 0.5% density.

For each real-world dataset, we used the training and testing sets
given by the data provider. Each algorithm iterates T times until the
difference between successive parameter values is less than a given
threshold (e.g., 0.01). For step size, we use a fixed step size η for
D-SGD and DF-DSCD. The C parameter for D-Shotgun, which

denotes the number of coordinates updated per iteration, is set to
the optimal value d/(2ρ) as suggested in the paper [5].

Algorithms.
We compare DF-DSCD with the following competitors.

1. Distributed Stochastic Gradient Descent (D-SGD) that paral-
lelizes over instances only, as described in Section 3.1. This
is the MapReduce version of Parallel Stochastic Gradient De-
scent [28].

2. Distributed Shotgun (D-Shotgun) that parallelizes over fea-
tures, as described in Section 3.2. This is the MapReduce
version of Parallel Stochastic Coordinate Descent [5]. We
use the optimal C = d/(2ρ) as suggested in the paper.

When choosing the parameter P of DF-DSCD in Section 5.3,
we use P = d/M since it provides the best performance as we will
describe in Section 5.4. We vary the parameter P in Section 5.4.

5.2 Scalability
We empirically show that DF-DSCD scales well with the size of

data, dimension of the data, and the number of machines.

Data Scalability.
To evaluate data scalability, we increase both the size of the num-

ber of instances and the features (Figure 3 (a)), only the number of
instances (Figure 3 (b)), and only the number of the features (Fig-
ure 3 (c)) of synthetic datasets, and measure the running time of
all the methods. Note that D-Shotgun fails to finish the job for
the large datasets due to the overhead of broadcasting the dataset
to all the machines. DF-DSCD and D-SGD show similar scalabil-
ity for relatively low-dimensional datasets (S1 and S2) as shown in
Figure 3(a,b). However, DF-DSCD outperforms D-SGD by 1.45×
for relatively high-dimensional dataset S3 as shown in Figure 3(c).
Below, We will discuss this in detail.

Dimension Scalability.
DF-DSCD processes very high dimensional data effectively thanks

to its feature parallelism which D-SGD lacks. In the previous para-
graph we verified the claim on a synthetic dataset with relatively
high dimension (Figure 3(c)). The performance difference becomes
more evident for even higher dimensional data: see Figure 5(a,b,c)
whose dimensions are 20 million, 29 million, and 1.3 million, resp.
Note that only DF-DSCD successfully analyzes the data while oth-
ers fail.

Machine Scalability.
Finally, we show that DF-DSCD scales almost linearly with the

number of machines. We measure the speed-up by increasing the
number of machines used on our Hadoop platform. To test on very
large data, we run DF-DSCD a very large synthetic dataset S1+4
(207 GB) that consists of 1.6 billions of non-zero items with 1.92
millions of instances and 72 thousands of features (see Table 4).
Figure 4 shows the speed-up (throughput 1/TM , where TM is the
running time with M machines) of DF-DSCD by increasing the
number of machines from 15, 30, 45 to 60. Note that DF-DSCD
speeds up near linearly in the beginning, while the performance
flattens as the number of machines increases, due to the overhead in
distributed systems (e.g. JVM loading time, synchronization time,
etc.).

5.3 Convergence
We show that DF-DSCD converges faster than competitors. We



1.5 * 2e−161.5 * 2e−8 1.5 1.5 * 2e+8

10
1

10
2

10
3

10
4

Job
Failure

Data size in GB

T
im

e 
in

 s
ec

on
ds

 

 

D−Shotgun
D−SGD
DF−DSCD

(a) Dataset S1: scales both
instances and features

1.5 * 2e−161.5 * 2e−8 1.5 1.5 * 2e+8

10
2

10
4

Job
Failure

Data size in GB

T
im

e 
in

 s
ec

on
ds

 

 

D−Shotgun
D−SGD
DF−DSCD

(b) Dataset S2: scales only
instances

1.5 * 2e−161.5 * 2e−8 1.5 1.5 * 2e+8

10
1

10
2

10
3

Job
Failure

Data size in GB

T
im

e 
in

 s
ec

on
ds

 

 

D−Shotgun
D−SGD
DF−DSCD

(c) Dataset S3: scales only
features

Figure 3: Scalability of DF-DSCD compared to D-SGD and D-Shotgun on four different scales of synthetic datasets. For all three datasets,
DF-DSCD is the fastest. D-Shotgun fails on the two largest sizes of data in all the datasets due to heavy traffic overhead. Between DF-DSCD
and D-SGD, DF-DSCD achieves better performance by partitioning data and features into different machines, while D-SGD partitions only
data.

