
Interactive Multi-resolution Exploration of Million Node Graphs
Zhiyuan Lin⇤

Georgia Tech
Nan Cao†

IBM
Hanghang Tong‡

City College of New York
Fei Wang§

IBM
U Kang¶

KAIST
Duen Horng Chauk

Georgia Tech

Figure 1: (a) Overview of the top 10 movies and top 10 components of the Rotten Tomatoes related movies graph. Node are movies; an
edge connects two movies if they are similar. (b) Previewing a bubble shows a few movies and components within in; the user can expand the
bubble further to show more nodes. (c) A broken down bubble showing all edges within a bubble and across bubble boundary; here, only edges
connected to a selected movie is shown. (d) Bubble preview works across levels.

ABSTRACT

We are working on a scalable, interactive graph visualization sys-
tem to support multi-resolution exploration of million-node graphs
in real time. By adapting a state-of-the-art graph algorithm, our
prototype system generates a multi-resolution view of graphs with
up to 68 million edges under a few seconds. We are experimenting
with interaction techniques that help users interactively explore this
overview and drill down into details. While many visualization sys-
tems for million-node graphs require dedicated servers to process
the graphs, our prototype runs on a commodity laptop computer.
We aim to handle graphs that are at least an order of magnitude
(100M edges) larger than what current systems can support.

Keywords: graph visualization, multi-resolution, hubs and spokes

Index Terms: [Human-centered computing]: Visualization sys-
tems and tools

1 INTRODUCTION

Given a large graph with million or billion nodes and edges, how
to visualize it? Showing every single node and edge will not work,
due to limited screen size. Furthermore, this may not be the right
approach, since the visual complexity will be overwhelming. Re-
cent research [1, 2, 4] investigated how to create overviews of large
graphs, visualize those views, and allow users to interactively drill
down. However, they often only work for graphs with well-defined
hierarchies (e.g., graphs that are trees), or need to first transform
the graphs into hierarchies.

How do we visualize more general kinds of graphs without de-
pending on or assuming any hierarchical structures? Can we visual-
ize such graphs at scale, say with 100 million nodes and edges (or-
der of magnitude larger than what current systems support)? Can

⇤e-mail: zlin48@gatech.edu
†e-mail: nancao@us.ibm.com
‡e-mail: tong@cs.ccny.cuny.edu
§e-mail: fwang@us.ibm.com
¶e-mail: ukang@cs.kaist.ac.kr
ke-mail: polo@gatech.edu

we support all these by using one commodity computer, without
requiring the graph to fit in the main memory [2], or a dedicated
client-server architecture [1]? These are the foci of our investiga-
tion. To summarize, we aim to make the following contributions:

• We present a prototype system that supports multi-resolution
exploration of large graphs with up to 68 million edges.

• We adapt a fast, state-of-the-art graph algorithm, called Slash

& Burn (Section 3) that can create a multi-resolution graph
overview under a few seconds.

• We present techniques that help users interactively explore the
multi-resolution view via prioritized visualization (Section 3),
which helps the user determine what to visualize and explore.

2 SCENARIO

We introduce some of the visualization and interaction features of
our prototype in a brief scenario. Alice is a data scientist at Rot-
ten Tomatoes (RT), who wants to better understand what pairs of
movies are considered similar by RT users. She has constructed a
graph from her data of related movies, where each node in the graph
is a movie, and an edge connects two movies if a user has suggested
that those movies are similar (we crawled this graph from Rotten
Tomatoes). There are roughly 200,000 nodes and 150,000 edges.

Our tool first presents an overview to Alice (Fig. 1a). It shows
the top 10 movies (called bridges) with the highest degrees (they
have the highest number of related movies). It also shows the top
10 components (called bubbles) which have the highest number of
movies within them. This first overview gives Alice some idea
about what the most popular movies are, how they are connected
among themselves, and to the rest of the movies (“hidden” within
the components/bubbles). Among the top 10 movies, Alice sees
some popular ones, such as Titanic and the Dark Knight. She is
intrigued that all of them are connected to the large component at
the center (with many movies in it), even for horror movie Carrie

and comedy movie Click. She decides to check out what are inside
the bubble.

By pressing the “+” key on her keyboard, Alice is able to see
(preview) the contents of the component, while keeping the nodes
and edges outside the component in place. At first, only a few
movies and (sub)components are shown. Alice wants to see a few
more, so she pressed “+” a few more times; more nodes and com-
ponents show up in the big component (Fig. 1b) .



Alice sees that Lord of the Rings is in this component and she
remembers a few horror scenes in this chivalric movie. This seems
to be a good clue for tracing the hidden relationship between the
movies Carrie and Click. She double clicks the previewed compo-
nents to break it down, which reveals all edges between the nodes
inside and outside of the component.

Now the screen is cluttered with too many edges. To reduce
visual complexity, Alice selects The Lord of the Rings, and invoke
an action (not shown in figure) to fade away the unselected nodes
(shown in gray color). Now, she sees only The Lord of the Rings and
the names of movies directly connected to it. It turns out Pirates of

the Caribbean is one of those neighbors and she cannot help but
smile about Jack Sparrow’s witty humor. Then she holds down the
shift key and select Pirates of the Caribbean too. This reveals that
Carrie is similar to The Lord of the Rings; The Lord of the Rings

and Pirates of the Caribbean share some characteristics; and finally,
humor connects Pirates of the Caribbean and Click (Fig. 1c) .

Now Alice moves on to other movies. She interactively previews
and breaks down a few more bubbles, at different parts of the graph
and at different levels of abstraction (Fig. 1d).

