
12

Random Walk with Restart on Large Graphs Using Block Elimination

JINHONG JUNG, Seoul National University
KIJUNG SHIN, Carnegie Mellon University
LEE SAEL, State University of New York (SUNY) Korea
U KANG, Seoul National University

Given a large graph, how can we calculate the relevance between nodes fast and accurately? Random
walk with restart (RWR) provides a good measure for this purpose and has been applied to diverse data
mining applications including ranking, community detection, link prediction, and anomaly detection. Since
calculating RWR from scratch takes a long time, various preprocessing methods, most of which are related
to inverting adjacency matrices, have been proposed to speed up the calculation. However, these methods do
not scale to large graphs because they usually produce large dense matrices that do not fit into memory. In
addition, the existing methods are inappropriate when graphs dynamically change because the expensive
preprocessing task needs to be computed repeatedly.

In this article, we propose BEAR, a fast, scalable, and accurate method for computing RWR on large graphs.
BEAR has two versions: a preprocessing method BEARS for static graphs and an incremental update method
BEARD for dynamic graphs. BEARS consists of the preprocessing step and the query step. In the preprocessing
step, BEARS reorders the adjacency matrix of a given graph so that it contains a large and easy-to-invert
submatrix, and precomputes several matrices including the Schur complement of the submatrix. In the query
step, BEARS quickly computes the RWR scores for a given query node using a block elimination approach
with the matrices computed in the preprocessing step. For dynamic graphs, BEARD efficiently updates the
changed parts in the preprocessed matrices of BEARS based on the observation that only small parts of the
preprocessed matrices change when few edges are inserted or deleted. Through extensive experiments, we
show that BEARS significantly outperforms other state-of-the-art methods in terms of preprocessing and
query speed, space efficiency, and accuracy. We also show that BEARD quickly updates the preprocessed
matrices and immediately computes queries when the graph changes.

Categories and Subject Descriptors: H.2.8 [Database management]: Database Applications—Data mining

General Terms: Design, Experimentation, Algorithms

Additional Key Words and Phrases: Proximity, ranking in graph, random walk with restart, relevance score

This work was supported by the Basic Science Research Program through the National Research Foundation
of Korea (NRF) and funded by the Ministry of Science, ICT and Future Planning (NRF-2013R1A1A3005259),
and IT R&D program of MSIP/IITP (10044970, “Development of Core Technology for Human-Like Self-
Taught Learning Based on Symbolic Approach”). This work was also funded by an Institute for Information
Communications Technology Promotion (IITP) grant funded by the Korean government (MSIP) (R0190-
15-2012, “High Performance Big Data Analytics Platform Performance Acceleration Technologies Develop-
ment”). The ICT at Seoul National University provided research facilities for this study.
Authors’ addresses: J. Jung, Department of Computer Science and Engineering, Seoul National University;
email: jinhongjung@snu.ac.kr; K. Shin, Computer Science Department, Carnegie Mellon University; email:
kijungs@cs.cmu.edu; L. Sael, Department of Computer Science, The State University of New York (SUNY)
Korea; email: sael@sunykorea.ac.kr; U Kang (corresponding author), Department of Computer Science and
Engineering, Seoul National University; email: ukang@snu.ac.kr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0362-5915/2016/05-ART12 $15.00
DOI: http://dx.doi.org/10.1145/2901736

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

http://dx.doi.org/10.1145/2901736

12:2 J. Jung et al.

ACM Reference Format:
Jinhong Jung, Kijung Shin, Lee Sael, and U Kang. 2016. Random walk with restart on large graphs using
block elimination. ACM Trans. Database Syst. 41, 2, Article 12 (May 2016), 43 pages.
DOI: http://dx.doi.org/10.1145/2901736

1. INTRODUCTION

Measuring the relevance (proximity) between nodes in a graph becomes the base for
various data mining tasks [Andersen et al. 2006; Backstrom and Leskovec 2011; Gleich
and Seshadhri 2012; He et al. 2004; Liben-Nowell and Kleinberg 2007; Sun et al. 2005;
Tong et al. 2007; Tong and Faloutsos 2006; Whang et al. 2013; Zhang et al. 2012; Zhu
et al. 2013] and has received much interest from the database research community
[Antonellis et al. 2008; Chakrabarti et al. 2011; Fujiwara et al. 2012a; Wu et al. 2014].
Among many methods [Adamic and Adar 2003; Jeh and Widom 2002; Lin et al. 2009;
Pan et al. 2004] to compute the relevance, random walk with restart (RWR) [Pan et al.
2004] has been popular due to its ability to account for the global network structure
[He et al. 2004] and the multifaceted relationship between nodes [Tong and Faloutsos
2006]. RWR has been used in many data mining applications, including ranking [Tong
et al. 2008], community detection [Andersen et al. 2006; Gleich and Seshadhri 2012;
Whang et al. 2013; Zhu et al. 2013], link prediction [Backstrom and Leskovec 2011],
and anomaly detection [Sun et al. 2005].

However, existing methods for computing RWR are unsatisfactory in terms of speed,
accuracy, functionality, and scalability. The iterative method, which naturally follows
from the definition of RWR, is not fast: it requires repeated matrix-vector multipli-
cations whose computational cost is not acceptable in real-world applications where
RWR scores for different query nodes need to be computed. Several approximate meth-
ods [Andersen et al. 2006; Gleich and Polito 2006; Sun et al. 2005; Tong et al. 2008] have
also been proposed; however, their accuracies or speedups are unsatisfactory. Although
top-k methods [Fujiwara et al. 2012a; Wu et al. 2014] improve efficiency by focusing
on finding the k most relevant nodes and ignoring irrelevant ones, finding top-k is
insufficient for many data mining applications [Andersen et al. 2006; Backstrom and
Leskovec 2011; Gleich and Polito 2006; He et al. 2004; Sun et al. 2005; Tong et al. 2007;
Whang et al. 2013; Zhu et al. 2013] that require the relevance scores of all nodes or the
least relevant nodes. Existing preprocessing methods [Fujiwara et al. 2012a, 2012b],
which achieve better performance by preprocessing the given graph, are not scalable
due to their high memory requirements. Moreover, those preprocessing methods are in-
appropriate when the given graph changes over time since the expensive preprocessing
task should be repeated.

In this article, we propose BEAR, a fast, scalable, and accurate method for computing
RWR on large graphs. BEAR comprises two methods: a preprocessing method BEARS
for static graphs and an incremental update method BEARD for dynamic graphs. In
the preprocessing step, BEARS reorders the adjacency matrix of a given graph so that
it contains a large and easy-to-invert submatrix, and precomputes several matrices,
including the Schur complement [Boyd and Vandenberghe 2009] of the submatrix. In
the query step, BEARS computes the RWR scores for a given query node, quickly using
a block elimination approach with the matrices computed in the preprocessing step.
BEARS has two versions: an exact method BEARS-EXACT and an approximate method
BEARS-APPROX. The former provides accuracy assurance; the latter gives faster query
speed and requires less space by allowing small accuracy loss. For dynamic graphs,
BEARD incrementally updates the preprocessed matrices from BEARS based on the
observation that only small parts of the preprocessed matrices change when few edges
are inserted or deleted.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

http://dx.doi.org/10.1145/2901736

Random Walk with Restart on Large Graphs Using Block Elimination 12:3

Through extensive experiments with various real-world datasets, we demonstrate
the superiority of BEARS over other state-of-the-art methods. In addition, we present
that BEARD quickly updates the preprocessed matrices when the graph changes and
immediately computes RWR scores for given queries. We also discuss how our method
can be applied to other random walk–based measures, such as personalized Page-
Rank [Page et al. 1999]; effective importance (EI) [Bogdanov and Singh 2013]; RWR
with normalized graph Laplacian [Tong et al. 2008]; and other graph similarities, such
as FaBP [Koutra et al. 2011]. The main characteristics of our method are the following:

—Fast: BEARS-EXACT is faster up to 8× in the query phase and up to 12× in the pre-
processing phase than other exact methods (Figures 5(a) and 6), and BEARS-APPROX

achieves a better time/accuracy trade-off in the query phase than other approximate
methods (Figure 11). Updating the preprocessed matrices using BEARD is up to 29×
faster than preprocessing the changed graphs from the beginning (Figure 12(a)),
and BEARD quickly computes RWR scores for queries using the updated matrices
(Figure 12(b)).

—Space efficient: Compared to their respective competitors, BEARS-EXACT requires
up to 22× less memory space (Figure 5(b)), and BEARS-APPROX provides a better
space/accuracy trade-off (Figure 11).

—Accurate: BEARS-EXACT guarantees exactness (Theorem 3.4); BEARS-APPROX enjoys a
better trade-off between accuracy, time, and space than other approximate methods
(Figure 11). BEARD updates the preprocessed matrices and computes exact RWR
scores for queries (Theorem 4.5).

—Versatile: BEAR can be applied to diverse RWR variants, including personalized
PageRank (PPR), EI, RWR with normalized graph Laplacian, and fast belief propa-
gation (FaBP) (Section 3.4).

The codes of our methods and datasets are available at http://datalab.snu.ac.kr/bear.
The rest of the article is organized as follows. Section 2 presents preliminaries on
RWR. Our proposed preprocessing method BEARS for static graphs is described in
Section 3, and our incremental update method BEARD for dynamic graphs is proposed
in Section 4. We demonstrate the experimental results in Section 5. After providing a
review on related work in Section 6, we offer our conclusion in Section 7.

2. PRELIMINARIES

In this section, we describe the preliminaries on RWR and its algorithms. Table I lists
the symbols used in this article. We denote matrices by boldface capital letters (e.g., A)
and vectors by boldface lowercase letters (e.g., q).

2.1. Random Walk with Restart

RWR [Tong et al. 2008] measures each node’s relevance with respect to a given seed
node s in a given graph. It assumes a random surfer who occasionally gets bored with
following the edges in the graph and restarts at node s. The surfer starts at node s,
and at each current node either restarts at node s (with probability c) or moves to
a neighboring node along an edge (with probability 1 − c). The probability that each
edge is chosen is proportional to its weight in the adjacency matrix. Ã denotes the
row-normalized adjacency matrix, whose (u, v)th entry is the probability that a surfer
at node u chooses the edge to node v among all edges from node u. The stationary
probability of being at each node corresponds to its RWR score with respect to node s
and is denoted by r, whose uth entry corresponds to node u’s RWR score. The vector r

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

http://datalab.snu.ac.kr/bear

12:4 J. Jung et al.

Table I. Table of Symbols

Symbol Definition

G input graph
n number of nodes in G
m number of edges in G
n1 number of spokes in G
n2 number of hubs in G
n1i number of nodes in the ith diagonal block of H11

b number of diagonal blocks in H11

s seed node (=query node)
c restart probability
ξ drop tolerance
D (n × n) diagonal matrix of degrees, Dii = ∑

j Ai j

A (n × n) unnormalized adjacency matrix of G
Ã (n × n) row-normalized adjacency matrix of G
H (n × n) H = I − (1 − c)ÃT

Hij (ni × nj) (i, j)th partition of H
S (n2 × n2) Schur complement of H11

L1, U1 (n1 × n1) LU-decomposed matrices of H11

L2, U2 (n2 × n2) LU-decomposed matrices of S
q (n × 1) starting vector
qi (ni × 1) ith partition of q
r (n × 1) relevance vector
ri (ni × 1) ith partition of r
T number of SlashBurn iterations
k number of hubs removed at a time in SlashBurn
t rank in B LIN and NB LIN
ε threshold to stop iteration in iterative methods
εb threshold to expand nodes in RPPR and BRPPR

(u, v, w) edge modification, edge (u, v) with weight w

Â updated matrix of A after one edge modification
�A difference matrix of A, Â − A, after one edge modification
Hi

11 (n1i × n1i) block matrix of an index i in H11

iu index of a block to which node u belongs
N(u) set of out-neighbors of node u

�(A, i) block contribution of one block i to the Schur complement of A11

\F , \B backslash operators for forward and backward substitution algorithms

satisfies the following equations:

Ã = D−1A,

r = (1 − c)ÃTr + cq,
(1)

where D is the diagonal matrix of degrees (i.e., Dii = ∑
j Ai j) and q is the starting vector

in which the index of the seed node s is set to 1 and others to 0. It can be obtained by
solving the following linear equation:

(I − (1 − c)ÃT)r = cq
⇔ Hr = cq. (2)

Personalized Page-Rank. PPR [Page et al. 1999] is an extension of RWR. PPR cal-
culates the relevance of nodes according to the preference of each user and is widely

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:5

used for personalized search. A random surfer in PPR either jumps to a random node
according to the probability distribution (user preference distribution) given by q (with
probability c) or moves to an out-neighbor (with probability 1 − c). PPR can be viewed
as a generalized version of RWR with multiple seed nodes. Equations (1) and (2) can
be directly applied to PPR with the modified q.

2.2. Algorithms for RWR

We review two basic methods for RWR computation and four recent methods for ad-
dressing the limitations of the basic methods. We also point out a need for improvement,
which we will address in the following section. Since most applications require RWR
scores for different seed nodes, whether at once or on demand, we separate the pre-
processing phase, which occurs once, from the query phase, which occurs for each seed
node.

Iterative method. The iterative method repeats updating r until convergence (|r(i) −
r(i−1)| < ε) by the following update rule:

r(i) ← (1 − c)ÃTr(i−1) + cq, (3)

where the superscript i denotes the iteration number. If 0 < c < 1, r(i) is guaranteed to
converge to a unique solution [Langville and Meyer 2011]. This method does not require
preprocessing (one-time cost) but has expensive query cost that incurs a repeated
matrix-vector multiplication. Thus, it is inefficient when RWR scores for many query
nodes are required.

RPPR/BRPPR. Gleich and Polito [2006] propose restricted personalized Page-Rank
(RPPR), which speeds up the iterative method by accessing only a part of a graph.
This algorithm uses Equation (3) only for a subgraph and the nodes contained in
it. The subgraph is initialized to a given seed node and grows as iteration proceeds.
A node contained in the subgraph is on the boundary if its outgoing edges (in the
original graph) are not contained in the subgraph, and the outgoing edges and outgoing
neighbors of the node are added to the subgraph if the RWR score of the node (in the
current iteration) is greater than a threshold εb. The algorithm repeats iterations until
RWR scores converge. The RWR scores of nodes outside the subgraph are set to zero.
Boundary-restricted personalized Page-Rank (BRPPR) [Gleich and Polito 2006] is a
variant of the RPPR. It expands nodes on the boundary in decreasing order of their
RWR scores (in the current iteration) until the sum of the RWR scores of nodes on the
boundary becomes less than a threshold εb. Although these methods reduce the query
cost of the iterative method significantly, they do not guarantee exactness.