0 1 2 3

x 10
5

65

70

75

80

85

90

Time in seconds

A
cc

ur
ac

y

 

 

D−Shotgun
D−SGD
DF−DSCD

(a) KDDa

0 5 10 15

x 10
5

70

75

80

85

90

Time in seconds

A
cc

ur
ac

y

 

 

D−Shotgun
D−SGD
DF−DSCD

(b) KDDb

0 500 1000 1500 2000
79

80

81

82

83

84

85

86

Time in seconds

A
cc

ur
ac

y

 

 

D−Shotgun
D−SGD
DF−DSCD

(c) News20

0 1000 2000 3000
91.5

92

92.5

93

93.5

94

94.5

Time in seconds

A
cc

ur
ac

y

 

 

D−Shotgun
D−SGD
DF−DSCD

(d) RCV1

Figure 5: Accuracy vs. time in DF-DSCD, compared to D-SGD and D-Shotgun on real world datasets. Only DF-DSCD successfully
handles all very high dimensional real-world datasets and converges the most rapidly in the lower dimensional dataset. D-Shotgun fails on
the all datasets due to the overhead of data broadcasting. Comparing DF-DSCD with D-SGD, DF-DSCD performs well on KDDA, KDDb,
and News20 data with very high dimensions, which could not be handled by D-SGD due to the requirements of updating all the coordinates.
In RCV1 data, DF-DSCD is 2.2× faster than D-SGD to achieve the same accuracy.

15 30 45 60
1

2

3

4

5

6

Number of machines

"S
pe

ed
 u

p"
: 1

/T
M

 

 

DF−DSCD on 1.6 billion 
non−zero dataset (~207GB)

Figure 4: Runtime of DF-DSCD with different number of ma-
chines on a very large synthetic dataset S1+4. Note that DF-DSCD
speeds-up near linearly in the beginning, while the performance
flattens as the number of machines increases, due to the overhead in
distributed systems (e.g. JVM loading time, synchronization time,
etc.).

also find the tendency that its performance becomes better as the
number of coordinates updated by each machine becomes larger.

To evaluate how quickly DF-DSCD converges, we plot accuracy
vs. time of all methods, where the accuracy is evaluated on test-
ing set of each dataset. Figure 5 shows the experimental results
of accuracy for the real world datasets: (a) KDDa, (b) KDDb, (c)
News20, and (d) RCV1. For D-Shotgun, we choose C = d/(2ρ)
following the paper [5]; for DF-DSCD we choose the maximum
possible number P = d/M based on the results from Section 5.4.
Note that for all the results D-Shotgun fails to continue progress:
the MapReduce job for D-Shotgun failed while working due to net-

work overhead. While the original Shotgun [5] in multicore set-
ting showed successful performance in accuracy, our result shows
that it is intractable for Shotgun to work efficiently in MapReduce
environment because all instances should be broadcast to all the
machines.

Compared to D-SGD, DF-DSCD shows faster convergence than
D-SGD to achieve the same accuracy. In KDDa, KDDb, and News20
(Figure 5 (a-c)) data, D-SGD fails: the reason is that KDDa, KDDb,
and News20 have very large number of features (millions), and D-
SGD needs to update all the coordinates. On the contrary, our DF-
DSCD performs well in the high dimensional data since DF-DSCD
can select a subset of the coordinates to update. Although D-SGD
does not fail in RCV1 (Figure 5 (d)) data, DF-DSCD is 2.2× faster
than D-SGD to get the same accuracy. In conclusion, the data par-
allelism allows DF-DSCD to work on large data instances which
could not be handled by D-Shotgun, and the feature parallelism en-
ables DF-DSCD to work on high dimensional data which could not
be handled by D-SGD.

