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In This Lecture

 Learn the motivation, applications, and goal of 
clustering

 Understand the basic methods of clustering 
(bottom-up and top-down): representing clusters, 
nearness of clusters, etc.

 Learn the k-means algorithm, and how to set the 
parameter k
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Outline

Overview

K-Means Clustering
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High Dimensional Data

 Given a cloud of data points we want to 
understand its structure

 How to visualize 2-dim points?

 Then, how to visualize 3, 4, 5, … dim points?



U Kang

High Dimensional Data

 Given a cloud of data points we want to 
understand its structure
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The Problem of Clustering

 Given a set of points, with a notion of distance
between points, group the points into some 
number of clusters, so that 

 Members of a cluster are close/similar to each other

 Members of different clusters are dissimilar

 Usually:

 Points are in a high-dimensional space

 Similarity is defined using a distance measure

 Euclidean, Cosine, Jaccard, edit distance, …
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Example: Clusters & Outliers
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Clustering is a hard problem!



U Kang

Why is it hard?

 Clustering in two dimensions looks easy

 Clustering small amounts of data looks easy

 And in most cases, looks are not deceiving

 But, many applications involve not 2, but 10 or 
10,000 dimensions

 High-dimensional spaces look different: almost 
all pairs of points are at about the same distance. 

 Distance between (x1..xd) and (y1..yd) = 


𝑖=1

𝑑

(𝑥𝑖 − 𝑦𝑖 )
2
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Curse of Dimensionality

 Almost all pairs of points are “far” from each other

 Consider drawing length n=5“circle” in spaces where 
each dimension is of length 10

 What is the proportion of area that the circle covers?

5

10
= 0.5 ~ 

52

102
= 0.25 ~ 

53

103
= 0.125
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Clustering Problem: Galaxies

 A catalog of 2 billion “sky objects” represents 
objects by their radiation in 7 dimensions 
(frequency bands)

 Problem: Cluster into similar objects, e.g., 
galaxies, nearby stars, quasars, etc.

 Sloan Digital Sky Survey
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Clustering Problem: Music CDs

 Intuitively: Musics are divided into categories, 
and customers prefer a few categories

 But what are categories really?

 Represent a CD by a set of customers who 
bought it

 Similar CDs have similar sets of customers, and 
vice-versa
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Clustering Problem: Music CDs

Space of all CDs:

 Think of a space with one dim. for each customer

 Values in a dimension may be 0 or 1 only

 A CD is a point in this space (x1, x2,…, xk), 
where xi = 1 iff the i th customer bought the CD

 For Amazon, the dimension is tens of millions

 Task: Find clusters of similar CDs
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Clustering Problem: Documents

Finding topics:

 Represent a document by a vector  
(x1, x2,…, xk), where xi = 1 iff the i th word 
(e.g., in a dictionary order) appears in the document

 Documents with similar sets of words 
may be about the same topic
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Cosine, Jaccard, and Euclidean

 As with CDs we have a choice when we think of 
documents as sets of words or shingles:

 Sets as vectors: Measure similarity by the cosine 
distance

 Sets as sets: Measure similarity by the Jaccard
distance

 Sets as points: Measure similarity by Euclidean 
distance

𝜃
𝑐𝑜𝑠𝜃 =

𝑥 ∙ 𝑦

𝑥 |𝑦|
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Overview: Methods of Clustering

 Hierarchical:
 Agglomerative (bottom up):

 Initially, each point is a cluster

 Repeatedly combine the two 
“nearest” clusters into one

 Divisive (top down):
 Start with one cluster and recursively split it

 Point assignment:
 Maintain a set of clusters

 Points belong to “nearest” cluster
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Hierarchical Clustering

 Key operation: 
Repeatedly combine 
two nearest clusters

 Three important questions:

 1) How do you represent a cluster of more 
than one point?

 2) How do you determine the “nearness” of clusters?

 3) When to stop combining clusters?
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Hierarchical Clustering

 Key operation: Repeatedly combine two nearest 
clusters

 (1) How to represent a cluster of many points?