Push. Andersen et al. [2006] propose an ε-approximate PPR computation method
(Push) on undirected graphs, which iteratively computes PPR scores. The method first
starts with a PPR score vector, r = 0, and a residual score vector, k = q. Then, the
method repeats a series of push operations that move probability from k to r until for
each node u, k(u) < εd(u) is satisfied, where d(u) is a degree of node u. As with BPPR
or BRPPR, Push computes PPR scores quickly, but the exactness of the method is not
guaranteed.

Inversion. An algebraic method directly calculates r from Equation (2) as follows:

r = c(I − (1 − c)ÃT)−1q = cH−1q. (4)

The matrix H is known to be invertible when 0 < c < 1 [Langville and Meyer 2011].
Once H−1 is computed in the preprocessing phase, r can be obtained efficiently in the
query phase. However, this is again impractical for large graphs because calculating
H−1 is computationally expensive and H−1 is usually too dense to fit into memory as
shown later in Section 5 (see Figure 4(a)).

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:6 J. Jung et al.

QR decomposition. To avoid the problem regarding H−1, Fujiwara et al. [2012b]
decompose H using QR decomposition and then use QT(= Q−1) and R−1 instead of H−1

as follows:

r = cH−1q = cR−1(QTq),

where H = QR. They also propose a reordering rule for H that makes QT and R−1

sparser. However, on the most datasets used in our experiments, QR decomposition
results in dense matrices as shown in Section 5 (see Figure 4(b) and (c)); thus, its
scalability is limited. This fact agrees with the claim made by Boyd and Vandenberghe
[2009] that it is difficult to exploit sparsity in QR decomposition.

LU decomposition. To replace H−1, Fujiwara et al. [2012a] also exploit LU decompo-
sition using the following rule:

r = cH−1q = cU−1(L−1q),

where H = LU. Prior to the decomposition, H is reordered based on nodes’ degrees and
community structure. This makes matrices L−1 and U−1 sparser as shown in Section 5
(see Figure 4(d) and (e)). We incorporate their idea into our method to replace inverse
terms, which will be explained in detail in Section 3.

B_LIN/NB_LIN. Tong et al. [2008] partition a given graph and divide ÃT into A1
(inner-partition edges) and A2 (cross-partition edges). Then, they use a heuristic de-
composition method with given rank t to approximate A2 with low-rank matrix U�V,
where U, �, and V are n× t, t × t, and t × n matrices, respectively. In the query phase,
they apply the Sherman-Morrison lemma [Piegorsch and Casella 1990] to efficiently
calculate r as follows:

r = c(I − (1 − c)ÃT)−1q

≈ c(I − (1 − c)A1 − (1 − c)U�V)−1q

= c
(
A−1

1 q + (1 − c)A−1
1 U�̃VA−1

1 q
)
,

where �̃ = (�−1 − cVA−1
1 U)−1. To sparsify the precomputed matrices, near-zero entries

whose absolute value is smaller than ξ are dropped. This method is called B_LIN, and
its variant NB_LIN directly approximates ÃT without partitioning it. Both methods
do not guarantee exactness.

As summarized later in Figure 4, previous preprocessing methods require too much
space for preprocessed data or do not guarantee accuracy. Our proposed BEARS, ex-
plained in the following section, achieves both space efficiency and accuracy as seen
later in Figure 4(i) through (k).

3. PROPOSED METHOD FOR STATIC GRAPHS

In this section, we describe BEARS, our proposed method for fast, scalable, and accurate
RWR computation. BEARS has two versions: BEARS-EXACT for exact RWR and BEARS-
APPROX for approximate RWR. BEARS-EXACT guarantees accuracy, whereas BEARS-
APPROX improves speed and space efficiency by sacrificing little accuracy. A pictorial
description of BEARS is provided in Figure 1. BEARS exploits the following ideas:

—The adjacency matrix of real-world graphs can be reordered so that it has a large but
easy-to-invert submatrix, such as a block-diagonal matrix, as shown in the upper-left
part of Figure 2(b).

—A linear equation like Equation (2) is easily solved by block elimination using the
Schur complement if the matrix contains a large and easy-to-invert submatrix such
as a block-diagonal one.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:7

Fig. 1. Pictorial description of BEARS. The output matrices of the preprocessing phase are bordered in red.
(1) Reorder nodes so that the adjacency matrix has a large block-diagonal submatrix (the blue-bordered one).
(2) Partition H into four blocks so that H11 corresponds to the submatrix. (3) Compute the Schur complement
S of H11. (4) Since S−1 and the diagonal blocks of H−1

11 are likely to be dense, store the inverse of the LU
decomposed matrices of S and H11 instead to save space. Notice that these can be computed efficiently in
terms of time and space because S and the diagonal blocks of H11 are relatively small compared with H.
(5) Compute the RWR score vector r for a query vector q (the concatenation of q1 and q2) fast by utilizing
the precomputed matrices.

—Compared to directly inverting an adjacency matrix, inverting its LU-decomposed
matrices is more efficient in terms of time and space.

The reason BEARS exploits block elimination is that if a submatrix of the given matrix
is inverted easily, then the inverse of the given matrix is efficiently computed by block
elimination. As mentioned in the first idea, the reordered adjacency matrix of most
real-world graphs contains a large but easy-to-invert submatrix, and thus the linear
system based on the adjacency matrix such as Equation (4) is efficiently solved by block
elimination.

Algorithms 1 and 2 represent the procedure of BEARS. Since RWR scores are re-
quested for different seed nodes in real-world applications, we separate the prepro-
cessing phase (Algorithm 1), which is run once, from the query phase (Algorithm 2),
which is run for each seed node. The exact method BEARS-EXACT and the approximate
method BEARS-APPROX differ only at line 9 of Algorithm 1; the detail is provided in
Section 3.1.4. To exploit their sparsity, all matrices considered are stored in a sparse
matrix format, such as the compressed sparse column format [Press 2007], which stores
only nonzero entries.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:8 J. Jung et al.

ALGORITHM 1: Preprocessing Phase in BEARS
Input: graph: G, restart probability: c, drop tolerance: ξ
Output: precomputed matrices: L−1

1 , U−1
1 , L−1

2 , U−1
2 , H12, and H21

1: compute Ã, and H = I − (1 − c)ÃT

2: find hubs using SlashBurn [Kang and Faloutsos 2011], and divide spokes into
disconnected components by removing the hubs

3: reorder nodes and H so that the disconnected components form a block-diagonal
submatrix H11 where each block is ordered in the ascending order of degrees within
the component

4: partition H into H11, H12, H21, H22
5: decompose H11 into L1 and U1 using LU decomposition and compute L−1

1 and U−1
1

6: compute the Schur complement of H11, S = H22 − H21(U−1
1 (L−1

1 (H12)))
7: reorder the hubs in the ascending order of their degrees in S and reorder S, H21,

and H12 according to it
8: decompose S into L2 and U2 using LU decomposition and compute L−1

2 and U−1
2

9: (BEARS-APPROX only) drop entries whose absolute value is smaller than ξ in L−1
1 , U−1

1 ,
L−1

2 , U−1
2 , H12, and H21

10: return L−1
1 , U−1

1 , L−1
2 , U−1

2 , H12, and H21

3.1. Preprocessing Phase

The overall preprocessing phase of BEARS is shown in Algorithm 1, and the details are
explained in the following sections.

3.1.1. Node Reordering (Lines 2 Through 4). In this part, we reorder H(= I−(1−c)ÃT) and
partition it. Our objective is to reorder H so that it has a large but easy-to-invert sub-
matrix such as a block-diagonal one. Any node reordering method (e.g., spectral cluster-
ing [Ng et al. 2002], cross association [Chakrabarti et al. 2004a], shingle [Chierichetti
et al. 2009]) can be used for this purpose; in this article, we use a method that improves
on SlashBurn [Kang and Faloutsos 2011] since it is the state-of-the-art method in
concentrating the nonzeros of adjacency matrices of graphs (more details are provided
in Appendix A.1). We first run SlashBurn on a given graph to decompose the graph
into hubs (high-degree nodes) and spokes (low-degree nodes that get disconnected from
the giant connected component (GCC) if the hubs are removed). Within each connected
component containing spokes, we reorder nodes in the ascending order of degrees
within the component. As a result, we get an adjacency matrix whose upper-left area
(e.g., H11 in Figure 2(a)) is a large and sparse block-diagonal matrix that is easily
inverted, whereas the lower-right area (e.g., H22 in Figure 2(a)) is a small but dense
matrix. Let n1 denote the number of spokes and n2 denote the number of hubs. After
the reordering, we partition the matrix H into four pieces: H11 (n1 × n1 matrix), H12
(n1 ×n2 matrix), H21 (n2 ×n1 matrix), and H22 (n2 ×n2 matrix), which correspond to the
adjacency matrix representation of edges between spokes, from spokes to hubs, from
hubs to spokes, and between hubs, respectively.

3.1.2. Schur Complement (Lines 5 Through 6). In this part, we compute the Schur comple-
ment of H11, whose inverse is required in the query phase.

Definition 3.1 (Schur Complement [Boyd and Vandenberghe 2009]). Suppose that a
square matrix A is partitioned into A11, A12, A21, and A22, which are p× p, p×q, q× p,
and q × q matrices, respectively, and A11 is invertible. The Schur complement S of the
block A11 of the matrix A is defined by

S = A22 − A21A−1
11 A12.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:9

Fig. 2. Node reordering method of BEARS and its result on the Routing dataset. BEARS reorders nodes so that
edges between spokes form a large but sparse block-diagonal submatrix (H11). Diagonal blocks correspond
to the connected components detached from the GCC when hubs are removed. Nodes in each block are sorted
in the ascending order of their degrees within the component.

According to the definition, computing the Schur complement S (n2 × n2 matrix) of
H11 requires H−1

11 . Instead of directly inverting H11, we LU decompose it into L1 and
U1, then compute L−1

1 and U−1
1 instead (the reason will be explained in Section 3.1.3).

Consequently, S is computed by the following rule:

S = H22 − H21(U−1
1 (L−1

1 H12)). (5)

3.1.3. LU Decomposition (Lines 7 Through 8). The block elimination method, which will be
explained in Section 3.2, requires H−1

11 and S−1 to solve Equation (2). Directly inverting
H11 and S, however, is inefficient since S−1, as well as each diagonal block of H−1

11 , is
likely to be dense. We avoid this problem by replacing H−1

11 with U−1
1 L−1

1 as in Equa-
tion (5) and replacing S−1 with U−1

2 L−1
2 , where L2 and U2 denote the LU-decomposed

matrices of S. To compute L−1
1 , U−1

1 , L−1
2 , and U−1

2 efficiently and make them sparser,
we exploit the following observation [Fujiwara et al. 2012a] and lemma.

OBSERVATION 1. Reordering nodes in ascending order of their degrees speeds up the
LU decomposition of an adjacency matrix and makes the inverse of the LU-decomposed
matrices sparser.

LEMMA 3.2. Suppose that A is a nonsingular block-diagonal matrix that consists
of diagonal blocks A1 through Ab. Let L and U denote the LU-decomposed matrices
of A, and let Li and Ui denote those of Ai for all i (1 ≤ i ≤ b). Then, L−1 and U−1

are the block-diagonal matrices that consist of L−1
1 through L−1

b and U−1
1 through U−1

b ,
respectively.

PROOF. See Appendix A.2.

These observation and lemma suggest for H−1
11 the reordering method that we already

used in Section 3.1.1. Since we computed L−1
1 and U−1

1 in Section 3.1.2, we only need to
process S. We first rearrange the hubs in the ascending order of their degrees within S,
which reorders H12, H21, and H22, as well as S. Note that computing S after reordering
the hubs, and reordering the hubs after computing S, produces the same result. After
decomposing S into L2 and U2, we compute L−1

2 and U−1
2 .

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:10 J. Jung et al.

ALGORITHM 2: Query Phase in BEARS

Input: seed node: s, precomputed matrices: L−1
1 , U−1

1 , L−1
2 , U−1

2 , H12, and H21
Output: relevance scores: r

1: create q whose sth entry is 1 and the others are 0
2: partition q into q1 and q2
3: compute r2 = c(U−1

2 (L−1
2 (q2 − H21(U−1

1 (L−1
1 q1)))))

4: compute r1 = U−1
1 (L−1

1 (cq1 − H12r2))
5: create r by concatenating r1 and r2

6: return r

3.1.4. Dropping Near-Zero Entries (Line 9, BEARS-APPROX Only). The running time and the
memory usage in the query phase of our method largely depend on the number of
nonzero entries in L−1

1 , U−1
1 , L−1

2 , U−1
2 , H12, and H21. Thus, dropping near-zero entries

in them saves time and memory space in the query phase, although it sacrifices little
accuracy of r. BEARS-APPROX drops entries whose absolute value is smaller than the drop
tolerance ξ . The effects of different ξ values on accuracy, query time, and memory usage
are empirically analyzed in Section 5. Note that contrary to BEARS-APPROX, BEARS-EXACT

guarantees the exactness of r, which will be proved in Section 3.2, and still outperforms
other exact methods in terms of time and space, which will be shown in Section 5.

3.2. Query Phase

In the query phase, BEARS computes the RWR score vector r with respect to a given
seed node s by exploiting the results of the preprocessing phase. Algorithm 2 describes
the overall procedure of the query phase.

The vector q = [q1
q2

] denotes the length-n starting vector whose entry at the index of
the seed node s is 1 and otherwise 0. It is partitioned into the length-n1 vector q1 and
the length-n2 vector q2. The exact RWR score vector r is computed by the following
equation:

r =
[

r1
r2

]
=

[
U−1

1 (L−1
1 (cq1 − H12r2))

c(U−1
2 (L−1

2 (q2 − H21(U−1
1 (L−1

1 q1)))))

]
. (6)

To prove the correctness of the preceding equation, we use the block elimination
method.

LEMMA 3.3 (BLOCK ELIMINATION [BOYD AND VANDENBERGHE 2009]). Suppose that a linear
equation Ax = b is partitioned as[

A11 A12
A21 A22

][
x1
x2

]
=

[
b1
b2

]
,

where A11 and A22 are square matrices. If the submatrix A11 is invertible, and S is the
Schur complement of the submatrix A11 in A,

x =
[

x1
x2

]
=

[
A−1

11 (b1 − A12x2)

S−1(b2 − A21A−1
11 b1)

]
. (7)

THEOREM 3.4 (THE CORRECTNESS OF BEARS-EXACT). The r in Equation (6) is equal to the
r in Equation (2).

