
U Kang

Introduction to Data Mining

Frequent Itemsets-2

U Kang
Seoul National University

U Kang

In This Lecture

 Efficient Algorithms for Finding Frequent Itemsets

 A-Priori

 PCY

 ≤ 2-Pass algorithm: Random Sampling, SON

U Kang

Outline

A-Priori Algorithm

PCY Algorithm

Frequent Itemsets in < 2 Passes

U Kang

A-Priori Algorithm – (1)

 A two-pass approach called
A-Priori limits the need for
main memory

 Key idea: monotonicity
 If a set of items I appears at

least s times, so does every subset J of I

 E.g., if {A,C} is frequent, then {A} is frequent (so is {C})

 Contrapositive for pairs:
If item i does not appear in s baskets, then no pair
including i can appear in s baskets
 E.g., if {A} is not frequent, then {A,C} is not frequent

 So, how does A-Priori find freq. pairs?

U Kang

A-Priori Algorithm – (2)

 Pass 1: Read baskets and count in main memory
the occurrences of each individual item

 Requires only memory proportional to #items

 Items that appear ≥ 𝒔 times are the frequent items

 Pass 2: Read baskets again and count in main memory
only those pairs where both elements
are frequent (from Pass 1)
 Requires memory proportional to square of frequent items

only (for counts)

 Plus a list of the frequent items (so you know what must be
counted)

U Kang

Main-Memory: Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

M
a
in

 m
e
m

o
ry Counts of

pairs of

frequent items

(candidate

pairs)

U Kang

Detail for A-Priori

 You can use the triangular
matrix method with n =
number of frequent items

 May save space compared
with storing triples

 Trick: re-number frequent
items 1,2,… and keep a
table relating new
numbers to original item
numbers

Item counts

Pass 1 Pass 2

Counts of pairs

of frequent

items

Frequent

items

Old

item

#s

M
a
in

 m
e
m

o
ry

Counts of

pairs of

frequent items

U Kang

Frequent Triples, Etc.

 For each k, we construct two sets of k-tuples
(sets of size k):

 Ck = candidate k-tuples = those that might be frequent
sets (support > s) based on information from the pass
for k–1

 Lk = the set of truly frequent k-tuples

C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

All

items

All pairs

of items

from L1

Count

the pairs
To be

explained

Count

the items

U Kang

Example

 Hypothetical steps of the A-Priori algorithm
 C1 = { {b} {c} {j} {m} {n} {p} }

 Count the support of itemsets in C1

 Prune non-frequent: L1 = { b, c, j, m }

 Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }

 Count the support of itemsets in C2

 Prune non-frequent: L2 = { {b,c} {b,m} {c,j} {c,m} }

 Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

 Count the support of itemsets in C3

 Prune non-frequent: L3 = { {b,c,m} }
** Note here we generate new candidates by

generating Ck from Lk-1.

But one can be more careful with candidate

generation. For example, in C3 we know {b,m,j}

cannot be frequent since {m,j} is not frequent

**

U Kang

Generating C3 From L2

 Assume {x1, x2, x3} is frequent.

 Then, {x1,x2}, {x1, x3}, {x2, x3} are frequent, too.

 => if any of {x1,x2}, {x1, x3}, {x2, x3} is NOT frequent,
then {x1, x2, x3} is NOT frequent!

 So, to generate C3 from L2,

 Find two frequent pairs in the form of {a, b}, and {a, c}

 This can be done efficiently if we sort L2

 Check whether {b,c} is also frequent

 If yes, include {a,b,c} to C3

U Kang

A-Priori for All Frequent Itemsets

 One pass for each k (itemset size)
 Needs room in main memory to count

each candidate k–tuple
 For typical market-basket data and reasonable

minimum support (e.g., 1%), k = 2 requires the most
memory

 Many possible extensions:
 Association rules with intervals:

 For example: Men over 60 have 2 cars

 Association rules when items are in a taxonomy
 Bread, Butter → FruitJam
 BakedGoods, MilkProduct → PreservedGoods

 Lower the min. support s as itemset gets bigger

U Kang

Outline

A-Priori Algorithm

PCY Algorithm

Frequent Itemsets in < 2 Passes

U Kang

PCY (Park-Chen-Yu) Algorithm

 Observation:
In pass 1 of A-Priori, most memory is idle
 We store only individual item counts

 Can we use the idle memory to reduce memory
required in pass 2?

