

Introduction to Data Mining

Advertising

U Kang Seoul National University

In This Lecture

- Learn the online bipartite matching problem, the greedy algorithm of it, and the notion of competitive ratio
- Learn the problem of web advertising, the adwords problem, and the algorithms for them

Online Algorithms

Classic model of algorithms

- You get to see the *entire* input, then compute some function of it
- In this context, "offline algorithm"

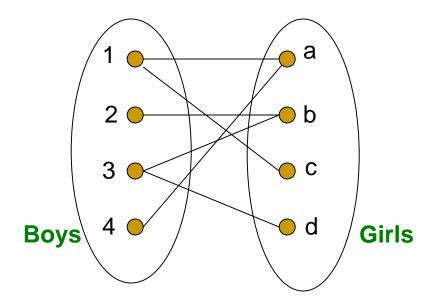
Online Algorithms

- You get to see the input one piece at a time, and need to make irrevocable decisions along the way
- Similar to the data stream model
- Why do we care?

Outline

- → □ Online Bipartite Matching
 - ☐ Web Advertising

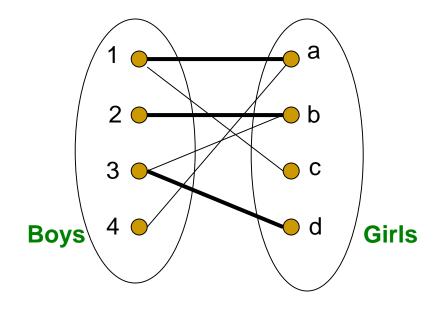
Example: Bipartite Matching



Nodes: Boys and Girls; Edges: Preferences

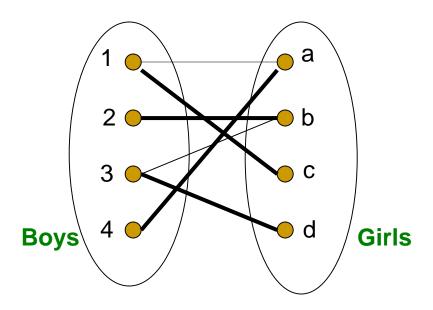
Goal: Match boys to girls so that maximum number of preferences is satisfied (but, no person can be matched with >= 2 persons)

Example: Bipartite Matching



M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Example: Bipartite Matching



M = {(1,c),(2,b),(3,d),(4,a)} is a perfect matching

Perfect matching ... all vertices of the graph are matched **Maximal matching** ... a matching that contains the largest possible number of matches

UKang

Matching Algorithm

- Problem: Find a maximal matching for a given bipartite graph
 - A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)
- But what if we do not know the entire graph upfront?

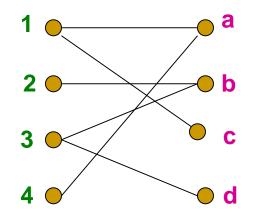
Online Graph Matching Problem

- Initially, we are given the set boys
- In each round, one girl's choices are revealed
 - That is, girl's edges are revealed
- At that time, we have to decide to either:
 - Pair the girl with a boy
 - Do not pair the girl with any boy

Example of application:

Assigning tasks to servers (given a task, and list of servers that can process the task, determine which server to process the task)

Online Graph Matching: Example



- (1,a)
- (2,b)
- (3,d)

Greedy Algorithm

Greedy algorithm

 An algorithm that follows a heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum

Greedy algorithm for the online graph matching problem:

- Pair the new girl with any eligible boy
 - If there is none, do not pair girl

How good is the algorithm?

Competitive Ratio

For input I, suppose greedy produces matching M_{greedy} while an optimal matching is M_{opt}

Competitive ratio =

min_{all possible inputs I} (|M_{greedy}|/|M_{opt}|)

(what is greedy's worst performance over all possible inputs /)

I.e., if competitive ratio is 0.4, we are assured that the greedy algorithm gives an answer which is \geq 40% good compared to optimal alg, for *ANY* input.