PROOF. H11 is invertible because its transpose is a strictly diagonally dominant
matrix for 0 < c < 1 [Banerjee and Roy 2014]. Thus, by Lemma 3.3, the following holds

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:11

Table II. Time Complexity of Each Step in BEARS

Line Task Time Complexity
Preprocessing Phase (Algorithm 1)

2 run SlashBurn O(T (m+ n log n)) [Kang and Faloutsos 2011]
3 reorder H O(m+ n + ∑b

i=1 n1i log n1i)
5 compute L−1

1 and U−1
1 O(

∑b
i=1 n3

1i)
6 compute S O((n2

∑b
i=1 n2

1i) + min(n1n2
2, n2m))

8 compute L−1
2 and U−1

2 O(n3
2)

9 drop near-zero entries O((
∑b

i=1 n2
1i) + n2

2 + min(n1n2, m))

Total O(T (m+ n log n) + (
∑b

i=1 n3
1i) + (n2

∑b
i=1 n2

1i) + n3
2 + min(n2

2n1, n2m))

Query Phase (Algorithm 2)

3 compute r2 O((
∑b

i=1 n2
1i) + n2

2 + min(n1n2, m))
4 compute r1 O((

∑b
i=1 n2

1i) + min(n1n2, m))

Total O((
∑b

i=1 n2
1i) + n2

2 + min(n1n2, m))

Table III. Maximum Number of Nonzero
Entries in the Precomputed Matrices

Matrix Max Nonzeros
H12 & H21 O(min(n1n2, m))
L−1

1 & U−1
1 O(

∑b
i=1 n2

1i)
L−1

2 & U−1
2 O(n2

2)

for Equation (2):

r =
[

r1
r2

]
=

[
H−1

11 (cq1 − H12r2)

S−1(cq2 − H21H−1
11 (cq1))

]
.

Equation (6) only replaces H−1
11 with U−1

1 L−1
1 and S−1 with U−1

2 L−1
2 where H11 = L1U1

and S = L2U2.

3.3. Complexity Analysis

In this section, we analyze the time and space complexity of BEARS. We assume that
all matrices considered are saved in a sparse format, such as the compressed sparse
column format [Press 2007], which stores only nonzero entries, and that all matrix
operations exploit such sparsity by only considering nonzero entries. We also assume
that the number of edges is greater than that of nodes (i.e., m > n) for simplicity. The
maximum number of nonzero entries in each precomputed matrix is summarized in
TableIII, where b denotes the number of diagonal blocks in H11 and n1i denotes the
number of nodes in the ith diagonal block. The maximum numbers of nonzero entries
in L−1

1 and U−1
1 depend on the size of diagonal blocks because the LU-decomposed

matrices and inverse of a block-diagonal matrix are also block-diagonal matrices with
the same block sizes (see Lemma 3.2).

3.3.1. Time Complexity. The time complexity of each step of BEARS is summarized in
Table II. In this section, we provide proofs for the time complexity of the proposed
method with the following lemma.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:12 J. Jung et al.

LEMMA 3.5 (SPARSE MATRIX MULTIPLICATION). Suppose that A and B are p×q and q ×r
matrices, respectively, and A has |A| (> p, q) nonzero entries. Calculating C = AB using
sparse matrix multiplication takes O(|A|r).

PROOF. Each nonzero entry in A is multiplied and then added up to r times.

THEOREM 3.6. The preprocessing phase in BEARS takes O(T (m+ n log n) + (
∑b

i=1 n3
1i) +

(n2
∑b

i=1 n2
1i) + n3

2 + min(n2
2n1, n2m)).

PROOF. See Table II. To compute L−1
1 and U−1

1 , it takes O(
∑b

i=1 n3
1i) [Boyd and

Vandenberghe 2009]. To compute S, it takes O(n2
∑b

i=1 n2
1i + min(n1n2

2, n2m)) because it
takes O(n2

∑b
i=1 n2

1i) to compute R1 = L−1
1 H12, O(n2

∑b
i=1 n2

1i) to compute R2 = U−1
1 R1,

O(min(n1n2
2, n2m)) to compute R3 = H21R2 by Lemma 3.5, and O(n2

2) to compute S =
H22 − R3. It takes O(n3

2) to compute L−1
2 and U−1

2 .

THEOREM 3.7. The query phase in BEARS takes O((
∑b

i=1 n2
1i) + n2

2 + min(n1n2, m)).

PROOF. Apply Lemma 3.5 and the results in Table III to each step in r2 =
c(U−1

2 (L−1
2 (q2 − H21(U−1

1 (L−1
1 q1))))) and r1 = U−1

1 (L−1
1 (cq1 − H12r2)).

In real-world graphs,
∑b

i=1 n2
1i in the preceding results can be replaced by m since the

number of nonzero entries in L−1
1 and U−1

1 is closer to O(m) than O(
∑b

i=1 n2
1i), as seen

later in Table VI.

3.3.2. Space Complexity.

THEOREM 3.8. BEARS requires O((
∑b

i=1 n2
1i) + min(n1n2, m) + n2

2) memory space for
precomputed matrices: H12, H21, L−1

1 , U−1
1 , L−1

2 , and U−1
2 .

PROOF. See Table III.

For the same reason as in the time complexity,
∑b

i=1 n2
1i in the preceding result can be

replaced by m in real-world graphs.
Theorems 3.6, 3.7, and 3.8 imply that BEARS works efficiently when the given graph

is divided into small pieces (small
∑b

i=1 n2
1i and

∑b
i=1 n3

1i) by removing a small number
of hubs (small n2), which is true in many real-world graphs [Albert et al. 2000; Kang
and Faloutsos 2011].

3.4. More Applications

Our BEAR method is easily applicable to various RWR variants, as BEAR does not assume
any unique property of RWR contrary to other methods [Fujiwara et al. 2012a; Wu et al.
2014]. In this section, we show how BEAR can be applied to three of these variants.
Furthermore, we present that BEAR also can be applied to other graph similarities,
such as FaBP [Koutra et al. 2011, 2013].

Personalized Page-Rank. As explained in Section 2.1, PPR selects a restart node
according to given probability distribution. PPR can be computed by replacing q in
Algorithm 2 with the probability distribution.

Effective importance. EI [Bogdanov and Singh 2013] is the degree-normalized version
of RWR. It captures the local community structure and adjusts RWR’s preference
toward high-degree nodes. We can compute EI by dividing each entry of r in Algorithm 2
by the degree of the corresponding node.

RWR with normalized graph Laplacian. Instead of row-normalized adjacency matrix,
Tong et al. [2008] use the normalized graph Laplacian. It outputs symmetric relevance

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:13

ALGORITHM 3: Update Phase in BEARD

Input: matrices: D, H, L−1
1 , U−1

1 , S, and an edge: (u, v, w)
Output: updated matrices: D̂, Ĥ, L̂−1

1 , Û−1
1 , Ŝ, L̂2, and Û2

1: update D and H into D̂ and Ĥ by Algorithm 4
2: update L−1

1 and U−1
1 into L̂−1

1 and Û−1
1 by Algorithm 5

3: update S into Ŝ by Algorithm 6
4: decompose Ŝ into L̂2 and Û2 by LU decomposition

5: return D̂, Ĥ, L̂−1
1 , Û−1

1 , Ŝ, L̂2, and Û2

scores for undirected graphs, which are desirable for some applications. This score
can be computed by replacing Ã in Algorithm 1 with D−1/2AD−1/2, where A is an
unnormalized adjacency matrix and D is a diagonal matrix whose (i, i)th entry is the
degree of ith node.

Fast belief propagation. FaBP [Koutra et al. 2011] is a fast algorithm for approximate
belief propagation. The linear system that FaBP solves is expressed as [I + aD −
c′A]bh = φh, where bh is an approximation of the beliefs, φh is a prior belief vector,
a = 4h2

h/(1 − 4h2
h), c = 2hh/(1 − 4h2

h), and hh is a homophily factor. Note that the matrix
H = [I + aD − c′A] is invertible if 1

2(1−max(Dii))
< hh < 0 and 0 < hh < 1

2(max(Dii)−1) since
H becomes diagonally dominant as proved in Lemma 8.1 in Appendix A.3. Under the
condition, BEAR computes the solution of the FaBP equation.

4. PROPOSED METHOD FOR DYNAMIC GRAPHS

In this section, we propose BEARD to apply BEAR to dynamic graphs. When edges are
added to or removed from a graph, BEARD updates the preprocessed matrices of BEARS
based on the following observation:

—When a few edges are inserted or deleted, only small parts of the preprocessed
matrices need to be changed. In other words, most parts of the preprocessed matrices
remain the same.

For example, suppose that one edge is inserted into a graph as shown in the left of
Figure 3(a). In this case, the inserted edge (the red dot) results in the change of one
column (the red line) in the normalized adjacency matrix of the graph. The modified
column leads to the small change of the preprocessed matrices because the preprocessed
matrices are computed from the normalized adjacency matrix. In this manner, BEARD
analyzes the changes of the normalized adjacency matrix and updates the preprocessed
matrices accordingly.

As the dynamic graph model, we choose the edge weighted dynamic graph [Harary
and Gupta 1997], in which edges are added with a weight, deleted from the graph, or
the weights of edges are modified while the set of nodes is fixed. For simplicity, we refer
the insertion, the deletion, and the weight change of an edge to an edge modification.
One edge modification, (u, v, w), means that the weight of an edge from node u to v
is replaced with the weight w. For instance, if we set the weight of an edge (u, v) to
0, then this modification is represented as (u, v, 0) and indicates the deletion of the
edge. Note that we do not consider the cases when nodes are added or removed; it is a
challenging open problem since addition or removal of nodes changes the dimension of
the matrices, which makes updating the preprocessed matrices difficult.

BEARD comprises the update phase and the query phase. In the update phase, BEARD
updates the preprocessed matrices for a given edge modification (u, v, w). In the query
phase, BEARD computes RWR scores with respect to a given seed node s using the

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:14 J. Jung et al.

Fig. 3. Cases of changes in H after one edge modification. A red dot indicates the position of a modified edge,
and a red box indicates the part of H modified by the edge modification. (a) Case 1, where the modification
occurs in one block of H11 (left) or in H21(right). (b) Case 2, where an edge is added between two blocks. The
blocks may be adjacent or not. If they are not adjacent, we reorder H11 (and thus H21) and merge them into
one block (e.g., the blue box on the right) so that H11 remains block diagonal. (c) Case 3, where the edge
modification occurs in H12 (left) or in H22 (right).

updated matrices. The update and query phases of BEARD are shown in Algorithms 3
and 7, respectively.

4.1. Update Phase

In the update phase, for one edge modification, BEARD updates the preprocessed matri-
ces D, H, L−1

1 , U−1
1 , and S, which are computed in BEARS. D is a diagonal matrix with

Dii = ∑
j Ai j , H = I − (1 − c)ÃT, H11 = L1U1 by LU decomposition, and S is the Schur

complement of H11. We use Â to denote the updated matrix of A and �A to denote the
difference Â − A after one edge modification.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:15

ALGORITHM 4: Updating D and H
Input: restart probability: c, matrices : D and H, and an edge: (u, v, w)
Output: updated matrices: D̂ and Ĥ

1: initialize �D and �H
2: �Duu = w + HvuDuu/(1 − c)
3: for v′ ∈ N(u) do
4: �Hv′u = −Hv′u�Duu/(Duu + �Duu)
5: end for
6: �Hvu = −Hvu − (1 − c)w/D̂uu

7: D̂ = D + �D
8: Ĥ = H + �H

9: return D̂ and Ĥ

After one edge is inserted or deleted, D and H are changed because the degree of
the source node of the edge is changed. If H11 is changed, then L−1

1 and U−1
1 need to

be updated because the matrices are computed from H11. In addition, the change of H
incurs the update of S since S is computed from submatrices of H. Finally, the update
of S changes L−1

2 and U−1
2 where S is LU decomposed into L2 and U2.

In this sense, BEARD must update D, H, L−1
1 , U−1

1 , L−1
2 , and U−1

2 when the graph
changes. However, BEARD does not update L−1

2 and U−1
2 . Instead, BEARD updates S

into Ŝ and computes L̂2 and Û2 through LU decomposition of Ŝ. The reason is that to
update L−1

2 and U−1
2 , we need to LU decompose Ŝ into L̂2 and Û2, and then invert the

new LU factors, but the task for inverting the matrices takes a long time. To decrease
the update time, BEARD avoids inverting L̂2 and Û2, and computes a query using L̂2

and Û2, which will be explained in detail in Section 4.2.
The update phase is composed of four steps: (1) updating D and H, (2) updating L−1

1
and U−1

1 , (3) updating S, and (4) computing L̂2 and Û2 from Ŝ, where Ŝ is the updated
matrix of S and Ŝ = L̂2Û2. Details of the update phase (Algorithm 3) are explained in
the following sections. Note that the output matrices of Algorithm 3 are used as the
input matrices of the next edge modification.

4.1.1. Updating D and H. In this part, we update D and H after computing �D and
�H for an edge modification (u, v, w). When the edge (u, v) is modified, Duu, the (u, u)th
entry of D, needs to be updated because the degree of the uth node is changed. In turn,
the change of Duu leads to the update of the uth column of H according to the definition
of H.

If the weight of an edge (u, v) is changed to w, then the (u, v)th entry of A, Auv becomes
w, and Duu is changed into D̂uu as follows:

D̂uu = Duu − Auv + w.

According to the preceding equation, �D is −Auv + w on (u, u)th entry and zeros on
the others. The change of D indicates that the uth row of the normalized adjacency
matrix Ã needs to be updated because only the (u, u)th entry of D changes. Equally, the
uth column of H must be changed because Ã is transposed as shown in Equation (2).
To update the values on the uth column of H, we rewrite H as follows:

Hi j =
⎧⎨⎩−(1 − c)

A�
i j

D j j
, if i 	= j

1, otherwise,

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:16 J. Jung et al.

where Hi j is the (i, j)th entry of H. Hence, Auv is −Duu × Hvu/(1 − c). After the edge
modification, each nonzero element in the uth column of Ĥ is updated as follows:

Ĥiu =

⎧⎪⎨⎪⎩
−(1 − c)

w

D̂uu
if i = v

Hiu
Duu

D̂uu
else if i ∈ N(u),

where N(u) is a set of out-neighbors of node u. We derive the uth column of �H from
the relation Ĥ = H + �H as follows:

�Hiu =

⎧⎪⎪⎨⎪⎪⎩
−Hiu − (1 − c)

w

D̂uu
if i = v

−�Duu

D̂uu
Hiu else if i ∈ N(u).

The process for computing �D and �H is shown in Algorithm 4. After obtaining �D
and �H, we update D into D̂ = D + �D and H into Ĥ = H + �H. Note that an updated
edge changes only one column of H. Thus, �H contains nonzero elements only in the
uth column.

4.1.2. Case Analysis. Depending on �H, which results from an edge modification
(u, v, w), we adopt different approaches for updating the matrices given as input. For
the purpose, we classify �H into three cases and analyze each case in turn. Before
describing the analysis, we define a symbol to represent a block in H11 for clarity.

