
U Kang

Introduction to Data Mining

Advertising

U Kang
Seoul National University



U Kang

In This Lecture

 Learn the online bipartite matching problem, the 
greedy algorithm of it, and the notion of 
competitive ratio

 Learn the problem of web advertising, the adwords
problem, and the algorithms for them



U Kang

Online Algorithms

 Classic model of algorithms
 You get to see the entire input, then compute some 

function of it

 In this context, “offline algorithm”

 Online Algorithms
 You get to see the input one piece at a time, and need 

to make irrevocable decisions along the way

 Similar to the data stream model

 Why do we care? 



U Kang

Outline

Online Bipartite Matching

Web Advertising



U Kang

Example: Bipartite Matching

1

2

3

4

a

b

c

dBoys Girls

Nodes: Boys and Girls; Edges: Preferences
Goal: Match boys to girls so that maximum 

number of preferences is satisfied
(but, no person can be matched with >= 2 persons)



U Kang

Example: Bipartite Matching

M = {(1,a),(2,b),(3,d)} is a matching
Cardinality of matching = |M| = 3

1

2

3

4

a

b

c

dBoys Girls



U Kang

Example: Bipartite Matching

1

2

3

4

a

b

c

dBoys Girls

M = {(1,c),(2,b),(3,d),(4,a)} is a 
perfect matching

Perfect matching … all vertices of the graph are matched

Maximal matching …  a matching that contains the largest possible number of matches



U Kang

Matching Algorithm

 Problem: Find a maximal matching for a given 
bipartite graph

 A perfect one if it exists

 There is a polynomial-time offline algorithm 
based on augmenting paths (Hopcroft & Karp 1973,

see http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm)

 But what if we do not know the entire 
graph upfront?

http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm


U Kang

Online Graph Matching Problem

 Initially, we are given the set boys

 In each round, one girl’s choices are revealed
 That is, girl’s edges are revealed

 At that time, we have to decide to either:
 Pair the girl with a boy

 Do not pair the girl with any boy

 Example of application: 
Assigning tasks to servers (given a task, and list of 
servers that can process the task, determine which 
server to process the task)



U Kang

Online Graph Matching: Example

1

2

3

4

a

b

c

d

(1,a)

(2,b)

(3,d)



U Kang

Greedy Algorithm

 Greedy algorithm

 An algorithm that follows a heuristic of making the 
locally optimal choice at each stage with the hope of 
finding a global optimum

 Greedy algorithm for the online graph 
matching problem:

 Pair the new girl with any eligible boy

 If there is none, do not pair girl

 How good is the algorithm?



U Kang

Competitive Ratio

 For input I, suppose greedy produces matching 
Mgreedy while an optimal matching is Mopt

Competitive ratio = 

minall possible inputs I (|Mgreedy|/|Mopt|)

(what is greedy’s worst performance over all possible inputs I)

I.e., if competitive ratio is 0.4, we are assured that the greedy 
algorithm gives an answer which is ≥ 40% good compared to 
optimal alg, for ANY input.



U Kang

Analyzing the Greedy Algorithm

 Claim: the greedy algorithm for the bipartite 
matching problem has the competitive ratio 0.5

 Proof: (next 2 slides)



U Kang

Analyzing the Greedy Algorithm

 Consider a case: Mgreedy≠ Mopt

 Consider the set G of girls 
matched in Mopt but not in Mgreedy

 Then every boy B adjacent to girls 
in G is already matched in Mgreedy:

 If there would exist such non-matched 
(by Mgreedy) boy adjacent to a non-matched 
girl then greedy would have matched them

 Since boys B are already matched in Mgreedy then 
(1) |Mgreedy|≥ |B|

a

b

c

d

G={     }B={          }

Mopt1

2

3

4



U Kang

Analyzing the Greedy Algorithm

 Summary so far:

 Girls G matched in Mopt but not in Mgreedy

 (1) |Mgreedy|≥ |B|

 (2) |G|  |B|, since G has at least 

|G| neighbors (at the optimal matching)

 So: |G|  |B|  |Mgreedy|

 (3) By definition of G also: |Mopt|  |Mgreedy| + |G|

 Worst case is when |G| = |B| = |Mgreedy|

 |Mopt|  2|Mgreedy| then |Mgreedy|/|Mopt|  1/2

a

b

c

d

G={     }B={          }

Mopt1

2

3

4



U Kang

Worst-case Scenario

1

2

3

4

a

b

c

(1,a)

(2,b)

d



U Kang

Outline

Online Bipartite Matching

Web Advertising



U Kang

History of Web Advertising

 Banner ads (1995-2001)

 Initial form of web advertising

 Popular websites charged 
X$ for every 1,000 
“impressions” of the ad

 Called “CPM” rate 
(Cost per thousand impressions)

 Modeled similar to TV, magazine ads

 From untargeted to demographically targeted

 Low click-through rates

 Low ROI for advertisers

CPM…cost per mille

Mille…thousand in Latin



U Kang

Performance-based Advertising

 Introduced by Overture around 2000

 Advertisers bid on search keywords

 When someone searches for that keyword, the 
highest bidder’s ad is shown

 Advertiser is charged only if the ad is clicked on

 Similar model adopted by Google with some 
changes around 2002

 Called Adwords



U Kang

Ads vs. Search Results



U Kang

Web 2.0

 Performance-based advertising works!

 Multi-billion-dollar industry

 Interesting problem:
What ads to show for a given query? 

 (Today’s lecture)

 If I am an advertiser, which search terms should 
I bid on and how much should I bid? 

 (Not focus of today’s lecture)



U Kang

Adwords Problem

 Given:
 1. A set of bids by advertisers for search queries

 2. A click-through rate for each advertiser-query pair

 3. A budget for each advertiser (say for 1 month)

 4. A limit on the number of ads to be displayed with each 
search query

 Respond to each search query with a set of 
advertisers such that:
 1. The size of the set is no larger than the limit on the 

number of ads per query

 2. Each advertiser has bid on the search query

 3. Each advertiser has enough budget left to pay for the ad 
if it is clicked upon



U Kang

Adwords Problem

 A stream of queries arrives at the search engine: 
q1, q2, …

 Several advertisers bid on each query

 When query qi arrives, search engine must pick a 
subset of advertisers whose ads are shown

 Goal: maximize search engine’s revenues

 Simple solution: Instead of raw bids, use the 
“expected revenue per showing” (i.e., Bid*CTR)

 Clearly we need an online algorithm!



U Kang

The Adwords Innovation

Advertiser Bid CTR Bid * CTR

A

B

C

$1.00

$0.75

$0.50

1%

2%

2.5%

1 cent

1.5 cents

1.25 cents

Click through

rate

Expected

revenue



U Kang

The Adwords Innovation

Advertiser Bid CTR Bid * CTR

A

B

C

$1.00

$0.75

$0.50

1%

2%

2.5%

1 cent

1.5 cents

1.25 cents



U Kang

Complications: Budget

 Two complications:

 Budget

 CTR of an ad is unknown

 Each advertiser has a limited budget

 Search engine guarantees that the advertiser 
will not be charged more than their daily budget



U Kang

Complications: CTR

 CTR: Each ad has a different likelihood of being 
clicked

 Advertiser 1 bids $2, click probability = 0.1

 Advertiser 2 bids $1, click probability = 0.5

 Clickthrough rate (CTR) is measured historically

 Very hard problem: Exploration vs. exploitation
Exploit: Should we keep showing an ad for which we have 
good estimates of click-through rate 
or
Explore:  Shall we show a brand new ad to get a better sense 
of its click-through rate



U Kang

Greedy Algorithm

 Our setting: Simplified environment
 For each query, show only 1 ad

 All advertisers have the same budget B

 All ads are equally likely to be clicked

 Value of each ad is the same (=1)
 Revenue increases by 1 whenever an ad is clicked

 Simplest algorithm is greedy:
 For a query pick any advertiser who has 

bid 1 for that query

 Competitive ratio of greedy is ½
 Why?



