
Curved-Voxel Clustering for Accurate Segmentation
of 3D LiDAR Point Clouds with Real-Time Performance

Seungcheol Park, Shuyu Wang, Hunjung Lim, and U Kang

Abstract— Given 3D LiDAR point clouds, how can we seg-
ment them fast and accurately? Fast and accurate segmentation
of 3D LiDAR points is an important issue in mobile robotics
with various applications in classification, tracking, SLAM,
etc. Despite its importance, existing methods do not provide
both speed and accuracy; in particular, methods performing
segmentation in the 3D domain are too slow, disabling its use
in real-time processing.

In this paper, we propose Curved-Voxel Clustering (CVC),
a fast and accurate method for segmenting 3D LiDAR point
clouds utilizing LiDAR-optimized curved-voxel. CVC attains
fine discriminations by considering three important aspects
for clustering 3D LiDAR points: distance from the sensor,
directional resolutions, and rarity of points. CVC succeeds in
providing real-time performance by carefully managing curved-
voxels with a hash table. Especially, CVC works well on sparse
3D point clouds. Through experiments, we show that our
method is up to 1.7× faster and 30% more accurate than other
segmentation methods. CVC enables real-time segmentation
with more than 20 runs in a second.

I. INTRODUCTION

How can we segment 3D LiDAR point clouds fast and
accurately? LiDAR sensors have been widely used in mobile
robotics, autonomous vehicles, and other research areas be-
cause of their wide horizontal field of view and the long scan
distance. Many researchers have extensively utilized LiDAR
for pedestrian classification [1]–[5], multi-robot mapping [6],
[7], etc.

Existing segmentation methods based on 3D LiDAR point
clouds are divided into three groups: segmentation in the
3D domain [8]–[10], segmentation with occupied grid cells
[11]–[13], and segmentation on a range image [14]. How-
ever, existing methods are either slow due to high computa-
tional costs, or inaccurate since they do not carefully consider
the characteristics of 3D LiDAR point clouds.

We propose Curved-Voxel Clustering (CVC), a fast and
accurate method for segmenting 3D LiDAR point clouds.
CVC efficiently and accurately segments point clouds by 1)
introducing a new spatial primitive called curved-voxel, 2)
carefully considering three distinct properties of 3D LiDAR
point clouds (details in Section II), and 3) an efficient hash-
based data structure.

Fig. 1 shows a case study of segmenting 3D LiDAR point
clouds for five people. Each color denotes a cluster. Note that
CVC segments five people correctly even if they are close

Seungcheol Park, Shuyu Wang, and U Kang (corresponding author)
are with Department of Computer Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea. Hunjung
Lim is with Samsung Electronics. ant6si@snu.ac.kr,
wangshuyu79@gmail.com, ukang@snu.ac.kr,
hunjung.lim@samsung.com

(a) CVC

(b) DBSCAN

Fig. 1: Segmentation results of CVC (proposed) and DB-
SCAN using data recorded with a Velodyne VLP-16 scanner
(best viewed in color). Only CVC segments five people
correctly even if they are close to each other.

TABLE I: Comparison of our proposed method CVC and
competitors. CVC is the only method that performs fast and
accurate segmentation considering all the desired properties
(details in Section II-A) for segmenting 3D LiDAR points.

Method Speed Accuracy Prop. 1 Prop. 2 Prop. 3
RBNN [9] X 4

RBNN* X 4 X 4
DBSCAN [10] 4 4 4
Cluster-all [8] X 4

CVC X X X X X

to each other, while DBSCAN incorrectly segments them
into three clusters. Table I shows a comparison of CVC and
other competitors in various aspects. RBNN* denotes our
improved version of RBNN [9] (details in Section IV-A).
CVC is the only method that is fast, accurate, and considers
all the unique properties for segmenting 3D LiDAR point
clouds.

The main contributions of this paper are the followings.

• New Spatial Primitive. We design curved-voxel, a
LiDAR-optimized spatial unit reflecting distinct char-
acteristics of 3D LiDAR point clouds.

• Algorithm. We propose CVC, an efficient method
for segmenting 3D LiDAR point clouds by utiliz-
ing LiDAR-optimized curved-voxels and efficient hash-
based data structure.