Definition 4.1 (A Block of Node u). Suppose that A11 is a block-diagonal matrix and
iu is the index of the block to which node u belongs. Then, Aiu

11 indicates the block of the
index iu.

Case 1 (Figure 3(a)). An edge modification occurs within a block Hiu
11(= Hiv

11) or within
H21. In this case, the uth columns of Hiu

11 and H21 are changed. The others, H12 and
H22, are not changed.

Case 2 (Figure 3(b)). An edge is added between a node in Hiu
11 and a node in Hiv

11. If
these two blocks are not adjacent, we reorder H11 so that they become adjacent and
the block-diagonal structure of H11 is preserved. As in Case 1, only H11 and H21 are
modified.

Case 3 (Figure 3(c)). An edge modification occurs within H12 or within H22. The uth
columns of H12 and H22 are changed, whereas H11 and H21 are not changed.

4.1.3. Updating L−1
1 and U−1

1 . In this part, we update L−1
1 and U−1

1 to L̂−1
1 and Û−1

1 based
on Ĥ, which is the updated matrix of H. If any part of H11 is changed (Cases 1 and
2), L−1

1 and U−1
1 should be updated because they are computed from H11. On the other

hand, if H11 is not modified (Case 3), the factors do not need to be updated. Hence, we
focus on Cases 1 and 2 when L−1

1 and U−1
1 are updated in this step.

Note that L−1
1 and U−1

1 , as well as H11, are block-diagonal matrices by Lemma 3.2.
By one edge modification, the uth column of H11 is changed; thus, only one block in
H11 is modified, and other blocks are not changed. Therefore, we update L−1

1 and U−1
1

based on the modified block case by case.
Case 1. Since H11 is a block-diagonal matrix, and only one block Hiu

11 is changed by
the edge modification as seen in Figure 3(a), we keep the unchanged blocks in L−1

1 and
U−1

1 , and we use them to initialize L̂−1
1 and Û−1

1 . We replace the only modified block. As

described in Algorithm 5, we extract one block Ĥiu
11 from Ĥ, LU decompose it into L

iu
1

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:17

ALGORITHM 5: Updating L−1
1 and U−1

1

Input: matrices : L−1
1 , U−1

1 , and Ĥ, an edge: (u, v, w)
Output: updated matrices: L̂−1

1 and Û−1
1

1: initialize L̂−1
1 ← L−1

1 , and Û−1
1 ← U−1

1
2: if Case 3 then
3: /*no need to update L−1

1 and U−1
1 */

return L̂−1
1 and Û−1

1
4: end if
5: if Case 1 then
6: Ĥiuv

11 ← Ĥiu
11

7: else if Case 2 then
8: if Ĥiu

11 is not adjacent to Ĥiv
11 then

9: reorder Ĥ, L̂−1
1 and Û−1

1 for Ĥiu
11 and Ĥiv

11 to be adjacent
10: end if
11: merge Ĥiu

11 and Ĥiv
11 into one block Ĥiuv

11
12: end if
13: decompose Ĥiuv

11 into L
iuv

1 and U
iuv

1 , and compute (L
iuv

1)−1 and (U
iuv

1)−1

14: replace (L̂iuv

1)−1 and (Ûiuv

1)−1 with (L
iuv

1)−1 and (U
iuv

1)−1, respectively.

15: return L̂−1
1 and Û−1

1

and U
iu
1 , and invert them. Then, we replace (L̂iu

1)−1 and (Ûiu
1)−1 with (L

iu
1)−1 and (U

iu
1)−1,

respectively.
Case 2. As illustrated in Figure 3(b), if Ĥiu

11 is not adjacent to Ĥiv
11, we reorder Ĥ11

for them to be adjacent. When Ĥ11 is reordered, D, Ĥ12, Ĥ21, L̂−1
1 , and Û−1

1 also should
be reordered in the same way for consistency. Then, we merge two blocks Ĥiu

11 and Ĥiv
11

into one block Ĥiuv

11 that denotes the block to which both u and v belong. Note that if we
do not reorder H11 and merge the blocks, the LU factors of Ĥ11 become dense, and the
performance degrades in the update and query phases.

4.1.4. Updating S. In this section, we compute �S and update S to Ŝ, where S is the
Schur complement of H11. According to Equation (5), if at least one of the submatrices
in H is changed, S is also changed. Hence, every case of edge modification incurs the
change of S. To compute �S, we reformulate S using blocks in H11 and define block
contribution to S.

LEMMA 4.2. Suppose that A11 is a block-diagonal matrix, and Ai
12, Ai

21, and Ai
11 denote

the parts of A12, A21, and A11 corresponding to the block of index i, respectively. Then,
the Schur complement S of A11 can be expressed as follows:

S = A22 −
b∑

i=1

Ai
21(Ai

11)−1Ai
12. (8)

PROOF. Since A11 is a block-diagonal matrix, A21A−1
11 A12 can be represented as follows:

A21A−1
11 A12 = [

A1
21 ... Ab

21

]⎡⎢⎣ (A1
11)−1 0 0

0
. . . 0

0 0 (Ab
11)−1

⎤⎥⎦
⎡⎢⎣ A1

12
...

Ab
12

⎤⎥⎦.

Then, the term and the Schur complement of A11 are expressed as Equation (8).

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:18 J. Jung et al.

ALGORITHM 6: Updating S

Input: matrices: H, L−1
1 , U−1

1 , Ĥ, L̂−1
1 , Û−1

1 , an edge: (u, v, w)
Output: updated matrix: Ŝ

1: if Case 1 then
2: compute �S = −�(H, iu) + �(Ĥ, iu)
3: else if Case 2 then
4: compute �S = −�(H, iu) − �(H, iv) + �(Ĥ, iuv)
5: else if Case 3 then
6: compute �S = �H22 − H21(U−1

1 (L−1
1 �H12))

7: end if

8: Ŝ = S + �S

9: return Ŝ

Definition 4.3 (Block Contribution to Schur Complement). Suppose that A11 is a
block-diagonal matrix. Given a block index i, let Ai

12, Ai
21, and Ai

11 denote the parts of
A12, A21, and A11, respectively, corresponding to the block i. Then, the contribution of
block i to the Schur complement S is defined by

�(A, i) = −Ai
21

(
Ai

11

)−1Ai
12.

If A11 is LU decomposed into L11 and U11, then the block contribution can be rewritten
using the inverse of the factors as follows:

�(A, i) = −Ai
21

((
U11

i)−1((L11
i)−1Ai

12

))
.

Using Lemma 4.2 and Definition 4.3, the Schur complement of H11 is represented by
the following equation:

S = H22 +
b∑

i=1

�(H, i).

As mentioned in Section 4.1.2, at most two blocks in H11 are replaced by the edge
modification. The key idea for computing �S is to extract the block contributions of old
blocks from S and to add those of newly replaced blocks.

Case 1. The modified block in H11 is only Hiu
11. Therefore, we extract the contribution

of the replaced block Hiu
11 from S and add that of Ĥiu

11 into Ŝ as follows:

�S = −�(H, iu) + �(Ĥ, iu). (9)

Case 2. In the previous step, we replaced Hiu
11 and Hiv

11 with the merged block, Ĥiuv

11.
Thus, we extract the contribution of Hiu

11 and Hiv
11, and then we add that of Ĥiuv

11 into Ŝ
as follows:

�S = −�(H, iu) − �(H, iv) + �(Ĥ, iuv). (10)

Case 3. No block in H11 is changed, but elements of the uth columns of H12 and H22

are modified. In this case, we compute �S using fact that Ĥ = H + �H. Note that
Ĥ21 = H21 and Ĥ11 = H11 in this case:

Ŝ = Ĥ22 − Ĥ21Ĥ−1
11 Ĥ12

= H22 + �H22 − H21H−1
11 (H12 + �H12)

= H22 − H21H−1
11 H12 + �H22 − H21H−1

11 �H12

= S + �H22 − H21(U−1
1 (L−1

1 �H12)).

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:19

ALGORITHM 7: Query Phase in BEARD

Input: restart probability: c, matrices: Ĥ, L̂−1
1 , Û−1

1 , L̂2, and Û2, seed node: s
Output: relevance scores: r

1: create q whose sth entry is 1 and the others are 0
2: partition q into q1 and q2

3: compute r2 = c(Û2\B(L̂2\F (q2 − Ĥ21(Û−1
1 (L̂−1

1 q1))))))
4: compute r1 = Û−1

1 (L̂−1
1 (cq1 − Ĥ12r2))

5: create r by concatenating r1 and r2

6: return r

Hence, �S is expressed by the following equation:

�S = �H22 − H21(U−1
1 (L−1

1 �H12)). (11)

After computing �S, we simply update S to Ŝ by adding �S as described in
Algorithm 6.

4.1.5. Computing L̂2 and Û2. In this step, we compute L̂2 and Û2, which are the up-
dated matrices of L2 and U2, respectively. At the previous step, we already obtain Ŝ,

which is the updated matrix of S. Hence, we decompose Ŝ into L̂2 and Û2 using LU
decomposition.

Note that we do not invert L̂2 and Û2 because inverting a matrix is time consuming.
To improve the performance of the update phase, we keep only L̂2 and Û2. We will
explain how BEARD uses L̂2 and Û2 to compute RWR scores in Section 4.2.

4.2. Query Phase

In the query phase, BEARD computes the RWR score vector r̂ with respect to a given
seed node s with the updated matrices D̂, Ĥ, L̂−1

1 , Û−1
1 , Ŝ, L̂2, and Û2. Algorithm 7

describes the query phase of BEARD.
In BEARD, we need to modify the query phase of BEARS because the query phase

demands L̂−1
2 and Û−1

2 , but we have L̂2 and Û2. To exploit L̂2 and Û2, BEARD uses
forward and backward substitution algorithms [Boyd and Vandenberghe 2009], which
solve Ax = b, where A is a lower or upper triangular matrix. Using the substitution
algorithms, BEARD computes RWR scores with L̂2 and Û2 under the same time com-
plexity of BEARS. We will prove the time complexity of the query phase of BEARD in
Section 4.3.1.

To express the substitution algorithms, we define operators \F and \B, which indicate
the forward substitution and the backward substitution, respectively.

Definition 4.4. (Backslash Operator for a Triangular Matrix). Suppose that L is
an n × n invertible lower triangular matrix, U is an n × n invertible upper triangular
matrix, and b and x are n × 1 vectors. Then, a backslash operator for L, \F , solves
a linear system Lx = b using the forward substitution algorithm and is denoted as
follows:

Lx = b ⇔ x = L\Fb.

Another backslash operator for U, \B, solves a linear system Ux = b using the
backward substitution algorithm and is denoted as follows:

Ux = b ⇔ x = U\Bb.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:20 J. Jung et al.

The vector q in Algorithm 7 is the length-n starting vector as mentioned in Sec-
tion 3.2. With the updated matrices and the backslash operators, the exact RWR score
vector r is computed by the following equation:

r =
[

r1
r2

]
=

[
Û−1

1 (L̂−1
1 (cq1 − Ĥ12r2))

c(Û2\B(L̂2\F(q2 − Ĥ21(Û−1
1 (L̂−1

1 q1)))))

]
. (12)

THEOREM 4.5 (THE CORRECTNESS OF BEARD). The r in Equation (12) is equal to the r in
Ĥr = cq.

PROOF. The r is represented with the updated matrices Ĥ, L̂−1
1 , Û−1

1 , L̂2, and Û2
using Equation (6) as follows:

r =
[

r1
r2

]
=

[
Û−1

1 (L̂−1
1 (cq1 − Ĥ12r2))

c(Û−1
2 (L̂−1

2 (q2 − Ĥ21(Û−1
1 (L̂−1

1 q1)))))

]
. (13)

Then, r in Equation (13) satisfies Ĥr = cq by Theorem 3.4. However, we have L̂2

and Û2, instead of L̂−1
2 and Û−1

2 , as the results of the update phase. r̂2 can be rewritten
with L̂2, Û2, and backslash operators as follows:

L̂2Û2r2 = c(q2 − Ĥ21(Û−1
1 (L̂−1

1 q1)))

r2 = c(Û2\B(L̂2\F(q2 − Ĥ21(Û−1
1 (L̂−1

1 q1))))).

BEARD answers a query using Equation (12), which exploits forward and backward
substitutions; on the other hand, BEARS answers a query using Equation (6), which
uses the inverses of L2 and U2.

One might wonder, why does BEARD use forward/backward substitutions without
computing the inverses as in BEARS? The main reason is that the update phase of BEARD
is performed repeatedly, whereas the preprocessing phase of BEARS is performed only
once. Note that once the inverses are computed, computing r2 based on sparse matrix
vector multiplication with L−1

2 and U−1
2 requires fewer computations than those of

forward/backward substitutions. This is because sparse matrix vector multiplication
only considers nonzero entries in the sparse vector and the corresponding columns of
the sparse matrix, whereas the substitution algorithms need to scan all nonzero entries
in the matrix to compute the solution. Once computed, the inverses are used to speed
up the query phase in BEARS. However, computing the inverses in each update phase of
BEARD would be too time consuming. Thus, BEARD chooses not to compute the inverses.
Furthermore, the query times of BEARD and BEARS do not differ drastically, as we will
see in Section 5.8.

There is one more reason that BEARS computes the inverse: BEARS’s approximate
version BEARS-APPROX needs to investigate L−1

2 and U−1
2 to drop near-zero entries of

them as mentioned in Section 3.1.4.

4.3. Complexity Analysis

In this section, we analyze the time and the space complexities of BEARD.

4.3.1. Time Complexity. Here, we prove the time complexities for update and query
phases of BEARD. The time complexity of each step of BEARD is summarized in Table IV.

LEMMA 4.6. It takes O(m) to update D and H.

PROOF. We update H into Ĥ by adding �H to H (line 8 of Algorithm 4). For given
two sparse matrices A and B, it takes O(|A| + |B|) to add them since we need to scan

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:21

Table IV. Time Complexity of Each Step of BEARD

Line Task Case Time Complexity
Update Phase (Algorithm 3)

1
Updating D and H

(Algorithm 4) All O(m)

2
Updating L−1

1 and U−1
1 Case 1 O(n3

1iu
)

(Algorithm 5) Case 2 O((
∑b

i=1 n2
1i) + min(n1n2, m) + n3

1iuv
)

3 Updating S
(Algorithm 6)

Case 1 O(n2
1iu

n2 + n1iun2
2)

Case 2 O(n2
1iuv

n2 + n1iuv
n2

2)
Case 3 O((

∑b
i=1 n2

1i) + min(n1n2, m))

4 Computing L̂2 and Û2 All O(n3
2)

Total
Case 1: O(m+ n3

1iu
+ n2

1iu
n2 + n1iun2

2 + n3
2)

Case 2: O(m+ (
∑b

i=1 n2
1i) + min(n1n2, m) + n3

1iuv
+ n2

1iuv
n2 + n1iuv

n2
2 + n3

2)
Case 3: O(m+ (

∑b
i=1 n2

1i) + min(n1n2, m) + n3
2)

Query Phase (Algorithm 7)

3 Computing r2 O((
∑b

i=1 n2
1i) + n2

2 + min(n1n2, m))
4 Computing r1 O((

∑b
i=1 n2

1i) + min(n1n2, m))

Total O((
∑b

i=1 n2
1i) + n2

2 + min(n1n2, m))

all nonzero elements in A and B. Since H has mnonzeros, �H has |N(u)| nonzeros, and
m > |N(u)|, it takes O(m) to add H and �H.