5.4 Effects of Number of Coordinates Updated
DF-DSCD requires a parameter P which is the number of coordi-

nates to update per machine. The question is, which P provides the
best performance? To answer the question, we vary P from d/(8M),
d/(4M), d/(2M) to the maximum possible value d/M, and compare
the running time, likelihood, and accuracy of DF-DSCD on RCV1
data. Figures 6 and 7 show the result with different plotting scheme.
Figure 6 shows the rate of (a) running time, (b) likelihood, and (c)



d/(8M) d/(4M) d/(2M) d/M
0

100

200

300

400

Number of coordinates

T
im

e

 

 

DF−DSCD (after 1st iter.)
DF−DSCD (after 5th iter.)
DF−DSCD (after 10th iter.)

(a) Running Time

d/(8M) d/(4M) d/(2M) d/M

9.2

9.3

9.4

9.5

9.6

Number of coordinates

Lo
g 

( 
−

Lo
g 

Li
ke

lih
oo

d)

 

 

DF−DSCD (after 1st iter.)
DF−DSCD (after 5th iter.)
DF−DSCD (after 10th iter.)

(b) Negative Likelihood (the lower
the better)

d/(8M) d/(4M) d/(2M) d/M

75

80

85

90

Number of coordinates

A
cc

ur
ac

y

 

 

DF−DSCD (after 1st iter.)
DF−DSCD (after 5th iter.)
DF−DSCD (after 10th iter.)

(c) Accuracy (the higher the better)

Figure 6: Comparison of (a) running time, (b) likelihood, (c) accuracy after 1st, 5th, and 10th iterations in DF-DSCD with different number
P of coordinates to update on RCV1 data. Larger number of updated coordinates per iteration leads to better performance in DF-DSCD. In
(a), note that the running time is almost the same for different number P of coordinates since MapReduce algorithm for DF-DSCD heavily
depends on disk accesses, and larger P increases only the CPU time which is small compared to the disk access time. In (b) and (c),
DF-DSCD with P = d/M shows the fastest convergence of likelihood and the highest accuracy after few initial iterations.

0 50 100 150 200 250 300 350

9

9.1

9.2

9.3

9.4

9.5

Time in seconds

Lo
g(

 −
Lo

g 
lik

el
ih

oo
d)

 

 

DF−DSCD (P=d/8M)
DF−DSCD (P=d/4M)
DF−DSCD (P=d/2M)
DF−DSCD (P=d/M)

0 50 100 150 200 250 300 350

72

74

76

78

80

82

84

86

88

90

92

94

Time in seconds

A
cc

ur
ac

y

 

 

DF−DSCD (P=d/8M)
DF−DSCD (P=d/4M)
DF−DSCD (P=d/2M)
DF−DSCD (P=d/M)

(a) Negative Likelihood (b) Accuracy
(the lower the better) (the higher the better)

Figure 7: (a) Likelihood and (b) Accuracy vs. Running time of
DF-DSCD with different number P of coordinate on RCV1 data. In
concordance with our intuition, larger number of coordinates leads
to better performance in DF-DSCD: P = d/M provides the best
negative log likelihood and the best accuracy for a given running
time.

accuracy over different number P of coordinates after 1st, 5th, and
10th iterations. Figure 7 shows the rate of (a) likelihood conver-
gence and (b) accuracy for different number of coordinates in DF-
DSCD by plotting the likelihood or accuracy in y-axis against time
(seconds) in x-axis.

In Figure 6 (a), notice that the running time is almost the same
for different number P of coordinate to update per machine. This
happens because the MapReduce algorithm for DF-DSCD heavily
depends on disk accesses, and larger P increases mainly the CPU
time which is small compared to the disk access time.

Figure 6 (b) shows that the negative likelihood decreases more
quickly over iterations as the number P of coordinates to update
increases. This means that if each machine uses the maximum
number P = d/M of coordinates to update, the data likelihood
converges the most quickly. Figure 6 (c) shows the accuracy for
different number P of coordinates to update per machine. As in the
negative likelihood, the P = d/M provides the best accuracy. Fig-
ure 7 (a) and (b) also show the similar result: data likelihood and
accuracy is the best when choosing P as the maximum possible
value d/M.