 Pass 1 of PCY: In addition to item counts,
maintain a hash table with as many buckets as fit
in memory
 Keep a count for each bucket into which pairs of items

are hashed
 For each bucket just keep the count, not the actual pairs

that hash to the bucket!

U Kang

PCY Algorithm – First Pass

FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items in the basket) :

hash the pair to a bucket;

add 1 to the count for that bucket;

 Few things to note:
 Pairs of items need to be generated from the input file;

they are not present in the file

 We are not just interested in the presence of a pair, but
we need to see whether it is present at least s (support)
times

New

in

PCY

U Kang

Example

 Assume support threshold = 10

 Sup(1,2) = 10

 Sup(3,5) = 10

 Sup(2,3) = 5

 Sup(1,5) = 4

 Sup(1,6) = 7

 Sup(4,5) = 8
{1,2} {3,5}

{2,3} {1,5}

{1,6} {4,5}

Total count: 20

Total count: 9

Total count: 15

Note that {2,3}, and {1,5} cannot be frequent itemsets

U Kang

Observations about Buckets

 Observation: If a bucket contains a frequent pair, then
the bucket is surely frequent

 However, even without any frequent pair,
a bucket can still be frequent 
 So, we cannot use the hash to eliminate any

member (pair) of a “frequent” bucket

 But, for a bucket with total count less than s,
none of its pairs can be frequent 
 Pairs that hash to this bucket can be eliminated from

candidates (even if the pair consists of 2 frequent items)
 E.g., even though {A}, {B} are frequent, count of the bucket containing

{A,B} might be < s

 Pass 2:
Only count pairs that hash to frequent buckets

U Kang

PCY Algorithm – Between Passes

 Replace the buckets by a bit-vector:

 1 means the bucket count exceeded the support s
(call it a frequent bucket); 0 means it did not

 4-byte integer counts are replaced by bits,
so the bit-vector requires 1/32 of memory

 Also, decide which items are frequent
and list them for the second pass

U Kang

PCY Algorithm – Pass 2

 Count all pairs {i, j} that meet the conditions for
being a candidate pair:

1. Both i and j are frequent items

2. The pair {i, j} hashes to a bucket whose bit in the
bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the
pair to have a chance of being frequent

U Kang

Main-Memory: Picture of PCY

Hash

table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Hash table

for pairs

M
a
in

 m
e
m

o
ry

Counts of

candidate

pairs

U Kang

Main-Memory Details

 Buckets require a few bytes each:

 Note: we do not have to count past s

 If s < 256, then we need at most 1 byte for a bucket

 #buckets is O(main-memory size)

 Large number of buckets helps. (How?)

U Kang

Refinement: Multistage Algorithm

 Limit the number of candidates to be counted

 Remember: Memory is the bottleneck

 We only want to count/keep track of the ones that are
frequent

 Key idea: After Pass 1 of PCY, rehash only those
pairs that qualify for Pass 2 of PCY

 i and j are frequent, and

 {i, j} hashes to a frequent bucket from Pass 1

 On middle pass, fewer pairs contribute to
buckets, so fewer false positives

 Requires 3 passes over the data

U Kang

Main-Memory: Multistage

First

hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of

candidate

pairs

Pass 1 Pass 2 Pass 3

Count items

Hash pairs {i,j}

Hash pairs {i,j}

into Hash2 iff:

i,j are frequent,

{i,j} hashes to

freq. bucket in B1

Count pairs {i,j} iff:

i,j are frequent,

{i,j} hashes to

freq. bucket in B1

{i,j} hashes to

freq. bucket in B2

First

hash table
Second

hash table
Counts of

candidate

pairs

M
a
in

 m
e
m

o
ry

U Kang

Multistage – Pass 3

 Count only those pairs {i, j} that satisfy these
candidate pair conditions:

1. Both i and j are frequent items

2. Using the first hash function, the pair hashes to
a bucket whose bit in the first bit-vector is 1

3. Using the second hash function, the pair hashes to a
bucket whose bit in the second bit-vector is 1

U Kang

Important Points

1. The two hash functions have to be independent

2. We need to check both hashes on the third pass

 If not, we may end up counting pairs of items that
hashed first to an infrequent bucket but happened to
hash second to a frequent bucket

U Kang

Refinement: Multihash

 Key idea: Use several independent hash tables on
the first pass

 Risk: Halving the number of buckets doubles the
average count

 We have to be sure most buckets will still not reach
count s

 If so, we can get a benefit like multistage,
but in only 2 passes

U Kang

Main-Memory: Multihash

First hash

table

Second

hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of

candidate

pairs

Pass 1 Pass 2

First

hash table

Second

hash table

Counts of

candidate

pairs

M
a
in

 m
e
m

o
ry

U Kang

PCY: Extensions

 Either multistage or multihash can use more than
two hash functions

 In multistage, there is a point of diminishing returns,
since the bit-vectors eventually consume all of main
memory
 If we spend too much space for bit-vectors, then we run

out of space for candidate pairs

 For multihash, the bit-vectors occupy exactly what
one PCY bitmap does, but too many hash functions
make all counts > s

U Kang

Outline

A-Priori Algorithm

PCY Algorithm

Frequent Itemsets in < 2 Passes

U Kang

Frequent Itemsets in < 2 Passes

 A-Priori, PCY, etc., take k passes to find frequent
itemsets of size k

 Can we use fewer passes?

 Methods that use 2 or fewer passes for all sizes:u

 Random sampling

 SON (Savasere, Omiecinski, and Navathe)

 Toivonen (see textbook)

U Kang

Random Sampling (1)

 Take a random sample of the market baskets

 Run a-priori or one of its improvements
in main memory

 So we don’t pay for disk I/O each
time we increase the size of itemsets

 Reduce min. support proportionally
to match the sample size

Copy of

sample

baskets

Space

for

counts

M
a
in

 m
e
m

o
ry

U Kang

Random Sampling (2)

 Optionally, verify that the candidate pairs are truly
frequent in the entire data set by a second pass
(avoid false positives)

 But you cannot catch sets frequent in the whole
but not in the sample (cannot avoid false negatives)

 Smaller min. support, e.g., s/125, helps catch more truly
frequent itemsets

 But requires more space

U Kang

SON Algorithm – (1)

 Repeatedly read small subsets of the baskets into
main memory and run an in-memory algorithm
to find all frequent itemsets

 We are not sampling, but processing the entire file in
memory-sized chunks

 Min. support decreases to (s/k) for k chunks

 An itemset becomes a candidate if it is found to
be frequent in any one or more subsets of the
baskets.

U Kang

SON Algorithm – (2)

 On a second pass, count all the candidate itemsets
and determine which are frequent in the entire set

 Key “monotonicity” idea: an itemset cannot be
frequent in the entire set of baskets unless it is
frequent in at least one subset.

 Task: find frequent (≥ s) itemsets among n baskets

 n baskets divided into k subsets

 Load (n/k) baskets in memory, look for frequent (≥ s/k)
pairs

 Will there be false positives and false negatives?

U Kang

What You Need to Know

 Frequent Itemsets

 One of the most ‘classical’ and important data mining
task

 Association Rules: {A} -> {B}

 Confidence, Support, Interestingness

 Algorithms for Finding Frequent Itemsets

 A-Priori

 PCY

 ≤ 2-Pass algorithm: Random Sampling, SON

U Kang

Questions?