LEMMA 4.7. It takes O(n3
1iu

) for Case 1 and O((
∑b

i=1 n2
1i) + min(n1n2, m) + n3

1iuv
) for

Case 2 to update L−1
1 and U−1

1 .

PROOF. For Case 1, the algorithm updates (Liu
1)−1 and (Uiu

1)−1. It takes O(n3
1iu

) to LU
decompose Ĥiu

11 and invert the LU factors where n1iu is the number of nodes belonging
to the block for Ĥiu

11. For Case 2, the matrices D, Ĥ11, Ĥ12, Ĥ21, L̂−1
1 , and Û−1

1 need to
be reordered. The number of edges in Ĥ11, L̂−1

1 , and Û−1
1 is O(

∑b
i=1 n2

1i); the number
of edges in Ĥ12 and Ĥ21 is O(min(n1n2, m)). Then, the algorithm decomposes Ĥiuv

11 and
inverts the LU factors in O(n3

1iuv
).

LEMMA 4.8 (TIME COMPLEXITY FOR COMPUTING �). Suppose that A11 is an n1 × n1 block-
diagonal matrix of A, n1i is the number of nodes in the ith block of A11, Ai

12 is an n1i ×n2

matrix, and Ai
21 is an n2 × n1i matrix. Then, it takes O(n2

1in2 + n1in2
2) to compute �(A, i).

PROOF. By Definition 4.3 and Lemma 3.5, if the number of nonzeros of (L1
i)−1 or

(U1
i)−1 is O(n2

1i), it takes O(n2
1in2) to compute R1 = (L1

i)−1Ai
12, O(n2

1in2) to compute
R2 = (U1

i)−1R1, and O(n1in2
2) to compute �(A, i) = −Ai

21R2.

LEMMA 4.9. For Case 1, it takes O(n2
1iu

n2 + n1iun
2
2) to update S. For Case 2, it takes

O(n2
1iuv

n2 + n1iuv
n2

2).

PROOF. By Lemma 4.8, it takes O(n2
1iu

n2 + n1iun
2
2) to compute �(H, iu) and �(Ĥ, iu) for

Case 1. And it takes O(n2
1iuv

n2 + n1iuv
n2

2) to compute �(H, iu), �(H, iv), and �(Ĥ, iuv) for
Case 2. Note that n1iuv

> n1iu and n1iuv
> n1iv .

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:22 J. Jung et al.

Table V. Maximum Number of Nonzero
Entries in the Updated Matrices

Matrix Max Nonzeros

D̂ O(n)
Ĥ O(m)

Ĥ12 & Ĥ21 O(min(n1n2, m))
L̂−1

1 & Û−1
1 O(

∑b
i=1 n2

1i)
L̂2 & Û2 O(n2

2)

LEMMA 4.10. For Case 3, it takes O((
∑b

i=1 n2
1i) + min(n1n2, m)) to update S.

PROOF. Since �H12 contains only one column, it takes O(
∑b

i=1 n2
1i) to compute R1 =

L−1
1 �H12 and R2 = U−1

1 R1. In addition, since R2 contains only one column, it takes
O(min(n1n2, m)) to compute H21R2. Hence, the time complexity to compute �S for Case 3
is O((

∑b
i=1 n2

1i) + min(n1n2, m)).

THEOREM 4.11. The update phase in BEARD takes O(m+ n3
1iu

+ n2
1iu

n2 + n1iun
2
2 + n3

2) for
Case 1, O(m + (

∑b
i=1 n2

1i) + min(n1n2, m) + n3
1iuv

+ n2
1iuv

n2 + n1iuv
n2

2 + n3
2) for Case 2, and

O(m+ (
∑b

i=1 n2
1i) + min(n1n2, m) + n3

2) for Case 3.

PROOF. See Lemmas 4.6, 4.7, 4.9, and 4.10, and Table IV.

In the query phase of BEARD, we use forward and backward substitution algorithms to
exploit L̂1 and Û1. We first analyze the time complexity of the substitution algorithms.

LEMMA 4.12 (SPARSE FORWARD OR BACKWARD SUBSTITUTION). Suppose that A is an n× n
matrix, x and b are n×1 vectors, and A has |A| nonzero entries. If A is lower triangular,
then sparse forward substitution takes O(|A|). In the case that A is upper triangular,
sparse backward substitution also takes O(|A|).

PROOF. The forward substitution algorithm scans nonzero entries on the ith row of
A to compute the solution of the ith entry of x. From the 1st entry to nth entry of x,
it scans all nonzero entries of A. Similarly, the backward substitution algorithm scans
all nonzero entries of A from the nth entry to the 1st entry of x.

THEOREM 4.13. The query phase in BEARD takes O((
∑b

i=1 n2
1i) + n2

2 + min(n1n2, m)).

PROOF. Apply Lemmas 3.5 and 4.12, and the results in Table V, to the query
phase.

As presented in Theorems 3.6 and 4.11, for all cases, the update phase of BEARD re-
quires fewer computations than the preprocessing phase of BEARS. In the query phase,
the time complexity of BEARD is the same as that of BEARS according to Theorems 3.7
and 4.13.

4.3.2. Space Complexity.

THEOREM 4.14. BEARD requires O(n + m+ ∑b
i=1 n2

1i + n2
2) memory space for updated

matrices.

PROOF. See Table V.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:23

5. EXPERIMENTS

In this section, we present experimental results. First, to evaluate the effectiveness of
our exact method BEARS-EXACT, we design and conduct experiments that answer the
following questions:

—Q1. Preprocessing cost of BearS (Section 5.2): How much memory space do BEARS-
EXACT and its competitors require for their precomputed results? How long does this
preprocessing phase take?

—Q2. Query cost of BearS (Section 5.3): How quickly does BEARS-EXACT answer an
RWR query compared to other methods?

—Q3. Effects of network structure for BearS (Section 5.4): How does network structure
affect the preprocessing time, query time, and space requirements of BEARS-EXACT?

Second, for our approximate method BEARS-APPROX, our experiments answer the
following questions:

—Q4. Effects of drop tolerance for BearS (Section 5.4): How does drop tolerance ξ affect
the accuracy, query time, and space requirements of BEARS-APPROX?

—Q5. Comparison with approximate methods and BearS (Section 5.6): Does BEARS-
APPROX provide a better trade-off between accuracy, time, and space compared to its
competitors?

Finally, to measure the performance of our dynamic method BEARD, we design ex-
periments to answer the following questions:

—Q6. Update cost of BearD (Section 5.7): Compared to preprocessing the changed
graph, how long does the update phase take after one edge modification?

—Q7. Query cost of BearD (Section 5.8): How quickly does BEARD answer an RWR
query after one edge modification?

5.1. Experimental Settings

Machine. The experiments shown later for Figures 11(a), 11(c), 17(a), and 17(c) are
conducted on a PC with a four-core Intel i5-4590 3.3GHz CPU and 16GB memory. All
other experiments are performed in a similar PC (Intel i5-4570 3.2GHz CPU, and all
other conditions are the same).

Data. The graph data used in our experiments are summarized in Table VI. A brief
description of each real-world dataset is presented in Appendix A.4. For synthetic
graphs, we use R-MAT [Chakrabarti et al. 2004b] with different pul, the probability
that an edge falls into the upper-left partition. The probabilities for the other partitions
are set to (1 − pul)/3, respectively.

Implementation. We compare our methods to the iterative method, RPPR [Gleich and
Polito 2006], BRPPR [Gleich and Polito 2006], inversion, LU decomposition [Fujiwara
et al. 2012a], QR decomposition [Fujiwara et al. 2012b], B_LIN [Tong et al. 2008],
and NB_LIN [Tong et al. 2008], all of which are explained in Section 2.2. All methods
including BEAR are implemented using MATLAB, which provides a state-of-the-art
linear algebra package. In particular, our implementation of NB_LIN and that of RPPR
optimize their open-sourced implementations1,2 in terms of preprocessing speed and
query speed, respectively.

Parameters. We set the restart probability c to 0.05 as in the previous work [Tong
et al. 2008].3 We set k of SlashBurn to 0.001n (see Appendix A.1 for the meaning of

1http://www.cs.cmu.edu/∼htong/pdfs/FastRWR_20080319.tgz.
2http://www.mathworks.co.kr/matlabcentral/fileexchange/11613-pagerank.
3In this work, c denotes (1 – restart probability).

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

http://www.cs.cmu.edu/protect $
elax sim $htong/pdfs/FastRWR_20080319.tgz.

12:24 J. Jung et al.

Ta
bl

e
V

I.
S

um
m

ar
y

of
R

ea
l-W

or
ld

an
d

S
yn

th
et

ic
D

at
as

et
s

D
at

as
et

n
m

n 2
∑ b i=

1
n2 1i

|H
|

|H
12

|+
|H

21
|

|L
−1 1

|+
|U

−1 1
|

|L
−1 2

|+
|U

−1 2
|

R
ou

ti
n

g†
22

,
96

3
48

,
43

6
57

2
67

8,
09

7
11

9,
83

5
72

,
16

8
86

,
97

2
27

1,
24

8
C

o-
au

th
or
†

31
,
16

3
12

0,
02

9
4,

46
4

1,
36

4,
44

3
27

1,
22

1
11

8,
01

2
20

2,
48

2
18

,
52

6,
86

2
T

ru
st

*
13

1,
82

8
84

1,
37

2
10

,
08

7
3,

49
3,

77
3

97
2,

62
7

31
7,

87
4

31
8,

46
1

81
,
03

9,
72

7
E

m
ai

l *
26

5,
21

4
42

0,
04

5
1,

59
0

56
6,

43
5

68
4,

17
0

35
8,

45
8

55
4,

68
1

1,
14

9,
46

2
W

eb
-S

ta
n

*
28

1,
90

3
2,

31
2,

49
7

16
,
01

7
42

0,
65

8,
75

4
2,

59
4,

40
0

1,
42

3,
99

3
26

,
19

1,
04

0
55

,
45

0,
10

5
W

eb
-N

ot
re

*
32

5,
72

9
1,

49
7,

13
4

12
,
35

0
77

,
44

1,
93

7
1,

79
5,

40
8

61
1,

40
8

5,
91

2,
67

3
12

,
10

5,
57

9
W

eb
-B

S
*

68
5,

23
0

7,
60

0,
59

5
50

,
00

5
71

7,
72

7,
20

1
8,

28
5,

82
5

4,
72

5,
65

7
25

,
99

0,
33

6
54

7,
93

6,
69

8
T

al
k *

2,
39

4,
38

5
5,

02
1,

41
0

19
,
15

2
3,

27
2,

26
5

7,
41

5,
79

5
3,

99
6,

54
6

4,
84

1,
87

8
24

6,
23

5,
83

8
C

it
at

io
n

*
3,

77
4,

76
8

16
,
51

8,
94

8
1,

14
3,

52
2

71
,
20

6,
03

0
20

,
29

3,
71

5
9,

73
8,

22
5

6,
70

9,
46

9
40

8,
17

8,
66

2
R

-M
A

T
(0

.5
) *

99
,
98

2
50

0,
00

0
17

,
72

1
1,

51
3,

85
5

59
9,

98
2

18
4,

81
2

20
4,

58
5

26
0,

24
7,

89
0

R
-M

A
T

(0
.6

) *
99

,
95

6
50

0,
00

0
11

,
08

8
1,

25
8,

51
8

59
9,

95
6

14
5,

28
1

20
5,

83
7

10
4,

15
3,

33
3

R
-M

A
T

(0
.7

) *
99

,
70

7
50

0,
00

0
7,

02
9

70
5,

04
2

59
9,

70
7

11
6,

38
2

20
2,

92
2

43
,
25

0,
09

7
R

-M
A

T
(0

.8
) *

99
,
26

7
50

0,
00

0
4,

65
3

31
3,

84
8

59
9,

26
7

10
4,

41
5

19
9,

57
6

19
,
30

0,
45

8
R

-M
A

T
(0

.9
) *

98
,
43

8
50

0,
00

0
3,

03
8

24
4,

20
4

59
8,

43
8

10
7,

77
0

19
6,

87
3

8,
63

3,
84

1
†U

n
di

re
ct

ed
gr

ap
h

.
*D

ir
ec

te
d

gr
ap

h
.

N
ot

e:
|M

|d
en

ot
es

th
e

n
u

m
be

r
of

n
on

ze
ro

en
tr

ie
s

in
th

e
m

at
ri

x
M

.A
br

ie
f

de
sc

ri
pt

io
n

of
ea

ch
re

al
-w

or
ld

da
ta

se
t

is
pr

es
en

te
d

in
A

pp
en

di
x

A
.4

.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:25

F
ig

.4
.

S
pa

rs
it

y
pa

tt
er

n
s

of
th

e
m

at
ri

ce
s

re
su

lt
ed

fr
om

di
ff

er
en

t
pr

ep
ro

ce
ss

in
g

m
et

h
od

s
on

th
e

R
ou

ti
n

g
da

ta
se

t
(s

ee
S

ec
ti

on
5.

1
fo

r
de

ta
il

s
of

th
e

da
ta

se
t)

.
E

xa
ct

:e
xa

ct
m

et
h

od
,A

pp
ro

x:
ap

pr
ox

im
at

e
m

et
h

od
,#

n
z:

n
u

m
be

r
of

n
on

ze
ro

el
em

en
ts

in
th

e
pr

ec
om

pu
te

d
m

at
ri

ce
s.

F
or

B
_L

IN
an

d
N

B
_L

IN
,r

an
k

t
is

se
t

to
50

0
an

d
dr

op
to

le
ra

n
ce

ξ
is

se
t

to
0.

P
re

co
m

pu
te

d
m

at
ri

ce
s

ar
e

lo
ad

ed
in

to
m

em
or

y
to

sp
ee

d
u

p
th

e
qu

er
y

ph
as

e;
fo

r
th

is
re

as
on

,t
h

e
n

u
m

be
r

of
n

on
ze

ro
en

tr
ie

s
in

th
em

de
te

rm
in

es
th

e
m

em
or

y
u

sa
ge

of
ea

ch
m

et
h

od
an

d
th

u
s

it
s

sc
al

ab
il

it
y.