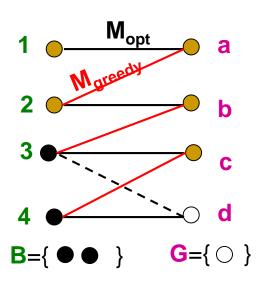
Analyzing the Greedy Algorithm

 Claim: the greedy algorithm for the bipartite matching problem has the competitive ratio 0.5

Proof: (next 2 slides)

Analyzing the Greedy Algorithm

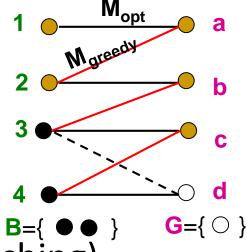
- Consider a case: M_{greedy} ≠ M_{opt}
- Consider the set G of girls
 matched in M_{opt} but not in M_{greedy}
- Then every boy B adjacent to girls in G is already matched in M_{qreedy} :
 - If there would exist such non-matched (by M_{greedy}) boy adjacent to a non-matched girl then greedy would have matched them
- Since boys B are already matched in M_{greedy} then (1) $|M_{greedy}| \ge |B|$



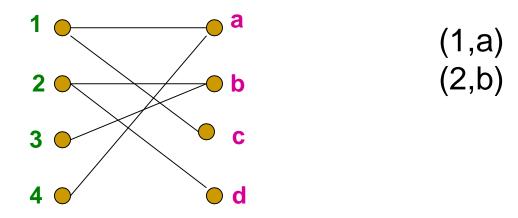
Analyzing the Greedy Algorithm

Summary so far:

- \Box Girls G matched in M_{opt} but not in M_{greedy}
- \square (1) $|M_{greedy}| \ge |B|$
- (2) $|G| \le |B|$, since G has at least $B = \{ \bullet \bullet \}$ |G| neighbors (at the optimal matching)
 - \square So: $|G| \leq |B| \leq |M_{greedy}|$
- (3) By definition of G also: $|M_{opt}| \le |M_{greedy}| + |G|$
 - □ Worst case is when $|G| = |B| = |M_{qreedy}|$
- $|M_{opt}| \le 2|M_{greedy}|$ then $|M_{greedy}|/|M_{opt}| \ge 1/2$



Worst-case Scenario



Outline

- Online Bipartite Matching
- → □ Web Advertising

History of Web Advertising

- Banner ads (1995-2001)
 - Initial form of web advertising
 - Popular websites charged
 X\$ for every 1,000
 "impressions" of the ad
 - Called "CPM" rate (Cost per thousand impressions)
 - Modeled similar to TV, magazine ads

- **CPM**...cost per *mille Mille*...thousand in Latin
- From untargeted to demographically targeted
- Low click-through rates
 - Low ROI for advertisers

Performance-based Advertising

- Introduced by Overture around 2000
 - Advertisers bid on search keywords
 - When someone searches for that keyword, the highest bidder's ad is shown
 - Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002
 - Called Adwords

Ads vs. Search Results

Web

Results 1 - 10 of about 2,230,000 for geico. (0.04 seco

GEICO Car Insurance. Get an auto insurance quote and save today ...

GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company.

www.geico.com/ - 21k - Sep 22, 2005 - Cached - Similar pages

Auto Insurance - Buy Auto Insurance

Contact Us - Make a Payment

More results from www.geico.com »

Geico, Google Settle Trademark Dispute

The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords.

www.clickz.com/news/article.php/3547356 - 44k - Cached - Similar pages

Google and GEICO settle AdWords dispute | The Register

Google and car insurance firm GEICO have settled a trade mark dispute over ... Car insurance firm GEICO sued both Google and Yahoo! subsidiary Overture in ...

www.theregister.co.uk/2005/09/09/google_geico_settlement/ - 21k - Cached - Similar pages

GEICO v. Google

... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ... www.consumeraffairs.com/news04/geico_google.html - 19k - Cached - Similar pages

Sponsored Links

Great Car Insurance Rates

Simplify Buying Insurance at Safeco See Your Rate with an Instant Quote www.Safeco.com