U Kang

Greedy Algorithm

 Simplest algorithm is greedy:

 For a query pick any advertiser who has 
bid 1 for that query

 Competitive ratio of greedy is ½
 Why? Exactly the same problem as ‘bipartite matching’

 The revenue is the size of the matching

1

2

3

4

a

b

c

d
Advertiser Query



U Kang

Bad Scenario for Greedy

 Two advertisers A and B
 A bids on query x, B bids on x and y

 Both have budgets of $4

 Query stream: x x x x y y y y
 Worst case greedy choice: B B B B _ _ _ _ 

 Optimal: A A A A B B B B

 Competitive ratio = ½

 This is the worst case!
 Note: Greedy algorithm is deterministic – it always 

resolves draws in the same way



U Kang

BALANCE Algorithm [MSVV]

 BALANCE Algorithm by Mehta, Saberi, Vazirani, 
and Vazirani

 For each query, pick the advertiser with the 
largest unspent budget

 Break ties arbitrarily (but in a deterministic way)



U Kang

Example: BALANCE

 Two advertisers A and B

 A bids on query x, B bids on x and y

 Both have budgets of $4

 Query stream: x x x x y y y y

 BALANCE choice: A B A B B B _ _

 Optimal: A A A A B B B B



U Kang

BALANCE on 2 Advertisers

 Claim: For BALANCE on 2 advertisers
Competitive ratio = ¾

 Proof: (next 3 slides)



U Kang

BALANCE on 2 Advertisers

 Consider simple case (w.l.o.g.): 
 2 advertisers, A1 and A2, each with budget B (1)
 # of queries: 2B
 (*) Optimal solution exhausts both advertisers’ budgets: 

i.e., a query is assigned to at least an advertiser

 BALANCE must exhaust at least one 
advertiser’s budget:
 If not, there would be some query assigned to neither 

advertiser, even though the advertisers have some 
remaining budgets => contradicts (*)

 Assume BALANCE exhausts A2’s budget, 
but allocates x queries fewer than the optimal

 Revenue: BAL = 2B - x



U Kang

BALANCE on 2 Advertisers

A1 A2

B

xy

B

A1 A2

x

Optimal revenue = 2B

Assume Balance gives revenue = 2B-x = B+y

Unassigned queries should be assigned to A2
(if we could assign to A1 we would since we still have the budget)

Goal: Show we have y  x

Case 1) ≤ ½ of A1’s queries got assigned to A2

then 𝒚  𝑩/𝟐
Case 2) > ½  of A1’s queries got assigned to A2

then 𝒙 ≤ 𝑩/𝟐 (proof: next slide)

Balance revenue is minimum for 𝒙 = 𝒚 = 𝑩/𝟐
Minimum Balance revenue = 𝟑𝑩/𝟐
Competitive Ratio = 3/4

Queries allocated to A1 in the optimal solution

Queries allocated to A2 in the optimal solution

Not 

used

BALANCE exhausts A2’s budget

xy

B

A1 A2

x

Not 

used



U Kang

BALANCE on 2 Advertisers

 Claim: in (Case 2), when > ½  of A1’s queries got 

assigned to A2 , x ≤ B/2. 