• Experiments. We present experimental results showing
that CVC segments 3D LiDAR point clouds up to 1.7×
faster and 30% more accurately than other competitors

RBNN [9]
CVC

(proposed)

Property 3
(rarity

of Points)

Property 2
(directional
resolutions)

Property 1
(distance from

the sensor)

Example

Far from the sensor

People close
to each other

Walking person Front
view

Side
view

IllustrationProperty

Close Far

LiDAR

Far Far

Person B Person A Person B

Front
view

Side
view

Side
view

Person APerson A Person B Person A Person B

Fig. 2: Three distinct properties of 3D LiDAR point clouds that need to be considered for accurate segmentation. CVC is
designed to carefully consider all the properties.

do. In particular, CVC has an advantage of correctly
distinguishing adjacent people.

The rest of the paper is organized as follows: desired
properties and problem definition in Section II, proposed
method in Section III, experiments in Section IV, related
works in Section V, and conclusions in Section VI.

II. DESIRED PROPERTIES AND PROBLEM DEFINITION

In this section, we describe desired properties that seg-
mentation methods for 3D LiDAR points should satisfy, and
define the problem addressed in this paper.

A. Desired Properties for Segmenting 3D LiDAR Points

Since 3D point clouds are generated by laser scans radially
emitted from a LiDAR sensor, they have the following three
distinct properties. First, the distance between two nearest
points grows as the points go farther from the LiDAR
sensor (Property 1 in Fig. 2). Second, the vertical angular
resolution is much larger than the horizontal one, since
LiDAR device has few number of vertical channels (Property
2 in Fig. 2). For example, a popular LiDAR device VLP-16
has ten times lower vertical resolution than the horizontal
one. Third, a LiDAR sensor gives only one point for each
laser scan (Property 3 in Fig. 2). Combined with the low

vertical resolution, this gives a large depth difference in radial
directions especially when we detect an inclined object.

In order to correctly segment 3D point clouds from the
LiDAR sensor with the aforementioned properties, a good
segmentation method needs to satisfy the following desired
properties.

• Property 1 (consider distance from the sensor): group
points correctly, regardless of their distances from the
LiDAR sensor.

• Property 2 (consider directional resolutions): con-
sider the difference of horizontal and vertical angular
resolutions.

• Property 3 (consider rarity of points): correctly group
points detected from successive vertical laser scans even
if they have a large depth difference in radial directions.

Fig. 2 illustrates examples of segmenting 3D LiDAR
point clouds using RBNN [9] which groups points in a
circle of fixed radius r for every point. The third column
shows failed cases of RBNN (in red) and desired ones
(in blue). For Property 1, which states that the distance
between two nearest points grows as they go farther from
the sensor, RBNN cannot group points correctly since it
uses a fixed-radius circle. We need a method to change
radius dynamically in proportion to the distance from the

Step 2:
Build hash table

using curved-voxels

Step 3:
Find neighbor points in

adjacent voxels

Step 4:
Combine neighbor

points

Step 1:
Convert coordinate

into spherical

𝑷 𝒙, 𝒚, 𝒛 → 𝑷 𝝆, 𝜽,𝝋

LiDAR LiDAR

Fig. 3: Steps of CVC, using a bird-eye view. In Step 1, we convert cartesian coordinate into spherical one. In Step 2, we
build a hash table that maps curved-voxel indices to indices of points included in each voxel. In Step 3, we find the neighbor
points inside 9 voxels surrounding each target voxel including the voxel containing the target point. In the final Step 4, we
combine neighbor points into a cluster. Note that nearby points are grouped to clusters of distinct colors.

sensor. For Property 2, which states that the distance between
two nearest neighbor points in the vertical direction is
substantially larger than that in the horizontal one, RBNN
cannot correctly segment adjacent people by a circle since
the minimum radius should be larger than the minimum
distance between nearest neighbors in vertical direction. We
need a method that has independent radius for each direction.
For Property 3, which states that two vertically neighboring
points out of an inclined object have large depth difference
due to the low vertical resolution, RBNN cannot group them
correctly since its fixed radius is not enough. We need a
method that is able to group nearby points with a depth
difference. In Section III, we propose CVC which satisfies
all of these desired properties, as shown in the fifth column
of Fig. 2, unlike RBNN in the fourth column of the figure.

B. Problem Definition

Based on the desired properties, we formally define the
problem of segmenting 3D LiDAR point clouds as follows.