Free Insurance Quotes

Fill out one simple form to get multiple quotes from local agents. www.HometownQuotes.com

5 Free Quotes, 1 Form.

Get 5 Free Quotes In Minutes! You Have Nothing To Lose. It's Free sayyessoftware.com/Insurance Missouri

Web 2.0

- Performance-based advertising works!
 - Multi-billion-dollar industry
- Interesting problem:
 - What ads to show for a given query?
 - (Today's lecture)
- If I am an advertiser, which search terms should I bid on and how much should I bid?
 - (Not focus of today's lecture)

Adwords Problem

Given:

- 1. A set of bids by advertisers for search queries
- 2. A click-through rate for each advertiser-query pair
- □ 3. A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
 - 1. The size of the set is no larger than the limit on the number of ads per query
 - 2. Each advertiser has bid on the search query
 - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon

Adwords Problem

- A stream of queries arrives at the search engine: $q_1, q_2, ...$
- Several advertisers bid on each query
- When query q_i arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: maximize search engine's revenues
 - Simple solution: Instead of raw bids, use the "expected revenue per showing" (i.e., Bid*CTR)
- Clearly we need an online algorithm!

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
A	\$1.00	1%	1 cent
В	\$0.75	2%	1.5 cents
C	\$0.50	2.5%	1.25 cents

Click through

rate

Expected

revenue

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.25 cents
Α	\$1.00	1%	1 cent

Complications: Budget

- Two complications:
 - Budget
 - CTR of an ad is unknown

- Each advertiser has a limited budget
 - Search engine guarantees that the advertiser
 will not be charged more than their daily budget

Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
 - Advertiser 1 bids \$2, click probability = 0.1
 - Advertiser 2 bids \$1, click probability = 0.5
 - Clickthrough rate (CTR) is measured historically
 - Very hard problem: Exploration vs. exploitation
 Exploit: Should we keep showing an ad for which we have good estimates of click-through rate
 or

Explore: Shall we show a brand new ad to get a better sense of its click-through rate

Greedy Algorithm

Our setting: Simplified environment

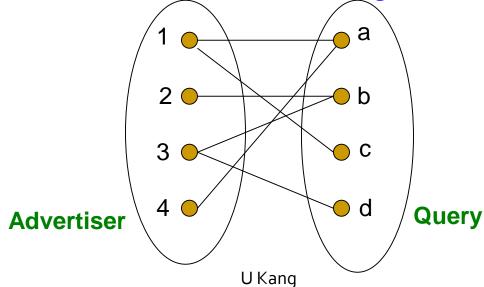
- For each query, show only 1 ad
- All advertisers have the same budget B
- All ads are equally likely to be clicked
- Value of each ad is the same (=1)
 - Revenue increases by 1 whenever an ad is clicked

Simplest algorithm is greedy:

- For a query pick any advertiser who has bid 1 for that query
- Competitive ratio of greedy is ½
 - Why?

Greedy Algorithm

- Simplest algorithm is greedy:
 - For a query pick any advertiser who has bid 1 for that query
 - Competitive ratio of greedy is ½
 - Why? Exactly the same problem as 'bipartite matching'
 - The revenue is the size of the matching



Bad Scenario for Greedy

- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
 - Worst case greedy choice: B B B B _ _ _ _
 - Optimal: AAAABBBBB
 - □ Competitive ratio = ½
- This is the worst case!
 - Note: Greedy algorithm is deterministic it always resolves draws in the same way

BALANCE Algorithm [MSVV]