 (Proof)
 Consider the last query of A1 that is assigned to A2

 At that time (right before assigned to A2), Budget of A2 ≥ Budget of A1

 Also, at that time, Budget of A2 ≤ ½  B

 Thus, Budget of A1 ≤ ½  B

 Since the budget only decreases, x ≤ ½  B

xy

B

A1 A2

x

Not 

used
A1 A2

B

(Optimal) (Balance)



U Kang

BALANCE: General Result

 In the general case (many bidders, arbitrary bid, 
and arbitrary budget), worst competitive ratio 
of BALANCE is 1–1/e = approx. 0.63

 Let’s see the worst case example that gives this 
ratio



U Kang

Worst case for BALANCE

 N advertisers: A1, A2, … AN

 Each with budget B > N

 Queries:
 N∙B queries appear in N rounds of B queries each

 Bidding:
 Round 1 queries: bidders A1, A2,       …, AN

 Round 2 queries: bidders       A2, A3, …, AN

 Round i queries:  bidders             Ai, …,  AN

 Optimum allocation: 
Allocate round i queries to Ai

 Optimum revenue N∙B



U Kang

BALANCE Allocation

…

A1 A2 A3
AN-1 AN

B/N

B/(N-1)

B/(N-2)

BALANCE assigns each of the queries in round 1 to N advertisers. 
After k rounds, sum of allocations to each of advertisers Ak,…,AN is 

𝑺𝒌 = 𝑺𝒌+𝟏 = ⋯ = 𝑺𝑵 = σ𝒊=𝟏
𝒌 𝑩

𝑵−(𝒊−𝟏)

If we find the smallest k such that Sk  B, then after k rounds
we cannot allocate any queries to any advertiser



U Kang

BALANCE: Analysis

B/1   B/2   B/3  …  B/(N-(k-1)) … B/(N-1)   B/N

S1

S2

Sk = B

1/1   1/2   1/3  …  1/(N-(k-1)) … 1/(N-1)   1/N

S1

S2

Sk = 1



U Kang

BALANCE: Analysis

 Fact: 𝑯𝒏 = σ𝒊=𝟏
𝒏 𝟏/𝒊 ≈ 𝐥𝐧 𝒏 for large n

 𝑯𝒏 is called ‘harmonic number’

 𝑺𝒌 = 𝟏 implies: 𝑯𝑵−𝒌 = 𝒍𝒏(𝑵) − 𝟏 = 𝒍𝒏(
𝑵

𝒆
)

 We also know: 𝑯𝑵−𝒌 = 𝒍𝒏(𝑵 − 𝒌)

 So: 𝑵− 𝒌 =
𝑵

𝒆

 Then: 𝒌 = 𝑵(𝟏 −
𝟏

𝒆
)

1/1   1/2   1/3  …  1/(N-(k-1)) … 1/(N-1)   1/N

Sk = 1

ln(N)

ln(N)-1

N terms sum to ln(N).

Last k terms sum to 1.

First N-k terms sum

to ln(N-k) but also to ln(N)-1



U Kang

BALANCE: Analysis

 So after the first k=N(1-1/e) rounds, we 
cannot allocate a query to any advertiser

 Revenue = B∙N (1-1/e)

 Competitive ratio = 1-1/e



U Kang

General Version of the Problem

 Arbitrary bids and arbitrary budgets!

 Consider we have 1 query q, advertisers i
 Bid = xi

 Budget = bi

 In a general setting BALANCE can be terrible
 Consider two advertisers A1 and A2

 A1: x1 = 1, b1 = 110

 A2: x2 = 10, b2 = 100

 Consider we see 10 instances of q

 BALANCE always selects A1 and earns 10

 Optimal earns 100



U Kang

Generalized BALANCE

 Arbitrary bids: consider query q, bidder i
 Bid = xi

 Budget = bi

 Amount spent so far = mi

 Fraction of budget left over fi = 1-mi/bi

 Define i(q) = xi(1-e-fi)

 Allocate query q to bidder i with largest 
value of i(q)
 Idea: i(q) is large if xi is large and fi is large

 Same competitive ratio (1-1/e)



U Kang

What You Need to Know

 Motivation of online algorithms

 Online bipartite matching

 Greedy algorithm

 Competitive ratio

 Adwords problem

 BALANCE algorithm



U Kang

Questions?


