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In This Lecture

 Learn the motivation, applications, and goal of 
clustering

 Understand the basic methods of clustering 
(bottom-up and top-down): representing clusters, 
nearness of clusters, etc.

 Learn the k-means algorithm, and how to set the 
parameter k
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Outline

Overview

K-Means Clustering
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High Dimensional Data

 Given a cloud of data points we want to 
understand its structure

 How to visualize 2-dim points?

 Then, how to visualize 3, 4, 5, … dim points?
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The Problem of Clustering

 Given a set of points, with a notion of distance
between points, group the points into some 
number of clusters, so that 

 Members of a cluster are close/similar to each other

 Members of different clusters are dissimilar

 Usually:

 Points are in a high-dimensional space

 Similarity is defined using a distance measure

 Euclidean, Cosine, Jaccard, edit distance, …
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Example: Clusters & Outliers
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Clustering is a hard problem!
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Why is it hard?

 Clustering in two dimensions looks easy

 Clustering small amounts of data looks easy

 And in most cases, looks are not deceiving

 But, many applications involve not 2, but 10 or 
10,000 dimensions

 High-dimensional spaces look different: almost 
all pairs of points are at about the same distance. 

 Distance between (x1..xd) and (y1..yd) = 
෍

𝑖=1

𝑑

(𝑥𝑖 − 𝑦𝑖 )
2
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Curse of Dimensionality

 Almost all pairs of points are “far” from each other

 Consider drawing length n=5“circle” in spaces where 
each dimension is of length 10

 What is the proportion of area that the circle covers?

5

10
= 0.5 ~ 

52

102
= 0.25 ~ 

53

103
= 0.125
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Clustering Problem: Galaxies

 A catalog of 2 billion “sky objects” represents 
objects by their radiation in 7 dimensions 
(frequency bands)

 Problem: Cluster into similar objects, e.g., 
galaxies, nearby stars, quasars, etc.

 Sloan Digital Sky Survey
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Clustering Problem: Music CDs

 Intuitively: Musics are divided into categories, 
and customers prefer a few categories

 But what are categories really?

 Represent a CD by a set of customers who 
bought it

 Similar CDs have similar sets of customers, and 
vice-versa
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Clustering Problem: Music CDs

Space of all CDs:

 Think of a space with one dim. for each customer

 Values in a dimension may be 0 or 1 only

 A CD is a point in this space (x1, x2,…, xk), 
where xi = 1 iff the i th customer bought the CD

 For Amazon, the dimension is tens of millions

 Task: Find clusters of similar CDs
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Clustering Problem: Documents

Finding topics:

 Represent a document by a vector  
(x1, x2,…, xk), where xi = 1 iff the i th word 
(e.g., in a dictionary order) appears in the document

 Documents with similar sets of words 
may be about the same topic
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Cosine, Jaccard, and Euclidean

 As with CDs we have a choice when we think of 
documents as sets of words or shingles:

 Sets as vectors: Measure similarity by the cosine 
distance

 Sets as sets: Measure similarity by the Jaccard
distance

 Sets as points: Measure similarity by Euclidean 
distance

𝜃
𝑐𝑜𝑠𝜃 =

𝑥 ∙ 𝑦

𝑥 |𝑦|
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Overview: Methods of Clustering

 Hierarchical:
 Agglomerative (bottom up):

 Initially, each point is a cluster

 Repeatedly combine the two 
“nearest” clusters into one

 Divisive (top down):
 Start with one cluster and recursively split it

 Point assignment:
 Maintain a set of clusters

 Points belong to “nearest” cluster
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Hierarchical Clustering

 Key operation: 
Repeatedly combine 
two nearest clusters

 Three important questions:

 1) How do you represent a cluster of more 
than one point?

 2) How do you determine the “nearness” of clusters?

 3) When to stop combining clusters?
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Hierarchical Clustering

 Key operation: Repeatedly combine two nearest 
clusters

 (1) How to represent a cluster of many points?