Problem 1 (SEGMENTING 3D LIDAR POINT CLOUDS):

• Given : 3D point clouds from LiDAR sensor,
• Segment : the points accurately and efficiently, satis-

fying the following properties:
1) Consider distance from the sensor: group points

correctly, regardless of their distances from the
LiDAR sensor.

2) Consider directional resolutions: consider the
difference of horizontal and vertical angular res-
olutions.

3) Consider rarity of points: correctly group points
detected from successive vertical laser scans even
if they have a large depth difference in radial
directions.

III. PROPOSED METHOD

We propose CVC, a fast and accurate segmentation
method for 3D LiDAR data. We first give an overview
of CVC in Section III-A. We then describe details of our
method in Sections III-B and III-C.

A. Overview

CVC efficiently segments objects from 3D LiDAR point
clouds. The main challenges of segmenting 3D LiDAR points
are as follows:

1) Maximize segmentation efficiency. How can we effi-
ciently segment thousands of points in real-time?

2) Maximize segmentation accuracy. How can we cor-
rectly segment each object even when they are closely
placed?

We address the above challenges with the following ideas:
1) Curved-Voxel: a new type of spatial primitive in

a spherical coordinate (Section III-B). Curved-voxel
satisfies the properties in Section II-A.

2) Curved-Voxel Clustering (CVC) : a new segmenta-
tion algorithm using curved-voxel (Section III-C).
We propose CVC, a fast and accurate segmentation
method for 3D LiDAR data based on curved-voxel.

CVC (Algorithm 1) comprises four steps. First, we convert
cartesian coordinates into spherical ones, P = [ρ, θ ,φ],
where ρ is the radial distance from the sensor, θ is the
azimuth angle, and φ is the polar angle. Second, we build a
hash table to map a curved-voxel index to indices of points
inside the voxel. Third, we find the neighboring points of
each point in adjacent curved-voxels using a hash table.
Finally, we combine each point and its neighbors into one
cluster. Figure 3 shows an example of running CVC through
a two-dimensional illustration.

B. Curved-Voxel: New Type of Spatial Primitive in Spherical
Coordinate

We propose curved-voxel, a new type of voxel to satisfy
the three properties discussed in Section II-A.

Definition 1 (CURVED-VOXEL): a spatial unit consisting
of three-dimensional spherical coordinates. The i, j, and k-th
curved-voxel CVi, j,k contains points in a spherically shaped
voxel as follows:

CVi, j,k = { P(ρ,θ ,φ) |∆ρ ∗ i≤ ρ < ∆ρ ∗ (i+1),
∆θ ∗ j ≤ θ < ∆θ ∗ (j+1),
∆φ ∗ k ≤ φ < ∆φ ∗ (k+1) }

(1)

(a) Perspective view (b) Top view

Fig. 4: (a) Perspective view of a curved-voxel where ∆ρ ,
∆θ , and ∆φ are unit sizes for each spherical direction. (b)
Top view of a curved-voxel (in gray) and two laser beams
emitted from the sensor (in red). A curved-voxel has edges
that are parallel to the laser beam.

where each P(ρ, θ ,φ) is in spherical coordinate with the
radial distance ρ , azimuth angle θ , and polar angle φ . ∆ρ ,
∆θ , and ∆φ are unit size parameters for each spherical
direction.

�
Fig 4 illustrates a curved-voxel which satisfies the desired

properties for segmenting 3D LiDAR point clouds as follows.
1) Consider distance from the sensor. A curved-voxel

has four edges (in ρ direction) parallel to the laser
beams emitted from the sensor. The distance between
these edges grows when the voxel goes farther from
the sensor. Since we assume all points inside a curved-
voxel and its neighboring voxels belong to a same
cluster (Section III-C), points are grouped correctly
regardless of their distances from the sensor.

2) Consider directional resolutions. Two independent
parameters ∆θ and ∆φ allow us to adjust horizontal
and vertical unit sizes of curved-voxel, respectively.
Thus, we consider directional resolutions by adjusting
these parameters in proportion to angular resolutions
in both directions.

3) Consider rarity of points. Independent size parameter
∆ρ enables a curved-voxel to group points even if they
have depth difference in radial directions.

We discuss how to perform accurate and efficient cluster-
ing using curved-voxels in the next section.