O
u

r
ex

ac
t

m
et

h
od

B
E

A
R
S

-E
X

A
C

T
pr

od
u

ce
s

th
e

sm
al

le
st

n
u

m
be

r
of

n
on

ze
ro

en
tr

ie
s

th
an

al
lo

th
er

m
et

h
od

s,
in

cl
u

di
n

g
th

e
ap

pr
ox

im
at

e
m

et
h

od
s

(1
20

0×
th

an
In

ve
rs

io
n

an
d

6×
th

an
th

e
se

co
n

d
be

st
m

et
h

od
).

O
u

r
ap

pr
ox

im
at

e
m

et
h

od
B

E
A

R
S

-A
P

P
R

O
X

fu
rt

h
er

de
cr

ea
se

s
th

e
n

u
m

be
r

of
n

on
ze

ro
en

tr
ie

s,
de

pe
n

di
n

g
on

dr
op

to
le

ra
n

ce
ξ
.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:26 J. Jung et al.

Fig. 5. Preprocessing cost of BEARS-EXACT. In (a) and (b), bars are omitted if and only if the corresponding
experiments run out of memory. (a) In the preprocessing phase, BEARS-EXACT is the fastest and the most scal-
able among all preprocessing methods. (b) BEARS-EXACT requires the least amount of space for preprocessed
data on all datasets. Due to its space efficiency, only BEARS-EXACT successfully scales to the largest Citation
dataset (with 3.8M nodes) without running out of memory.

k), which achieves a good trade-off between running time and reordering quality. The
convergence threshold ε of the iterative method is set to 10−8, which gives accurate
results. For B_LIN and NB_LIN, we use the heuristic decomposition method proposed
in their work, which is much faster with little difference in accuracy compared to SVD in
our experiments. The number of partitions in B_LIN, the rank in B_LIN and NB_LIN,
and the convergence threshold of RPPR and BRPPR are tuned for each dataset, which
are summarized later in Table VIII in Appendix A.5.

5.2. Preprocessing Cost of BEARS

We compare the preprocessing cost of BEARS-EXACT with that of other exact meth-
ods. Figure 5(a) and (b) present the preprocessing time and space requirements of
the methods except the iterative method, which does not require preprocessing. Only
BEARS-EXACT successfully preprocesses all datasets, whereas others fail due to their
high memory requirements.

Preprocessing time is measured in wall clock time and includes time for SlashBurn (in
BEARS-EXACT) and community detection (in LU decomposition). BEARS-EXACT requires
the least amount of time, which is less than an hour, for all datasets, as seen in
Figure 5(a). Especially in the graphs with distinct hub-and-spoke structure, BEARS-
EXACT is up to 12× faster than the second best one.

To compare space-efficiency, we measure the amount of memory required for precom-
puted matrices of each method. The precomputed matrices are saved in the compressed
sparse column format [Press 2007], which requires memory space proportional to the
number of nonzero entries. As seen in Figure 5(b), BEARS-EXACT requires up to 22× less
memory space than its competitors in all the datasets, which results in the superior
scalability of BEARS-EXACT compared to the competitors, which can be verified in Fig-
ure 4 as well.

We analyze the trade-off of BEARS-EXACT between space for preprocessed data and
preprocessing time. Figure 7(a) shows the results on the datasets. In the figure, BEARS-
EXACT is more closely located in the lower-left area than other methods. This result
indicates that the preprocessing phase of BEARS-EXACT provides a better trade-off be-
tween space and time.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:27

Fig. 6. Query cost of BEARS-EXACT. Bars are omitted if the corresponding methods run out of memory
for preprocessing. Note that BEARS-EXACT is the fastest except for the smallest Routing dataset where the
inversion method runs faster. However, the inversion method fails to process other datasets due to its limited
scalability.

5.3. Query Cost of BEARS

We compare BEARS-EXACT with other exact methods in terms of query time, which
means time taken to compute r for a given seed node. Although time taken for a
single query is small compared to preprocessing time, reducing query time is important
because many applications require RWR scores for different query nodes (e.g., all nodes)
or require the real-time computation of RWR scores for a query node.

Figure 6 shows the result where the y-axis represents the average query time for
1,000 random seed nodes. Only BEARS-EXACT and the iterative method run successfully
on all graphs; the others fail on large graphs due to their high space requirements.
BEARS-EXACT outperforms its competitors in all datasets except the smallest one, which
is the only dataset to which the inversion method can scale. BEARS-EXACT is up to
8× faster than LU decomposition, the second best one, and in the Talk dataset, it is
almost 300× faster than the iterative method, which is the only competitor. Although
BEARS-EXACT requires a preprocessing step that is not needed by the iterative method,
for real-world applications where RWR scores for many query nodes are required,
BEARS-EXACT outperforms the iterative method in terms of total running time.

Figure 7(b) shows the trade-off of BEARS-EXACT between memory space and query
time. The points corresponding to BEARS-EXACT are closer to the lower-left area than
other competitors, indicating that the query phase of BEARS-EXACT provides a good
trade-off between time and space. On the Routing dataset, the inversion method com-
putes queries faster than BEARS-EXACT, but the inversion method requires much more
memory space than BEARS-EXACT and fails to run on other larger datasets.

Furthermore, BEARS-EXACT also provides the best performance in PPR, where the
number of seeds is greater than one. In Appendix B.1, Figure 14 provides the compari-
son of the query time of BEARS-EXACT with that of others in PPR; in the same appendix,
Figure 15 provides the query time of BEARS-EXACT with different numbers of seeds.

5.4. Effects of Network Structure for BEARS

The complexity analysis in Section 3.3 indicates that the performance of BEARS-EXACT

depends on the structure of a given graph. Specifically, the analysis implies that BEARS-
EXACT is fast and space efficient on a graph with strong hub-and-spoke structure where
the graph is divided into small pieces by removing a small number of hubs. In this
experiment, we empirically support this claim using synthetic graphs with similar
sizes but different structures.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:28 J. Jung et al.

Fig. 7. Trade-off between time and space of BEARS-EXACT. The colors distinguish the methods, and the shapes
distinguish the datasets. The iterative method does not appear in the figures because it does not require space
for preprocessed data. The Web-BS, Talk, and Citation datasets are excluded from the figures because only
BEARS-EXACT preprocesses the datasets. In both figures, the lower-left region indicates better performance.
BEARS-EXACT is located more closely to those regions than the competitors in most of the datasets.

Fig. 8. Effects of network structure on synthetic graphs. BEARS-EXACT becomes fast and space efficient on a
graph with a distinct hub-and-spoke structure (a graph with high pul).

Table VI summarizes four synthetic graphs generated using R-MAT [Chakrabarti
et al. 2004b] with different pul, the probability that an edge falls into the upper-left
partition. As pul increases, the hub-and-spoke structure becomes stronger, as seen from
the number of hubs (n2) and the size of partitions (

∑b
i=1 n2

1i) of each graph. Figure 8(a)
and (b) show the performance of BEARS-EXACT on these graphs. Preprocessing time,
query time, and space required for preprocessed data decline rapidly with regard to
pul, which is coherent with what the complexity analysis implies.

The experimental results on real-world graphs also support the complexity analysis.
Figure 9(a) and (b) show preprocessing time and memory usage of BEARS-EXACT with
regard to n2 on real-world graphs. As seen in the figure, datasets with large n2 such as
Web-BS, Talk, and Citation demand more preprocessing time and memory space than
those with small n2 such as Routing, Co-author, and Web-Notre.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:29

Fig. 9. Effects of network structure on real-world graphs. BEARS-EXACT becomes fast and space efficient as
the number of hubs n2 decreases.

5.5. Effects of Drop Tolerance for BEARS

In this experiment, we measure the effects of different drop tolerance values on the
query time, space requirements, and accuracy of BEARS-APPROX. We change the drop
tolerance, ξ , from 0 to n−1/4 and measure the accuracy using cosine similarity4 and
L2-norm of error5 between r computed by BEARS-EXACT and r̂ computed by BEARS-
APPROX with the given drop tolerance. Figure 10 summarizes the results. We observe
that both the space required for preprocessed data and the query time of BEARS-APPROX

significantly decrease compared to those of BEARS-EXACT, and the accuracy remains
high.

5.6. Comparison of Approximate Methods and BEARS

We conduct performance comparison among BEARS-APPROX and other state-of-the-art
approximate methods. Dropping near-zero entries of precomputed matrices is com-
monly applied to BEARS-APPROX, B_LIN, and NB_LIN, providing a trade-off between
accuracy, query time, and storage cost. We analyze this trade-off by changing drop
tolerance from 0 to n−1/4. Likewise, we analyze the trade-off between accuracy and
time provided by RPPR, BRPPR, and Push by changing the threshold, θb, from 10−4

to 0.5. RPPR, BRPPR, and Push do not require space for preprocessed data. For Push,
we conduct experiments on undirected graphs because Push only works on undirected
graphs. Accuracy is measured using cosine similarity4 and L2-norm of error5 as in
Section 5.4.

Figure 11 summarizes the result on two datasets. According to the figure, BEARS-
APPROX provides a better trade-off between accuracy, time, and space than other com-
petitors. The results on other datasets are given later in Figure 17 of Appendix B.3.
The preprocessing times of the approximate methods are also compared in Figure 16
of Appendix B.2.

5.7. Update Cost of BEARD

We conduct experiments to measure the performance of the update phase of BEARD.
Figure 12(a) compares the preprocessing time of BEARS and the update time of BEARD.

4(r · r̂)/(||r|| ||r̂||), ranging from −1 (dissimilar) to 1 (similar).
5||r̂ − r||, ranging from 0 (no error) to ||r̂|| + ||r|| (max error bound).

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:30 J. Jung et al.

Fig. 10. Effects of drop tolerance on the performance of BEARS-APPROX. Drop tolerance changes from 0
to n−1/4. As drop tolerance increases, space requirements and query time are significantly improved, and
accuracy, measured by cosine similarity and L2-norm of error, remains high.

Note that updating the preprocessed matrices using BEARD takes less time than re-
preprocessing the modified graph using BEARS.

We first preprocess a given graph using BEARS and then randomly generate 30 edges
for each case. Then, for each case, we measure the average update time per one edge
using BEARD. In addition, we measure the total average update time for all cases. The
preprocessing and update times are measured in wall clock time.

As shown in Figure 12(a), updating the preprocessed matrices using BEARD is faster
than re-preprocessing the changed graph using BEARS. In particular, BEARD updates
the given matrices about 29× faster for the Citation dataset. Overall, the update times
of all cases are similar for most datasets. This is because LU decomposition of Ŝ occupies
the major part of the update time, which requires O(n3

2). This result indicates that other
factors of the time complexity in Theorem 4.11 are dominated by O(n3

2).

5.8. Query Cost of BEARD

We compare BEARD with BEARS in terms of query time. First, we preprocess a graph
and incrementally update the preprocessed matrices case by case as mentioned in
Section 5.7. For each case, we measure the average query time for 1,000 random seeds
and then calculate the total average query time for all cases.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:31

Fig. 11. Trade-off between time, space, and accuracy provided by approximate methods. Parts (a) through
(d) show the results on the Routing dataset, which is an undirected graph, and parts (e) through (h) show
the results on the Citation dataset, which is a directed graph. The colors distinguish the methods, and
the shapes distinguish the drop tolerance (for BEARS-APPROX, B_LIN, and NB_LIN) or the threshold (for
RPPR, BRPPR, and Push). RPPR, BRPPR, and Push do not appear in the figures in the second and fourth
columns because they do not require space for preprocessed data. In addition, Push only appears in figures on
undirected graphs because the method only works on undirected graphs. In the left four figures, the upper-
left region indicates better performance, whereas in the right four figures, the lower-left region indicates
better performance. Notice that BEARS-APPROX provides (1) the best trade-off between accuracy and query
speed and (2) the best trade-off between accuracy and space requirements among preprocessing methods.

Fig. 12. Performance of BEARD. (a) Preprocessing time of BEARS and the updating time of BEARD for each
case. Updating the preprocessed matrices using BEARD is faster than preprocessing the changed graph in all
datasets. (b) BEARD computes a given query almost as fast as BEARS, even though BEARS is slightly faster
than BEARD.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:32 J. Jung et al.

Table VII. Comparison Between the Number of Nonzero Entries of L̂2

and Û2 and That of L̂−1
2 and Û−1

2 After 30 Updates Using BEARD

Dataset |L̂2| + |Û2| |L̂−1
2 | + |Û−1

2 | |L̂−1
2 | + |Û−1

2 |
|L̂2| + |Û2|

Routing 146, 209 273, 937 1.87
Co-author 11, 336, 514 18, 531, 856 1.63
Trust 40, 946, 464 81, 039, 732 1.98
Email 487, 670 1, 149, 684 2.36
Web-Stan 6, 001, 812 55, 814, 600 9.30
Web-Notre 932, 674 12, 977, 961 13.91
Web-BS 75, 187, 228 643, 052, 606 8.55
Talk 103, 517, 667 246, 235, 838 2.38
Citation 101, 497, 101 409, 041, 447 4.03
Note: |M| denotes the number of nonzero entries in the matrix M.

As seen in Figure 12(b), BEARD is comparable with BEARS in terms of query speed
in all datasets. For most datasets, BEARD is slightly slower than BEARS because of
forward and backward substitution algorithms. BEARD is up to 1.4× slower than BEARS
for the reasons described in Section 4.2. However, BEARD is faster than BEARS for other
datasets, such as Web-Stan, Web-Notre, and Web-BS. In this case, BEARD is up to 1.5×
faster than BEARS. This is because for those datasets, the number of nonzero entries
in L̂2 and Û2 is much smaller than that of L̂−1

2 and Û−1
2 . According to Table VII, the

number of nonzero entries of L̂−1
2 and Û−1

2 is at least 8.55× and at most 13.91× greater
than that of L̂2 and Û2. Note that BEARD computes RWR scores with L̂2 and Û2, and
BEARS computes the scores with L̂−1

2 and Û−1
2 .

This result justifies that BEARD uses the substitution algorithms with L̂2 and Û2
because the difference between the query time of BEARD and that of BEARS is small.
In addition, if L̂−1

2 and Û−1
2 are much denser than L̂2 and Û2, BEARD computes queries

with fewer computations than BEARS.

6. RELATED WORK

In this section, we review related work, which can be categorized into four parts:
(1) relevance measures and applications, (2) approximate methods for RWR, (3) top-k
search for RWR, and (4) preprocessing methods for RWR.