 Key problem: As you merge clusters, how do you 
represent the “location” of each cluster, to tell which pair 
of clusters is the closest?

 Euclidean case: each cluster has a 
centroid (= average of its (data)points)

 (2) How to determine “nearness” of clusters?

 Measure cluster distances by distances of centroids
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Example: Hierarchical Clustering
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When to Stop

 (3) When to stop combining clusters?

 When we reach the predetermined number of clusters

 When the quality of clusters (e.g. average distance to 
centroids) becomes very bad
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And in the Non-Euclidean Case?

What about the Non-Euclidean case?

 The only “locations” we can talk about are the 
points themselves

 E.g., there is no “average” of two sets

 Approach 1:

 (1) How to represent a cluster of many points?
clustroid (= (data)point “closest” to other points)

 (2) How do you determine the “nearness” of clusters? 
Treat clustroid as if it were centroid, when computing 
inter-cluster distances
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“Closest” Point?

 (1) How to represent a cluster of many points?
clustroid = point “closest” to other points

 Possible meanings of “closest”:

 Smallest maximum distance to other points

 Smallest average distance to other points

 Smallest sum of squares of distances to other points

 For distance metric d clustroid c of cluster C is: 
Cxc

cxd 2),(minarg

Centroid is the avg. of all (data)points 

in the cluster. This means centroid is 

an “artificial” point.

Clustroid is an existing (data)point 

that is “closest” to all other points in 

the cluster.

X

Cluster on

3 datapoints

Centroid

Clustroid

Datapoint
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Defining “Nearness” of Clusters

 (2) How do you determine the “nearness” of 
clusters? 

 Approach 1: distance between clustroids

 Approach 2:
Intercluster distance = minimum of the distances 
between any two points, one from each cluster

 Approach 3:
Pick a notion of “cohesion” of clusters, e.g., maximum 
distance from the clustroid of the new merged cluster

 Merge clusters whose union is most cohesive
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Cohesion

 Approach 3.1: Use the diameter of the merged 
cluster = maximum distance between points in the 
cluster

 Approach 3.2: Use the average distance between 
points in the cluster

 Approach 3.3: Use a density-based approach

 Take the diameter or avg. distance, e.g., and divide by 
the number of points in the cluster
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Implementation

 Naïve implementation of hierarchical clustering:

 At each step, compute pairwise distances 
between all pairs of clusters, then merge

 N2 + (N-1)2 + (N-2)2 + …  = O(N3)

 Careful implementation using priority queue (e.g. 
Heap) can reduce time to O(N2 log N)

 Still too expensive for really big datasets 
that do not fit in memory
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Outline

Overview
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k–means Algorithm(s)

 Assumes Euclidean space/distance

 Start by picking k, the number of clusters

 We will see how to select the “right” k later

 Initialize clusters by picking one point per cluster

 Example: Pick one point at random, then  k-1 other 
points, each as far away as possible from the previous 
points
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Populating Clusters

 Step 1) For each point, place it in the cluster whose 
current centroid is nearest

 Step 2) After all points are assigned, update the 
locations of centroids of the k clusters

 Step 3) Reassign all points to their closest centroid
 Sometimes move points between clusters

 Repeat steps 2 and 3 until convergence
 Convergence: Points don’t move between clusters and 

centroids stabilize
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Example: Assigning Clusters
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Example: Assigning Clusters

x

x

x

x

x

x

x x

x  … data point

… centroid

x

x

x

Clusters after round 2



U Kang

Example: Assigning Clusters
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Getting the k right

How to select k? “Finding the Knee” Method

 Try different k, looking at the change in the 
average distance to centroid as k increases

 Average falls rapidly until right k, then changes 
little

k

Average

distance to

centroid

Best value

of k
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Example: Picking k
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Example: Picking k
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Example: Picking k
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What You Need to Know

 Motivation, applications, and goal of clustering

 Basic methods of clustering (bottom-up and top-
down)

 How to represent clusters, determine nearness of 
clusters, etc.

 K-means algorithm

 How to set the parameter k
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Questions?