C. Curved-Voxel Clustering (CVC) : New Segmentation Al-
gorithm Using Curved-Voxel

We describe our proposed segmentation method CVC in
Algorithm 1. We first convert the coordinate of points into
spherical one which consists of ρ , θ and φ (line 2). Then,
we build a hash table that maps each curved-voxel index
to indices of points inside the voxel (line 3). Note that we
maintain sparse representations of the hash table, storing
only voxels that contain at least a point. To do that, we 1)
compute voxel indices by dividing raw coordinate of each
point by the three size parameters ∆ρ,∆θ , and ∆φ , 2) build
a preliminary hash table that maps each point index to the
index of the curved-voxel containing the point, and 3) invert
the preliminary hash table to get the final hash table. As a
result, we generate a space-efficient hash table that contains

Algorithm 1 CVC: Curved-Voxel Clustering

Input: 3D point clouds pr, and
curved-voxel size parameters ∆ρ,∆θ , and ∆φ

Output: list labels of clusters of points
1: Initialize: number n of points ← |pr|,

labels of clusters of points ← length n list of zeros,
cluster index id ← 0

2: p ← convert-to-spherical(pr)
3: hash-table, voxel-index

← build-hash-table (p, ∆ρ, ∆θ , ∆φ)
4: for every point pi do
5: if pi is already included in a cluster then
6: continue
7: end if
8: neighbors

← find-neighbors(voxel-index[i], hash-table)
9: combine-clusters(pi, neighbors)

10: if pi is still not included in any cluster then
11: increase id
12: assign-cluster(pi, neighbors, id)
13: end if
14: end for
15: return labels

information of only non-empty curved-voxels. After building
the hash table, we visit each point pi to find neighbor points
in 27 (= 33) voxels surrounding the target voxel containing
pi using a hash table, and combine them as a cluster (lines
4∼14). Finally, we return the cluster labels of each point.

There are two main ideas that accelerate our algorithm.
First, as introduced in a recent study [9], we skip points
that are already included in a cluster (lines 5∼7), avoiding
redundant computations. Second, we utilize a hash table
which finds neighbor points of a point in O(1) time. Thanks
to these ideas, CVC takes O(n) time to search for neighbors,
where n is the number of points, which is faster than
O(n logn) of existing methods, as shown in the following
lemma.

Lemma 1 (COST OF FINDING NEIGHBORS):
The expected time complexity of finding neighbors in CVC
is O(n), where n is the number of points.

Proof: Finding neighbors is related to lines 5∼8 of
Algorithm 1. Lines 5∼7 is called O(n) times, while line 8 is
called O

(
n

kaverage

)
times where kaverage is the average number

of neighbors in adjacent curved-voxels over all queries. Thus,
the total complexity of finding neighbors is O(n).

IV. EXPERIMENTS

We aim to answer the following questions to evaluate the
performance of our method CVC.
• Q1. Efficiency on synthetic data (Section IV-B). How

efficiently does CVC segment synthetic objects with
various distances, compared to other methods?

• Q2. Efficiency on real-world data (Section IV-C).
How efficiently does CVC segment real-world objects,
compared to other methods?

TABLE II: Description of real-world 3D LiDAR dataset.
Every data set is attained by Velodyne VLP-16 with rotation
speed 10 Hz.

Dataset Time (sec) Points Environment
L-CAS 1 [1] 1140 15423 hall
L-CAS 2 [1] 720 15064 hall
L-CAS 3 [1] 1079 15823 hall

HALL 62 9468 hall
OFFICE 86 12527 office

• Q3. Accuracy (Section IV-D). What is the accuracy of
CVC in segmenting real-world data compared to other
methods?

A. Experiment Setup

Systems. All experiments are carried out with Robot
Operating System (ROS) Kinetic and Gazebo 7 on Ubuntu
16.04 LTS, in a single machine equipped with an Intel i7-
8700 processor and 32GB memory.

Methods. We compare CVC with RBNN*, DBSCAN [10]
and Cluster-all method [8]. RBNN* is a modified version of
RBNN [9] to make the radius r proportional to the distance
from the sensor. By this modification, RBNN* is able to
satisfy the desired property 1 to improve the accuracy. We
assign parameters of RBNN based on the recent study [1],
and implement Cluster-all based on CVC. All of the methods
are implemented in Python with NumPy and SciPy library
to handle array operation and kd-tree structure.