6. RELATED WORK
In this section, we review related works on parallel/distributed

machine learning focusing on logistic regression.
Logistic Regression. Logistic regression is a widely-used method

to solve classification problems in data mining. It has been applied
to many applications such as life science [11], threat classification
and temporal link analysis [7], anomaly detection [19], collabora-
tive filtering [24] and text processing [17].

In the logistic regression problem, there have been several ap-
proaches of maximizing the likelihood of the entire dataset [9, 16].
However, the stochastic gradient descent and coordinate descent
are the most famous approaches.

Parallelized/Distributed algorithms. Recently, parallel stochas-
tic gradient descent algorithms for multicore [18] and distributed
setting [15, 28] are studied. Especially, Zinkevich et al. [28] re-
duced I/O overhead of the algorithm by restricting training data to
be accessed only locally and communicating at the very end. Even
though data parallel stochastic gradient descent scales to large num-
ber of instances, it does not consider large number of features.

Bradley et al. [5] proposed Shotgun, a parallel coordinate de-
scent algorithm for minimizing L1-regularized losses. In the ideal
case where all features are uncorrelated, Shotgun can do parallel
updates up to the number of features. The algorithm is empirically
proved to be one of the most scalable algorithms for L1 minimiza-
tion problem. Moreover, two preprocessing schemes [21,22] to im-
prove Shotgun, which also can be easily applied to our DF-DSCD,
are proposed. Although Shotgun provides feature parallelism, it
does not provide data parallelism and its distributed algorithm.

Recently, Richtárik et al. [20] developed a distributed coordinate
descent method that is similar with D-Shotgun algorithm in Sec-
tion 3.2. Even though the authors partition big data into multiple
machines, the paper does not include theoretical proof for conver-
gence and empirical evidence. Alekh Agarwal et al. [2] proposed
a tera-scale linear system which achieves fast convergence speed
by combining an online learning algorithm with a batch one. Al-
though their method is compatible with Hadoop, it does not follow
MapReduce model and requires an additional communication in-
frastructure for effective communication between mappers.

Application beyond logistic regression. Besides logistic re-
gression problem, other applications also can be solved using Stochas-
tic Gradient Descent or Coordinate Descent. Gemulla et al. [6] pro-
posed a matrix factorization algorithm using distributed stochas-
tic gradient descent. Cho-Jui et al. [8] also used fast coordinate



descent methods for variable selection in nonnegative matrix fac-
torization. Recently, Hsiang-Fu et al. [25], proposed a coordinate
descent based matrix factorization technique for recommendation
system. Our DF-DSCD can be directly applied to solve other L1

regularized loss minimization problem like Lasso. More broadly,
our data and feature parallelism technique can be applied to other
machine learning algorithms such as matrix/tensor factorization,
linear SVM [26], large-margin learning [14], and conditional ran-
dom field [4].

7. CONCLUSION
In this paper, we propose Data/Feature Distributed Stochastic

Coordinate Descent (DF-DSCD), an efficient algorithm for solv-
ing logistic regression, or L1 regularization in general, in a fully
distributed way. The main contributions are the followings:

• Design. We carefully design DF-DSCD, a data/feature dis-
tributed stochastic coordinate descent algorithm for large scale
logistic regression. DF-DSCD satisfies both data and feature
parallelism which are two desired properties of distribution
computation, while Distributed Stochastic Gradient Descent
(D-SGD) and Distributed Shotgun (D-Shotgun) satisfies ei-
ther data or feature parallelism, respectively.

• Scalability. DF-DSCD outperforms its competitors in terms
of scalability. In terms of data size, DF-DSCD successfully
analyzes 207 GB data while D-Shotgun fails to analyze it. In
terms of the dimensionality of the data, DF-DSCD runs on
the data with ∼29 million features, while D-SGD fails to run
on it.

• Convergence. From the theoretical analysis, we prove that
DF-DSCD decreases the loss function of the logistic regres-
sion at every iteration. We also present experimental results
showing that DF-DSCD converges up to 2.2× faster than its
competitors.

Future works include extending DF-DSCD for other related tasks
such as matrix factorization and tensor decomposition.

Acknowledgments
This work was supported by the Basic Science Research Program
through the National Research Foundation of Korea funded by the
Ministry of Science, ICT and Future Planning (grants No. 2013005259
and No. 2013R1A1A1064409).