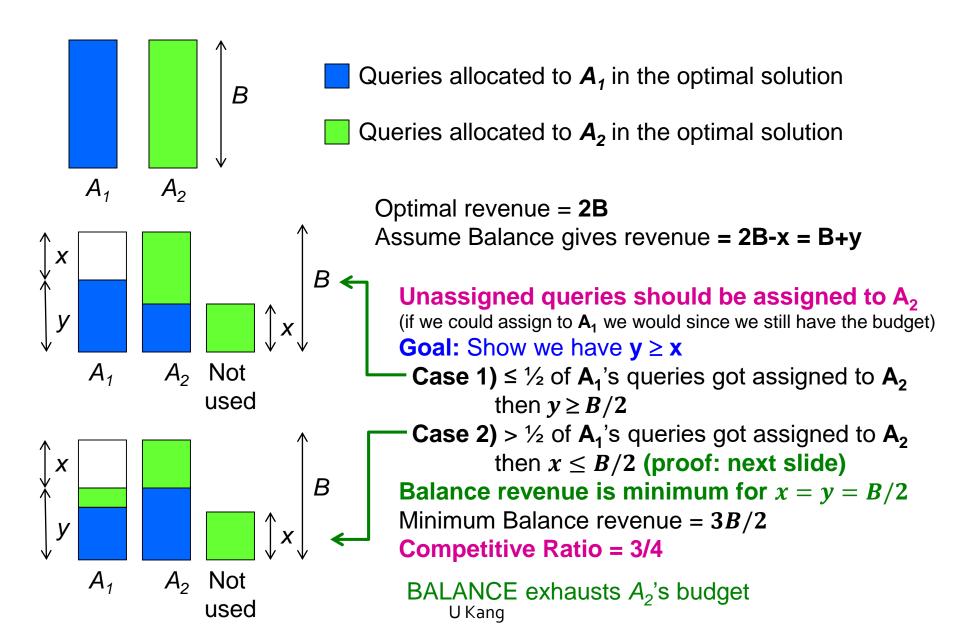
- BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
 - For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (but in a deterministic way)

Example: BALANCE

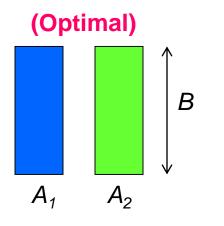
- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
- BALANCE choice: A B A B B B _ _
 - Optimal: A A A A B B B B

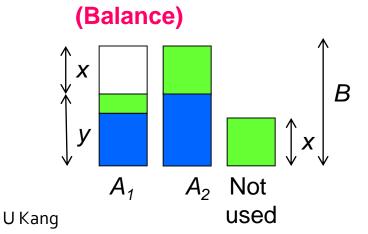
- Claim: For BALANCE on 2 advertisers
 Competitive ratio = ¾
- Proof: (next 3 slides)

- Consider simple case (w.l.o.g.):
 - **2** advertisers, A_1 and A_2 , each with budget B (≥ 1)
 - # of queries: 2B
 - (*) Optimal solution exhausts both advertisers' budgets:
 i.e., a query is assigned to at least an advertiser
- BALANCE must exhaust at least one advertiser's budget:
 - If not, there would be some query assigned to neither advertiser, even though the advertisers have some remaining budgets => contradicts (*)
 - Assume BALANCE exhausts A₂'s budget,
 but allocates x queries fewer than the optimal
 - \square Revenue: BAL = 2B x



- Claim: in (Case 2), when > $\frac{1}{2}$ of \mathbf{A}_1 's queries got assigned to \mathbf{A}_2 , $\mathbf{x} \leq \mathbf{B}/2$.
 - (Proof)
 - Consider the last query of A₁ that is assigned to A₂
 - At that time (right before assigned to A_2), Budget of $A_2 \ge$ Budget of A_1
 - Also, at that time, Budget of $A_2 \le \frac{1}{2}$ B
 - Thus, Budget of $A_1 \le \frac{1}{2}$ B
 - Since the budget only decreases, $x \le \frac{1}{2}$ B