Dataset. We use both real-world and synthetic datasets.
TABLE II shows real-world data we use. L-CAS 1, 2, and
3 are open-source datasets from Lincoln Centre for Au-
tonomous Systems Research (L-CAS) 1. HALL and OFFICE
are datasets collected from our workplace, in a main hall and
an office room, respectively. We remove ground plane in the
raw dataset by keeping only the points p with heights z≥ zmin
where zmin is the height threshold considering the sensor
height. We also generate synthetic data using Gazebo 7. All
data are based on Velodyne VLP-16 3D LiDAR equipped
with a rotation scanner with speed 10Hz.

B. Efficiency on Synthetic Data

We compare segmentation performance over a range of
distances on synthetic data generated by Gazebo 7. We mea-
sure the segmentation frequency for five thousand points with
varying distances from 2m to 20m. Figure 5 illustrates the
experiment results. The figure shows that CVC performs the
fastest for almost all distances compared to other algorithms.
Cluster-all method performs faster than CVC when the object
is close to the LiDAR sensor (< 5m), but CVC also shows a
high frequency (> 30Hz), satisfying real-time performance.
Moreover, the frequency of CVC is not significantly affected
by the distance from the sensor since the size of a curved-
voxel grows when it goes far from the sensor. On the
contrary, Cluster-all method performs much slower as the

1https://lcas.lincoln.ac.uk/wp/research/data-sets-software/l-cas-
3d-point-cloud-people-dataset/

BEST

Fig. 5: Segmentation performance over different distances for
synthetic data. CVC gives the largest segmentation frequency
in most cases.

BEST

Fig. 6: Segmentation performance on real-world data. CVC
efficiently segments real-world 3D point clouds, providing
up to 1.7× higher frequency of segmentation.

distance from the sensor grows since it has a fixed size of
cubic-shaped voxels.

C. Efficiency on Real-World Data

Figure 6 shows the segmentation performance on five real-
world datasets which contain various objects. We select 100
frames from each dataset and compute average segmentation
frequency. CVC performs faster than other algorithms in
all datasets, thanks to skipping already labeled points and
utilizing a hash table. CVC is up to 1.7× faster than other
methods, and provides real-time segmentation results with
segmentation frequency greater than 20 Hz.

D. Accuracy

Figure 7 shows real-world segmentation accuracy using
labeled data in L-CAS dataset. We randomly select 100
pedestrian-labeled data and 50 group-labeled data except
for partially visible one. After that, we manually check the
results of each method whether it segmented each object cor-
rectly or not. CVC accurately segments almost all pedestrian
cases and over the half of group cases. It shows the highest
accuracy among the four methods, especially in group cases,

BEST

30%

Fig. 7: Segmentation accuracy for real-world data. CVC
provides the highest accuracy.

achieving up to 30% higher score than others. This improved
accuracy comes from the LiDAR-optimized curved-voxel
which satisfies all the desired properties.

Although providing the best accuracy, there are two cases
that CVC fails to distinguish each person. In the first case,
two people are so close that they look like a connected object,
i.e. their distance is smaller than the resolution of LiDAR.
In this situation, we might consider more information like
surface normal to improve the segmentation quality. In the
second case, there are noise points between two adjacent
people. These noises prevent CVC from correctly segmenting
each person into its own cluster. To address this problem we
might further consider the density of points to remove these
noises.

V. RELATED WORKS

In this section, we discuss related works on segmenting
3D LiDAR data.

Existing segmentation methods are typically divided into
three groups: 1) segmentation in the 3D domain [8]–[10],
2) segmentation with occupied grid cells [11]–[13], and
3) segmentation on a range image [14]. The methods per-
forming segmentation in 3D domain usually compute so-
phisticated features to find neighboring points and combine
them: Cluster-all method [8] utilizes cubic-shaped voxels,
while RBNN [9] and DBSCAN [10] utilize a sphere to
find neighbors. The problem of these methods is their long
running time due to their huge required computations. The
methods [11]–[13] that perform segmentation with occupied
grid cells run quickly as a result of dimensionality reduction.
However, such reduction also limits the accuracy, and they
often provide under-segmented results. The method [14]
based on a range image performs fast segmentation because
it can directly find adjacent points using row and column
indices. However, it tends to show over-segmented results
for flat objects (e.g. walls).