3 DESIGN RATIONALE AND ALGORITHM OVERVIEW

3.1 Algorithm to generate graph overview
The general design principle that drives our design is to prioritize

what to visualize, since the graph is large, but our screen real estate
is limited. While this idea is implicit in recent works (e.g., [1, 5]),
we use it as our first principle to guide our design.

One common visualization approach is to transform the graph
into a tree (or tree-like structure), which is simpler to visualize and
interact with, since nodes will then have well-defined parent-child
relationships; we can treat a parent node as the high-level represen-
tation of its children. However, this approach unavoidably changes
the semantics of the original graph (e.g., from graph with cycles
into a tree). Can we generate an explorable overview for more
general kinds of graphs without such transformation? Zinsmaier
et al. [6] explored an alternative approach, to render million-node
graphs by exploiting density-based node aggregation, assuming a
given graph layout. It is unclear how it would work for real-world
scale-free graphs, since their high-degree nodes would pull many
nodes towards them, making the whole graph look like a “hair ball”.

We surveyed data mining literature for solutions, and identified
a state-of-the-art graph algorithm, called Slash & Burn [3], that of-
fers such capability. Its design is based on the observation that most
real-world graphs have power law degree distributions; such a graph
have few hub nodes with very high degrees, while the majority of
the nodes have low degrees. This means if we remove these high-
est degree hub nodes (e.g., top 25) and their edges, we will shat-

ter the graph into smaller disconnected components—we call them
“bubbles”—that contain many nodes and edges.

Due to its power law degree distribution, a graph can be quickly
shattered by iteratively applying the above algorithm to components
at each round. (All components eventually contain few number of
nodes, say 50.) Here, we could only give a high-level description
of the Slash & Burn algorithm due to limited space. We refer the
readers to [3] for details.

A desirable effect of adapting this algorithm is that now we can
rank both the nodes and components by their “importance”. In our
description above, we defined the “top” nodes as those having the
highest degrees; but we can flexibly use “highest PageRank scores”,
or something else, instead. Similarly, components may be ranked
by the number of nodes that they contain, or by other statistics.

3.2 Interaction technique to “preview” component
It is not sufficient to only create an overview visualization. We
also need to provide interaction techniques for the user to explore
and drill down. But, a component can contain tens of thousands

of nodes and edges (as in the largest connected component of a
million-node graph). We would not want to show all of them.

Fortunately, as we described above, nodes within a component
are ranked (e.g., by node degrees). This inspires us to design an
interaction technique that allow the user to choose how many nodes
and edges they may want to visualize, based on how large they ex-
panded a bubble (component), as if previewing or taking a glimpse
into the contents of a component. The user can preview multiple
bubbles that at different levels at the same time (Fig. 1d).

3.3 Scaling to large graphs
Current visualization systems often require dedicated servers to
process their graphs (even for million-node scale), to run algorithms
on them, and to compute their layouts [5, 1]. Is this always neces-
sary? This question drives us to explore how much we can do with
a single commodity machine. With our prototype, we are able to
create a multi-resolution views for graphs from up to 68M edge
graph, in under 5 seconds. These views can be interactively ex-
plored, in real time. A main technique that we use to scale to such
large graphs, is to avoid storing the graph in memory; specifically,
we keep the graph’s “edge list” on the hard drive, which would oth-
erwise take up a lot of memory. We are now testing our prototype
on even larger graphs, with 100 million edges and more.

4 CONCLUSIONS AND WORK IN PROGRESS

We are designing and creating a scalable, interactive graph visual-
ization system to support multi-resolution exploration of million-
node graphs in real time. Thus far, our prototype can handle graphs
up to 68 million edges on a laptop computer. We are experimenting
with various visualization and interaction techniques to allow users
to fluidly navigate and explore and drill down in the graphs.

We plan to conduct lab studies to evaluate those techniques, and
work with security experts at Symantec to test our system in the
real world. They will use our tool to help analyze large graphs of
network traffic and email communications to spot suspicious activ-
ities. We believe our tool can help them develop overviews of their
data and allow them to rapidly delve into details.

ACKNOWLEDGEMENTS

This material is partially supported by the National Science Foun-
dation under Grant No. IIS1017415, by the U.S. Army Research
Office (ARO), by the Army Research Laboratory under Coopera-
tive Agreement Number W911NF-09-2-0053, and by Defense Ad-
vanced Research Projects Agency (DARPA) under Contract Num-
ber W911NF-11-C-0088, W911NF-11-C-0200 and W911NF-12-
C-0028.

REFERENCES

[1] J. Abello, F. Van Ham, and N. Krishnan. Ask-graphview: A large scale
graph visualization system. IEEE TVCG, 12(5):669–676, 2006.

[2] D. Archambault, T. Munzner, and D. Auber. Grouse: Feature-based,
steerable graph hierarchy exploration. In 9th Joint Eurographics/IEEE

VGTC conference on Visualization, pages 67–74. Eurographics Associ-
ation, 2007.

[3] U. Kang and C. Faloutsos. Beyond ’caveman communities’: Hubs and
spokes for graph compression and mining. In ICDM, pages 300–309.
IEEE, 2011.

[4] C. Tominski, J. Abello, and H. Schumann. Cgvan interactive graph
visualization system. Computers & Graphics, 33(6):660–678, 2009.

[5] F. Van Ham and A. Perer. search, show context, expand on demand:
Supporting large graph exploration with degree-of-interest. IEEE

TVCG, 15(6):953–960, 2009.
[6] M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt. Interactive

level-of-detail rendering of large graphs. IEEE TVCG, 18(12):2486–
2495, 2012.