8. REFERENCES
[1] http://kdm.kaist.ac.kr/papers/dfdscd_supp_
theory.pdf.

[2] A. Agarwal, O. Chapelle, M. Dudík, and J. Langford. A
reliable effective terascale linear learning system. arXiv
preprint arXiv:1110.4198, 2011.

[3] J. Bennett, S. Lanning, and N. Netflix. The netflix prize. In
KDD Cup, 2007.

[4] J. K. Bradley. Learning Large-Scale Conditional Random
Fields. PhD thesis, CMU, 2013.

[5] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin.
Parallel coordinate descent for l1-regularized loss
minimization. In ICML, 2011.

[6] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis.
Large-scale matrix factorization with distributed stochastic
gradient descent. In KDD, 2011.

[7] A. Goldenberg, J. Kubica, and P. Komarek. A comparison of
statistical and machine learning algorithms on the task of

link completion. In KDD Workshop on Link Analysis for
Detecting Complex Behavior, 2003.

[8] C.-J. Hsieh and I. S. Dhillon. Fast coordinate descent
methods with variable selection for non-negative matrix
factorization. In KDD, 2011.

[9] C. jen Lin, R. C. Weng, and S. S. Keerthi. Trust region
newton method for large-scale logistic regression. In ICML,
2007.

[10] S. S. Keerthi and D. DeCoste. A modified finite newton
method for fast solution of large scale linear svms. JMLR, 6,
2005.

[11] P. R. Komarek and A. W. Moore. Fast robust logistic
regression for large sparse datasets with binary outputs. In
AISTATS, 2003.

[12] S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng. Efficient L1

regularized logistic regression. In AAAI, 2006.
[13] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new

benchmark collection for text categorization research. JMLR,
2004.

[14] P. Long and R. Servedio. Algorithms and hardness results for
parallel large margin learning. In NIPS, 2011.

[15] G. Mann, R. T. McDonald, M. Mohri, N. Silberman, and
D. Walker. Efficient large-scale distributed training of
conditional maximum entropy models. In NIPS, 2009.

[16] T. P. Minka. A comparison of numerical optimizers for
logistic regression. Technical report, 2003.

[17] D. Nguyen, N. A. Smith, and C. P. Rosé. Author age
prediction from text using linear regression. In Proceedings
of the 5th ACL-HLT Workshop on Language Technology for
Cultural Heritage, Social Sciences, and Humanities, 2011.

[18] F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A
lock-free approach to parallelizing stochastic gradient
descent. arXiv preprint arXiv:1106.5730, 2011.

[19] H. Qiu, Y. Liu, N. A. Subrahmanya, and W. Li. Granger
causality for time-series anomaly detection. In ICDM, 2012.

[20] P. Richtárik and M. Takáč. Distributed coordinate descent
method for learning with big data. arXiv:1310.2059, 2013.

[21] C. Scherrer, M. Halappanavar, A. Tewari, and D. Haglin.
Scaling up coordinate descent algorithms for large l1

regularization problems. In ICML, 2012.
[22] C. Scherrer, A. Tewari, M. Halappanavar, and D. Haglin.

Feature clustering for accelerating parallel coordinate
descent. In NIPS, 2012.

[23] S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1
regularized loss minimization. In ICML, page 117, 2009.

[24] S. Vucetic and Z. Obradovic. Collaborative filtering using a
regression-based approach. Knowl. Inf. Syst., 7(1), Jan. 2005.

[25] C.-J. H. S. S. Yu, Hsiang-Fu and I. S. Dhillon. Parallel matrix
factorization for recommender systems. Knowledge and
Information Systems, pages 1–27, 2013.

[26] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large
linear classification when data cannot fit in memory. TKDD,
2012.

[27] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. McKenzie,
J.-W. Chou, P.-H. Chung, C.-H. Ho, C.-F. Chang, Y.-H. Wei,
et al. Feature engineering and classifier ensemble for kdd cup
2010. In Proceedings of the KDD Cup 2010 Workshop, pages
1–16, 2010.

[28] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li.
Parallelized stochastic gradient descent. In NIPS, 2010.