Our proposed CVC provides faster and more accurate
performance compared to existing methods thanks to the
curved-voxel primitive and an efficient algorithm.

VI. CONCLUSIONS

In this paper, we propose CVC, a fast and accurate method
for segmenting 3D LiDAR points. We design curved-voxel,
a new spatial primitive to consider distinct characteristics of
3D LiDAR points. We also propose an efficient hash-based
data structure to speed up segmentation. CVC is up to 1.7×
faster and 30% more accurate than other segmentation meth-
ods. Furthermore, CVC provides segmentation results more
than 20 times in a second, enabling real-time segmentation
on real-world data.

ACKNOWLEDGMENT

This work is supported by Samsung Electronics Co., Ltd.

REFERENCES

[1] Z. Yan, T. Duckett, and N. Bellotto, “Online learning for human clas-
sification in 3d lidar-based tracking,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2017, Vancouver,
BC, Canada, September 24-28, 2017, 2017, pp. 864–871.

[2] Z. Yan, L. Sun, T. Duckctr, and N. Bellotto, “Multisensor online
transfer learning for 3d lidar-based human detection with a mobile
robot,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2018, Madrid, Spain, October 1-5, 2018.

[3] J. Shackleton, B. V. Voorst, and J. A. Hesch, “Tracking people with
a 360-degree lidar,” in Seventh IEEE International Conference on
Advanced Video and Signal Based Surveillance, AVSS 2010, Boston,
MA, USA, August 29 - September 1, 2010, 2010, pp. 420–426.

[4] K. Kidono, T. Miyasaka, A. Watanabe, T. Naito, and J. Miura, “Pedes-
trian recognition using high-definition LIDAR,” in IEEE Intelligent
Vehicles Symposium (IV), 2011, Baden-Baden, Germany, June 5-9,
2011, 2011, pp. 405–410.

[5] C. Premebida, G. Monteiro, U. Nunes, and P. Peixoto, “A lidar
and vision-based approach for pedestrian and vehicle detection and
tracking,” in IEEE Intelligent Transportation Systems Conference,
ITSC 2007, Seattle, WA, USA, 30 September-3 October 2007.

[6] K. M. Wurm, C. Stachniss, and W. Burgard, “Coordinated multi-
robot exploration using a segmentation of the environment,” in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems,
September 22-26, 2008, Acropolis Convention Center, Nice, France,
2008, pp. 1160–1165.

[7] R. Dubé, A. Gawel, H. Sommer, J. I. Nieto, R. Siegwart, and
C. Cadena, “An online multi-robot SLAM system for 3d lidars,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017.

[8] B. Douillard, J. P. Underwood, N. Kuntz, V. Vlaskine, A. J. Quadros,
P. Morton, and A. Frenkel, “On the segmentation of 3d LIDAR
point clouds,” in IEEE International Conference on Robotics and
Automation, ICRA 2011, Shanghai, China, 9-13 May 2011.

[9] K. Klasing, D. Wollherr, and M. Buss, “A clustering method for
efficient segmentation of 3d laser data,” in 2008 IEEE International
Conference on Robotics and Automation, ICRA 2008, May 19-23,
2008, Pasadena, California, USA, 2008, pp. 4043–4048.

[10] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in
Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), Portland, Oregon, USA, 1996.

[11] J. Behley, V. Steinhage, and A. B. Cremers, “Laser-based segment
classification using a mixture of bag-of-words,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo,
Japan, November 3-7, 2013, 2013, pp. 4195–4200.

[12] M. Himmelsbach, F. von Hundelshausen, and H. Wünsche, “Fast seg-
mentation of 3d point clouds for ground vehicles,” in IEEE Intelligent
Vehicles Symposium (IV), 2010, La Jolla, CA, USA, June 21-24, 2010.

[13] D. Korchev, S. Cheng, Y. Owechko, and K. Kim, “On real-time lidar
data segmentation and classification,” 07 2013.

[14] I. Bogoslavskyi and C. Stachniss, “Fast range image-based segmenta-
tion of sparse 3d laser scans for online operation,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS
2016, Daejeon, South Korea, October 9-14, 2016, 2016, pp. 163–169.