 Key problem: As you merge clusters, how do you 
represent the “location” of each cluster, to tell which pair 
of clusters is the closest?

 Euclidean case: each cluster has a 
centroid (= average of its (data)points)

 (2) How to determine “nearness” of clusters?

 Measure cluster distances by distances of centroids
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Example: Hierarchical Clustering
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When to Stop

 (3) When to stop combining clusters?

 When we reach the predetermined number of clusters

 When the quality of clusters (e.g. average distance to 
centroids) becomes very bad
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And in the Non-Euclidean Case?

What about the Non-Euclidean case?

 The only “locations” we can talk about are the 
points themselves

 E.g., there is no “average” of two sets

 Approach 1:

 (1) How to represent a cluster of many points?
clustroid (= (data)point “closest” to other points)

 (2) How do you determine the “nearness” of clusters? 
Treat clustroid as if it were centroid, when computing 
inter-cluster distances
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“Closest” Point?

 (1) How to represent a cluster of many points?
clustroid = point “closest” to other points

 Possible meanings of “closest”:

 Smallest maximum distance to other points

 Smallest average distance to other points

 Smallest sum of squares of distances to other points

 For distance metric d clustroid c of cluster C is: 
Cxc

cxd 2),(minarg

Centroid is the avg. of all (data)points 

in the cluster. This means centroid is 

an “artificial” point.

Clustroid is an existing (data)point 

that is “closest” to all other points in 

the cluster.

X

Cluster on

3 datapoints

Centroid

Clustroid

Datapoint
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Defining “Nearness” of Clusters

 (2) How do you determine the “nearness” of 
clusters? 

 Approach 1: distance between clustroids

 Approach 2:
Intercluster distance = minimum of the distances 
between any two points, one from each cluster

 Approach 3:
Pick a notion of “cohesion” of clusters, e.g., maximum 
distance from the clustroid of the new merged cluster

 Merge clusters whose union is most cohesive
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Cohesion

 Approach 3.1: Use the diameter of the merged 
cluster = maximum distance between points in the 
cluster

 Approach 3.2: Use the average distance between 
points in the cluster

 Approach 3.3: Use a density-based approach

 Take the diameter or avg. distance, e.g., and divide by 
the number of points in the cluster
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Implementation

 Naïve implementation of hierarchical clustering:

 At each step, compute pairwise distances 
between all pairs of clusters, then merge

 N2 + (N-1)2 + (N-2)2 + …  = O(N3)

 Careful implementation using priority queue (e.g. 
Heap) can reduce time to O(N2 log N)

 Still too expensive for really big datasets 
that do not fit in memory
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Outline

Overview

K-Means Clustering
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k–means Algorithm(s)

 Assumes Euclidean space/distance

 Start by picking k, the number of clusters

 We will see how to select the “right” k later

 Initialize clusters by picking one point per cluster

 Example: Pick one point at random, then  k-1 other 
points, each as far away as possible from the previous 
points
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Populating Clusters

 Step 1) For each point, place it in the cluster whose 
current centroid is nearest

 Step 2) After all points are assigned, update the 
locations of centroids of the k clusters

 Step 3) Reassign all points to their closest centroid
 Sometimes move points between clusters

 Repeat steps 2 and 3 until convergence
 Convergence: Points don’t move between clusters and 

centroids stabilize
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Example: Assigning Clusters
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Example: Assigning Clusters
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Example: Assigning Clusters
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Getting the k right

How to select k? “Finding the Knee” Method

 Try different k, looking at the change in the 
average distance to centroid as k increases

 Average falls rapidly until right k, then changes 
little

k

Average

distance to

centroid

Best value

of k
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Example: Picking k
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Example: Picking k
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Example: Picking k
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What You Need to Know

 Motivation, applications, and goal of clustering

 Basic methods of clustering (bottom-up and top-
down)

 How to represent clusters, determine nearness of 
clusters, etc.

 K-means algorithm

 How to set the parameter k
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Questions?