Relevance measures and applications. There are various relevance (proximity) mea-
sures based on random walk, such as penalized hitting probability [Zhang et al. 2012],
EI [Bogdanov and Singh 2013], discounted hitting time [Sarkar and Moore 2010],
truncated hitting time [Sarkar and Moore 2007], RWR [Pan et al. 2004], effective con-
ductance [Doyle and Snell 1984], ObjectRank [Balmin et al. 2004], SimRank [Jeh and
Widom 2002], and PPR [Page et al. 1999]. Among these measures, RWR has received
much interest and has been applied to many applications, including community de-
tection [Andersen et al. 2006; Gleich and Seshadhri 2012; Whang et al. 2013; Zhu
et al. 2013], ranking [Tong et al. 2008], link prediction [Backstrom and Leskovec 2011],
graph matching [Tong et al. 2007; Kang et al. 2012], knowledge discovery [Kasneci
et al. 2009], anomaly detection [Sun et al. 2005], content-based image retrieval [He
et al. 2004], and cross-modal correlation discovery [Pan et al. 2004]. Andersen et al.
[2006] proposed a local community detection algorithm that utilizes RWR to find a cut
with small conductance near a seed node. This algorithm was used to explore the prop-
erties of communities in large graphs because it is fast and returns tight communities
[Leskovec et al. 2009]. Considerable improvements of the algorithm have been made

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:33

regarding seed finding [Gleich and Seshadhri 2012; Whang et al. 2013] and inner con-
nectivity [Zhu et al. 2013]. Backstrom and Leskovec [2011] proposed a link prediction
algorithm called supervised random walk, which is a variant of RWR. In the algo-
rithm, transition probabilities are determined as a function of the attributes of nodes
and edges, and the function is adjusted through supervised learning. Tong et al. [2007]
proposed G-Ray, which finds best-effort subgraph matches for a given query graph in
a large and attributed graph. They formulated a goodness function using RWR to es-
timate the proximity between a node and a subgraph. Kasneci et al. [2009] exploited
RWR as a measure of node-based informativeness to extract an informative subgraph
for given query nodes. Sun et al. [2005] utilized RWR for neighborhood formulation
and abnormal node detection in bipartite graphs. He et al. [2004] employed RWR to
rank retrieved images in their manifold ranking algorithm. Pan et al. [2004] proposed
a method adopting RWR to compute the correlations between a query image node and
caption nodes.

Approximate methods for RWR. The iterative method, which comes from the defi-
nition of RWR, is not fast enough in real-world applications where RWR scores for
different query nodes need to be computed. To overcome this obstacle, approximate ap-
proaches have been proposed. Sun et al. [2005] observed that the relevance scores for a
seed node are highly skewed, and many real-world graphs have a block-wise structure.
Based on these observations, they performed random walks only on the partition con-
taining the seed node and assigned the proximities of zero to the other nodes outside the
partition. Instead of using a precomputed partition, Gleich and Polito [2006] proposed
methods that adaptively determine the part of a graph used for RWR computation in
the query phase, as explained in Section 2.2. Andersen et al. [2006] also proposed an
approximate method based on local information. Tong et al. [2008] proposed approx-
imate approaches called B_LIN and NB_LIN. They achieved higher accuracy than
previous methods by applying a low-rank approximation to cross-partition edges in-
stead of ignoring them. Lofgren et al. [2014] proposed a Monte Carlo–based method,
FAST-PPR, which estimates PPR of a single pair between a start node and a target
node. Their method first finds two sets: a target set and a frontier set. The target set
contains nodes whose RWR score to the target node is greater than a threshold, and
the frontier set contains nodes within one step from the boundary of the target set.
The method estimates the single-pair PPR score by doing random walks from the start
node with testing if the walks hit the frontier set.

Top-k search for RWR. Several recent works focus on finding the k most relevant
nodes of a seed node instead of calculating the RWR scores of every node. Gupta
et al. [2008] proposed the basic push algorithm (BPA), which finds top-k nodes for
PPR in an efficient way. BPA precomputes relevance score vectors with respect to
hub nodes and uses them to obtain the upper bounds of PPR scores. Fujiwara et al.
[2012a] proposed K-dash, which computes the RWR scores of top-k nodes exactly. It
computes the RWR scores efficiently by exploiting precomputed sparse matrices and
pruning unnecessary computations while searching for the top-k nodes. Wu et al. [2014]
showed that many random walk–based measures have the no-local-minimum (or no-
local-maximum) property, which means that each node, except for a given query node,
has at least one neighboring node having lower (or higher) proximity. Based on this
property, they developed a unified local search method called fast local search (FLoS),
which exactly finds top-k relevant nodes in terms of measures satisfying the no-local-
optimum property. Furthermore, Wu et al. showed that FLoS can be applied to RWR,
which does not have the no-local-optimum property, by utilizing its relationship with
other measures. Bahmani et al. [2010] proposed a Monte Carlo method that estimates
top-k nodes for PPR based on random walk segments. However, top-k RWR computation

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:34 J. Jung et al.

is insufficient for many data mining applications [Andersen et al. 2006; Backstrom and
Leskovec 2011; Gleich and Seshadhri 2012; He et al. 2004; Sun et al. 2005; Tong et al.
2007; Whang et al. 2013; Zhu et al. 2013] that demand the RWR scores of all nodes.

Preprocessing methods for RWR. As seen from Section 2.2, the computational cost
of RWR can be significantly reduced by precomputing H−1. However, matrix inversion
does not scale up. In other words, for a large graph, it often results in a dense matrix
that cannot fit to memory. For this reason, alternative methods have been proposed.
NB_LIN, proposed by Tong et al. [2007], decomposes the adjacency matrix using low-
rank approximation in the preprocessing phase and approximates H−1 from these de-
composed matrices in the query phase using the Sherman-Morrison Lemma [Piegorsch
and Casella 1990]. Its variant, B_LIN, uses this technique only for cross-partition edges.
These methods require less space but do not guarantee accuracy. Fujiwara et al. in-
verted the results of LU decomposition [Fujiwara et al. 2012a] or QR decomposition
[Fujiwara et al. 2012b] of H after carefully reordering nodes. Their methods produce
sparser matrices that can be used in place of H−1 in the query phase but still have lim-
ited scalability. Furthermore, these preprocessing methods are improper when graphs
evolve because the methods should repeatedly perform the expensive preprocessing
phase.

In our previous work [Shin et al. 2015], we developed a preprocessing method for
static graphs. The method exactly computes RWR scores by exploiting the hub-spoke
structure of real-world graphs and block elimination. Moreover, we proposed an approx-
imate method that drops near-zero entries of the preprocessed matrices. According to
our extensive experiments, our methods outperformed other preprocessing and ap-
proximate approaches in terms of accuracy, time, and space. Even though our previous
methods have shown better scalability and fast query speed, they are inappropriate
for dynamic graphs because the time-consuming preprocessing phase should be repet-
itively executed whenever the graphs change. Contrary to the previous methods, our
proposed BEARD quickly updates the preprocessed matrices when edges are inserted
or deleted, and it immediately computes queries based on the update matrices. In ad-
dition, we showed that both BEARS and BEARD are applicable to FaBP with a wider
convergence range, as described in Section 3.4.

In addition to the approaches described earlier, distributed computing is another
promising approach. Andersen et al. [2012] proposed a distributed platform to solve
linear systems including RWR. To reduce communication cost, they partitioned a graph
into overlapping clusters and assigned each cluster to a distinct processor. Addition-
ally, computing random walk–based proximities on dynamic graphs is an interesting
problem. Bahmani et al. [2010] proposed a Monte Carlo–based method for incremental
computation of PageRank. Their method first performs random walks at each node,
stores the random walk segments, and estimates approximate PageRank scores based
on the segments. When edges are added or removed, the method updates the random
walk segments relevant to the added or removed edges.

7. CONCLUSION

In this article, we propose BEAR, a novel algorithm for fast, scalable, and accurate RWR
computation on large graphs. BEAR comprises BEARS and BEARD; BEARS is a preprocess-
ing method for static graphs, and BEARD is an incremental update method for dynamic
graphs. We discuss the two versions of BEARS: BEARS-EXACT and BEARS-APPROX. The
former guarantees accuracy, whereas the latter is faster and more space efficient with
little loss of accuracy. For dynamic graphs, BEARD analyzes the changes of the given
graph when an edge modification occurs and quickly updates the modified parts of
the preprocessed matrices. We experimentally show that the preprocessing phase of

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:35

the exact method BEARS-EXACT takes up to 12× less time and requires up to 22× less
memory space than that of other preprocessing methods guaranteeing accuracy, which
makes BEARS-EXACT enjoy the superior scalability. BEARS-EXACT also outperforms the
competitors in the query phase: it is up to 8× faster than other preprocessing meth-
ods, and in large graphs where other preprocessing methods run out of memory, it is
almost 300× faster than its only competitor—the iterative method. The approximate
method BEARS-APPROX consistently provides a better trade-off between accuracy, time,
and storage cost compared to other approximate methods. The update method BEARD is
designed for dynamic graphs that change over time: BEARD is up to 29× faster for pro-
cessing dynamic graphs than BEARS. Future research directions include extendingBEAR

to handle very large graphs on distributed systems.

A. APPENDIX

A.1. Details of SlashBurn

SlashBurn [Kang and Faloutsos 2011; Lim et al. 2014] is a node reordering method for
a graph so that the nonzeros of the resulting adjacency matrix are concentrated. For
the purpose, SlashBurn first removes k hub nodes (high-degree nodes) from the graph
so that the graph is divided into the GCC and the remaining disconnected components.
Then, SlashBurn reorders nodes such that the hub nodes get the highest node IDs,
the nodes in the disconnected components get the lowest node IDs, and the nodes
in the GCC get the IDs in the middle. The preceding procedure repeats on the GCC
until the size of the GCC becomes smaller than k. When SlashBurn finishes, the
adjacency matrix of the graph contains a large and sparse block-diagonal matrix in the
upper-left area, as shown in Figure 2(b). Figure 13 illustrates this process when k = 1.

A.2. The Proof of Lemma 3.2

PROOF. Let L′ and U′ be the block-diagonal matrices that consist of L1 through
Lb and U1 through Ub, respectively. Then, L = L′ and U = U′ because (1) L′ is a
unit lower triangular matrix; (2) U′ is an upper triangular matrix; (3) L′U′ is the
block-diagonal matrix consisting of L1U1 through LbUb that is equal to A; and (4) L′
and U′ satisfying (1) through (3) are the unique LU decomposition of A [Banerjee
and Roy 2014]. The multiplication of L and L−1 defined in Lemma 3.2 results in the
block-diagonal matrix consisting of L1L−1

1 through LbL−1
b that is an identity matrix.

Likewise, the multiplication of U and U−1 defined in Lemma 3.2 results in an identity
matrix.

A.3. The Proof of Convergence of FaBP

LEMMA 8.1 (INVERTIBLE CONDITION OF FABP). The matrix H = [I + aD − c′A] is strictly
diagonally dominant if 1

2(1−maxi Dii)
< hh < 0, or 0 < hh < 1

2(maxi Dii−1) where a = 4h2
h

1−4h2
h
,

c′ = 2hh

1−4h2
h
, − 1

2 < hh < 1
2 , and hh 	= 0.

PROOF. If H is a strictly diagonally dominant matrix, then the matrix is nonsingular
or invertible. Hence, if H is invertible, the following inequality must be satisfied for all
nodes:

|Hii| >
∑
j 	=i

|Hij | for each node i

1 + |a|Dii > |c′|Dii,

(14)

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:36 J. Jung et al.

Fig. 13. Hub selection in SlashBurn when k = 1. Hub nodes are colored red, nodes in the GCC are colored
yellow, and nodes in disconnected components are colored white.

where |Hii| = 1 + |a|Dii and
∑

j 	=i |Hij | = |c′|Dii. If − 1
2 < hh < 1

2 , then a is positive. For
a variable c′, if 0 < hh < 1

2 , then c′ is positive. Otherwise, c′ is negative if − 1
2 < hh < 0.

Case 1. − 1
2 < hh < 0. In this case, a > 0 and c′ < 0. Then, Equation (14) is written as

follows:
1 + aDii > −c′Dii

1 + 4h2
h

1 − 4h2
h

Dii + 2hh

1 − 4h2
h

Dii > 0

hh >
1

2(1 − Dii)

hh >
1

2(1 − maxi Dii)
for all nodes.

Hence, if 1
2(1−maxi Dii)

< hh < 0, then H is invertible.
Case 2. 0 < hh < 1

2 . In this case, a > 0 and c′ > 0. Then, Equation (14) is written as
follows:

1 + aDii > c′Dii

1 + 4h2
h

1 − 4h2
h

Dii − 2hh

1 − 4h2
h

Dii > 0

hh <
1

2(Dii − 1)

hh <
1

2(maxi Dii − 1)
for all nodes.

Hence, if 0 < hh < 1
2(maxi Dii−1) , then H is invertible. Finally, if 1

2(1−maxi Dii)
< hh < 0, or

0 < hh < 1
2(maxi Dii−1) , then H is invertible.

A.4. Experimental Datasets

Next, we provide a short description of the real-world datasets used in Section 5.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:37

—Routing6: The structure of the Internet at the level of autonomous systems. This
data was reconstructed from BGP tables collected by the University of Oregon Route
Views Project.7

—Co-author8: The co-authorship network of scientists who posted preprints on the
Condensed Matter E-Print Archive.9 The data include all preprints posted between
January 1, 1995 and June 30, 2003.

—Trust10: A who-trust-whom online social network taken from Epinions.com,11 a gen-
eral consumer review site. Members of the site decide whether to trust each other,
and this affects which reviews are shown to them.

—Email12: An email network taken from a large European research institution. The
data include all incoming and outgoing emails of the research institution from Octo-
ber 2003 to May 2005.

—Web-Notre13: The hyperlink network of Web pages from the University of Notre Dame
in 1999.

—Web-Stan14: The hyperlink network of Web pages from Stanford University in 2002.
—Web-BS15: The hyperlink network of Web pages from the University of California at

Berkeley and Stanford University in 2002.
—Talk16: A who-talks-to-whom network taken from Wikipedia,17 a free encyclopedia

written collaboratively by volunteers around the world. The data include all users
and discussions (talks) from the inception of Wikipedia to January 2008.

—Citation18: The citation network of utility patents granted in the United States
between 1975 and 1999.