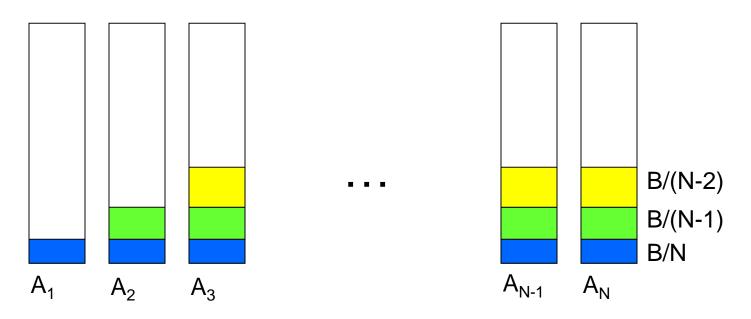
BALANCE: General Result

- In the general case (many bidders, arbitrary bid, and arbitrary budget), worst competitive ratio of BALANCE is 1–1/e = approx. 0.63
- Let's see the worst case example that gives this ratio

Worst case for BALANCE

- N advertisers: A_1 , A_2 , ... A_N
 - □ Each with budget B > N
- Queries:
 - □ *N·B* queries appear in *N* rounds of *B* queries each
- Bidding:
 - \square Round **1** queries: bidders A_1 , A_2 , ..., A_N
 - □ Round 2 queries: bidders $A_2, A_3, ..., A_N$
 - \square Round *i* queries: bidders A_i , ..., A_N
- Optimum allocation:
 - Allocate round i queries to A_i
 - □ Optimum revenue *N·B*

BALANCE Allocation



BALANCE assigns each of the queries in round 1 to $\bf N$ advertisers. After $\bf k$ rounds, sum of allocations to each of advertisers $\bf A_k,...,\bf A_N$ is

$$S_k = S_{k+1} = \dots = S_N = \sum_{i=1}^k \frac{B}{N - (i-1)}$$

If we find the smallest k such that $S_k \ge B$, then after k rounds we cannot allocate any queries to any advertiser

BALANCE: Analysis

B/1 B/2 B/3 ... B/(N-(k-1)) ... B/(N-1) B/N

$$S_1$$
 S_2
 $S_k = B$

1/1 1/2 1/3 ... 1/(N-(k-1)) ... 1/(N-1) 1/N

 S_1
 S_2
 $S_k = 1$

BALANCE: Analysis

- Fact: $H_n = \sum_{i=1}^n 1/i \approx \ln(n)$ for large n
 - \Box H_n is called 'harmonic number'

1/1 1/2 1/3 ... 1/(N-(k-1)) ... 1/(N-1) 1/N

$$ln(N)$$
 $S_k = 1$

- We also know: $H_{N-k} = ln(N-k)$
- $So: N k = \frac{N}{e}$
- Then: $k = N(1 \frac{1}{e})$

N terms sum to ln(N). Last k terms sum to 1. First N-k terms sum to ln(N-k) but also to ln(N)-1

U Kang

BALANCE: Analysis

- So after the first k=N(1-1/e) rounds, we cannot allocate a query to any advertiser
- Revenue = B·N (1-1/e)
- Competitive ratio = 1-1/e

General Version of the Problem

- Arbitrary bids and arbitrary budgets!
- Consider we have 1 query q, advertisers i
 - \Box Bid = x_i
 - \Box Budget = b_i
- In a general setting BALANCE can be terrible
 - \Box Consider two advertisers A_1 and A_2
 - $A_1: X_1 = 1, b_1 = 110$
 - $\Box A_2: x_2 = 10, b_2 = 100$
 - Consider we see 10 instances of q
 - BALANCE always selects A₁ and earns 10
 - Optimal earns 100

Generalized BALANCE

- Arbitrary bids: consider query q, bidder i
 - \Box Bid = x_i
 - \Box Budget = b_i
 - \square Amount spent so far = m_i
 - □ Fraction of budget left over $f_i = 1 m_i/b_i$
 - □ Define $\psi_i(q) = x_i(1-e^{-f_i})$
- Allocate query \mathbf{q} to bidder \mathbf{i} with largest value of $\psi_i(\mathbf{q})$
 - \square Idea: $\psi_i(q)$ is large if x_i is large and f_i is large
- Same competitive ratio (1-1/e)

What You Need to Know

- Motivation of online algorithms
- Online bipartite matching
 - Greedy algorithm
 - Competitive ratio
- Adwords problem
 - BALANCE algorithm

Questions?