A.5. Parameter Settings for B_LIN, NB_LIN, RPPR, BRPPR, and Push

For each dataset, we determine the number of partitions (#p) and the rank (t) of B_LIN
among {100, 200, 500, 1000, 2000} and {100, 200, 500, 1000}, respectively, so that their
pair provides the best trade-off between query time, space for preprocessed data, and
accuracy. Likewise, the rank (t) of NB_LIN is determined among {100, 200, 500, 1000},
and the convergence threshold (ε) of RPPR, BRPPR, and Push is determined among
{10−7, 10−6, 10−5, 10−4, 10−3, 10−2}. The parameter values used for each dataset are
summarized in Table VIII. B_LIN runs out of memory on the Talk dataset and the
Citation dataset regardless of parameter values used. Push only works on undirected
graphs.

B. ADDITIONAL EXPERIMENTS

B.1. Query Time in PPR

We measure the query time of exact methods when the number of seeds is greater than
one, which corresponds to PPR. We change the number of seeds (nonzero entries in q)
from 1 to 1,000. As seen in Figure 14, BEARS-EXACT is the fastest method regardless of

6http://www-personal.umich.edu/∼mejn/netdata/as-22july06.zip.
7http://www.routeviews.org/.
8http://www-personal.umich.edu/∼mejn/netdata/cond-mat-2003.zip.
9http://arxiv.org/archive/cond-mat.
10http://snap.stanford.edu/data/soc-sign-epinions.html.
11http://www.epinions.com/.
12http://snap.stanford.edu/data/email-EuAll.html.
13http://snap.stanford.edu/data/web-NotreDame.html.
14http://snap.stanford.edu/data/web-Stanford.html.
15http://snap.stanford.edu/data/web-BerkStan.html.
16http://snap.stanford.edu/data/wiki-Talk.html.
17http://www.wikipedia.org/.
18http://snap.stanford.edu/data/cit-Patents.html.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

http://www-personal.umich.edu/protect $
elax sim $mejn/netdata/as-22july06.zip.
http://www.routeviews.org/.
http://www-personal.umich.edu/protect $
elax sim $mejn/netdata/cond-mat-2003.zip.
http://snap.stanford.edu/data/soc-sign-epinions.html.
http://www.epinions.com/.
http://snap.stanford.edu/data/email-EuAll.html.
http://snap.stanford.edu/data/web-NotreDame.html.
http://snap.stanford.edu/data/web-Stanford.html.
http://snap.stanford.edu/data/web-BerkStan.html.
http://snap.stanford.edu/data/wiki-Talk.html.
http://www.wikipedia.org/.
http://snap.stanford.edu/data/cit-Patents.html.

12:38 J. Jung et al.

Table VIII. Parameter Values of B_LIN, NB_LIN, RPPR, BRPPR,
and Push Used for Each Dataset

B LIN NB LIN RPPR BRPPR Push
Dataset #p t t ε ε ε

Routing 200 200 100 10−4 10−4 10−4

Co-author 200 500 1,000 10−4 10−4 10−3

Trust 100 200 1,000 10−4 10−5 —
Email 1,000 100 200 10−3 10−5 —
Web-Stan 1,000 100 100 10−3 10−4 —
Web-Notre 500 100 200 10−4 10−5 —
Web-BS 2,000 100 100 10−3 10−5 —
Talk — — 200 10−3 10−6 —
Citation — — 100 10−4 10−5 —

Note: #p denotes the number of partitions, t denotes the rank, and ε denotes the
convergence threshold.

Fig. 14. Query time of exact methods with different numbers of seeds. If a method cannot scale to a dataset,
the corresponding bar is omitted in the graphs. BEARS-EXACT is the fastest method regardless of the number
of seeds in all datasets except the smallest Routing dataset.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:39

Fig. 15. Effect of the number of seeds on the query time of BEARS-EXACT. Query time increases as the number
of seeds increases, but the rate of increase slows down.

Fig. 16. Preprocessing time of approximate methods. The relative performance among the methods depends
on the characteristics of data.

the number of seeds in all datasets except the smallest Routing dataset. The query time
of the inverse method increases rapidly as the number of seeds increases. It increases
by 210× on the Routing dataset, whereas the query time of BEARS-EXACT increases
by 3×. Figure 15 summarizes the effect of the number of seeds on the query time of
BEARS-EXACT. In most datasets, the effect of the number of seeds diminishes as the
number of seeds increases. The query time increases by up to 16× depending on the
number of seeds.

B.2. Preprocessing Time of Approximate Methods

Figure 16 presents the preprocessing time of approximate methods. Preprocessing time
is measured in wall clock time and includes time for SlashBurn (in BEARS-APPROX) and
community detection (in B_LIN). B_LIN cannot scale to the Talk dataset and the Cita-
tion dataset because it runs out of memory while inverting the block-diagonal matrices.
The relative performance among the methods depends on the structure of graphs, as
summarized in Table VI. BEARS-APPROX tends to be faster than the competitors on
graphs with a small number of hubs (e.g., the Routing and Email datasets) and slower
on those with a large number of hubs (e.g., the Web-BS and Citation datasets).

B.3. Comparison with Approximate Methods

Figure 17 shows the result of the experiments described in Section 5.6 on other datasets.
In most of the datasets, BEARS-APPROX gives the best trade-off between accuracy and
time. It also provides the best trade-off between accuracy and storage among all pre-
processing methods.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:40 J. Jung et al.

(Continued on next page)

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

Random Walk with Restart on Large Graphs Using Block Elimination 12:41

Fig. 17. Trade-off between time, space, and accuracy provided by approximate methods. Each row of figures
shows the results on the corresponding dataset. The colors distinguish the methods, and the shapes distin-
guish the drop tolerance (for BEARS-APPROX, B_LIN, and NB_LIN) or the threshold (for RPPR, BRPPR, and
Push). RPPR, BRPPR, and Push do not appear in the figures in the second and fourth columns because they
do not require space for preprocessed data. In addition, Push only appears in figures for undirected graphs.
In the figures in the left two columns, the upper-left region indicates better performance, whereas in the
figures in the right two columns, the lower-left region indicates better performance. BEARS-APPROX is located
more closely to those regions than the competitors in most of the datasets.

REFERENCES

Lada A. Adamic and Eytan Adar. 2003. Friends and neighbors on the Web. Social Networks 25, 3, 211–230.
Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi. 2000. Error and attack tolerance of complex

networks. Nature 406, 6794, 378–382.
Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using PageRank vectors. In

Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’06). 475–486.
Reid Andersen, David F. Gleich, and Vahab Mirrokni. 2012. Overlapping clusters for distributed computation.

In Proceedings of the International Conference on Web Search and Data Mining (WSDM’12). 273–282.
Ioannis Antonellis, Hector Garcia Molina, and Chi Chao Chang. 2008. Simrank++: Query rewriting through

link analysis of the click graph. Proceedings of the VLDB Endowment 1, 1, 408–421.
Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: Predicting and recommending links

in social networks. In Proceedings of the International Conference on Web Search and Data Mining
(WSDM’11). 635–644.

Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast incremental and personalized PageRank.
Proceedings of the VLDB Endowment 4, 3, 173–184.

Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. 2004. ObjectRank: Authority-based key-
word search in databases. In Proceedings of the International Conference on Very Large Data Bases
(VLDB’04). 564–575.

Sudipto Banerjee and Anindya Roy. 2014. Linear Algebra and Matrix Analysis for Statistics. CRC Press,
Boca Raton, FL.

Petko Bogdanov and Ambuj Singh. 2013. Accurate and scalable nearest neighbors in large networks based
on effective importance. In Proceedings of the International Conference on Information and Knowledge
Management (CIKM’13). 1009–1018.

Stephen Boyd and Lieven Vandenberghe. 2009. Convex Optimization. Cambridge University Press.
Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra S. Modha, and Christos Faloutsos. 2004a. Fully

automatic cross-associations. In Proceedings of the International Conference on Knowledge Discovery
and Data Mining (KDD’04). 79–88.

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004b. R-MAT: A recursive model for graph
mining. In Proceedings of the SIAM International Conference on Data Mining (SDM’04). Vol. 4. 442–446.

Soumen Chakrabarti, Amit Pathak, and Manish Gupta. 2011. Index design and query processing for graph
conductance search. Proceedings of the VLDB Endowment 20, 3, 445–470.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

12:42 J. Jung et al.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and Prab-
hakar Raghavan. 2009. On compressing social networks. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining (KDD’09). 219–228.

Peter G. Doyle and J. Laurie Snell. 1984. Random Walks and Electric Networks. Mathematical Association
of America.

Yasuhiro Fujiwara, Makoto Nakatsuji, Makoto Onizuka, and Masaru Kitsuregawa. 2012a. Fast and exact
top-k search for random walk with restart. Proceedings of the VLDB Endowment 5, 5, 442–453.

Yasuhiro Fujiwara, Makoto Nakatsuji, Takeshi Yamamuro, Hiroaki Shiokawa, and Makoto Onizuka. 2012b.
Efficient personalized PageRank with accuracy assurance. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining (KDD’12). 15–23.

David Gleich and Marzia Polito. 2006. Approximating personalized PageRank with minimal use of Web
graph data. Internet Mathematics 3, 3, 257–294.

David F. Gleich and C. Seshadhri. 2012. Vertex neighborhoods, low conductance cuts, and good seeds for
local community methods. In Proceedings of the International Conference on Knowledge Discovery and
Data Mining (KDD’12). 597–605.

Manish Gupta, Amit Pathak, and Soumen Chakrabarti. 2008. Fast algorithms for topk personalized
PageRank queries. In Proceedings of the International Conference on World Wide Web (WWW’08). 1225–
1226.

F. Harary and G. Gupta. 1997. Dynamic graph models. Mathematical and Computer Modelling 25, 7, 79–87.
Jingrui He, Mingjing Li, Hong-Jiang Zhang, Hanghang Tong, and Changshui Zhang. 2004. Manifold-ranking

based image retrieval. In Proceedings of the Annual ACM International Conference on Multimedia
(MULTIMEDIA’04). 9–16.

Glen Jeh and Jennifer Widom. 2002. SimRank: A measure of structural-context similarity. In Proceedings of
the International Conference on Knowledge Discovery and Data Mining (KDD’02). 538–543.

U. Kang and Christos Faloutsos. 2011. Beyond ‘caveman communities’: Hubs and spokes for graph compres-
sion and mining. In Proceedings of the International Conference on Data Mining (ICDM’11). 300–309.

U. Kang, H. Tong, and J. Sun. 2012. Fast random walk graph kernel. In Proceedings of the SIAM International
Conference on Data Mining (SDM’12). 828–838.

Gjergji Kasneci, Shady Elbassuoni, and Gerhard Weikum. 2009. Ming: Mining informative entity relation-
ship subgraphs. In Proceedings of the InternationalConference on Information and Knowledge Manage-
ment (CIKM’09). 1653–1656.

Danai Koutra, Tai-You Ke, U. Kang, Duen Horng Chau, Hsing-Kuo Kenneth Pao, and Christos Faloutsos.
2011. Unifying guilt-by-association approaches: Theorems and fast algorithms. In Proceedings of the
European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD’11).
245–260.

Danai Koutra, Joshua T. Vogelstein, and Christos Faloutsos. 2013. DELTACON: A principled massive-graph
similarity function. In Proceedings of the 13th SIAM International Conference on Data Mining (SDM’13).
162–170.

Amy N. Langville and Carl D. Meyer. 2011. Google’s PageRank and Beyond: The Science of Search Engine
Rankings. Princeton University Press, Princeton, NJ.

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2009. Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics
6, 1, 29–123.

David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for social networks. Journal of
the Association for Information Science and Technology 58, 7, 1019–1031.

Y. Lim, U. Kang, and C. Faloutsos. 2014. SlashBurn: Graph compression and mining beyond caveman commu-
nities. IEEE Transactions on Knowledge and Data Engineering 26, 12, 3077–3089. DOI:http://dx.doi.org/
10.1109/TKDE.2014.2320716

Zhenjiang Lin, Michael R. Lyu, and Irwin King. 2009. MatchSim: A novel neighbor-based similarity measure
with maximum neighborhood matching. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM’09). 1613–1616.

P. A. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri. 2014. FAST-PPR: Scaling personalized PageRank
estimation for large graphs. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, New York, NY, 1436–1445.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2002. On spectral clustering: Analysis and an algorithm.
Advances in Neural Information Processing Systems 14, 2, 849–856.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report. Stanford University, Stanford, CA.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

http://dx.doi.org/ ignorespaces 10.1109/TKDE.2014.2320716
http://dx.doi.org/ ignorespaces 10.1109/TKDE.2014.2320716

Random Walk with Restart on Large Graphs Using Block Elimination 12:43

Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu. 2004. Automatic multimedia cross-
modal correlation discovery. In Proceedings of the International Conference on Knowledge Discovery and
Data Mining (KDD’04). 653–658.

Walter W. Piegorsch and George Casella. 1990. Inverting a sum of matrices. SIAM Review 32, 3, 470–470.
William H. Press. 2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge Univer-

sity Press.
Purnamrita Sarkar and Andrew W. Moore. 2007. A tractable approach to finding closest truncated-commute-

time neighbors in large graphs. In Proceedings of the Conference on Uncertainty in Artificial Intelligence
(UAI’07). 335–343.

Purnamrita Sarkar and Andrew W. Moore. 2010. Fast nearest-neighbor search in disk-resident graphs.
In Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD’10).
513–522.

K. Shin, J. Jung, L. Sael, and U. Kang. 2015. BEAR: Block elimination approach for random walk with restart
on large graphs. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’15).

Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos Faloutsos. 2005. Neighborhood formation
and anomaly detection in bipartite graphs. In Proceedings of the IEEE International Conference on Data
Mining (ICDM’05). 418–425.

Hanghang Tong and Christos Faloutsos. 2006. Center-piece subgraphs: Problem definition and fast solutions.
In Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD’06). 404–
413.

Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-Rad. 2007. Fast best-effort pattern
matching in large attributed graphs. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD’07). 737–746.

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2008. Random walk with restart: Fast solutions and
applications. Knowledge and Information Systems 14, 3, 327–346.

Joyce Jiyoung Whang, David F. Gleich, and Inderjit S. Dhillon. 2013. Overlapping community detection
using seed set expansion. In Proceedings of the International Conference on Information and Knowledge
Management (CIKM’13). 2099–2108.

Yubao Wu, Ruoming Jin, and Xiang Zhang. 2014. Fast and unified local search for random walk based k-
nearest-neighbor query in large graphs. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’14). 1139–1150.

Chao Zhang, Lidan Shou, Ke Chen, Gang Chen, and Yijun Bei. 2012. Evaluating geo-social influence in
location-based social networks. In Proceedings of the International Conference on Information and
Knowledge Management (CIKM’12). 1442–1451.

Zeyuan A. Zhu, Silvio Lattanzi, and Vahab Mirrokni. 2013. A local algorithm for finding well-connected
clusters. In Proceedings of the International Conference on Machine Learning (ICML’13). 396–404.

Received May 2015; revised December 2015; accepted January 2016

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 12, Publication date: May 2016.

