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In This Lecture

 Efficient Algorithms for Finding Frequent Itemsets

 A-Priori

 PCY

 ≤ 2-Pass algorithm: Random Sampling, SON
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Frequent Itemsets in < 2 Passes
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A-Priori Algorithm – (1)

 A two-pass approach called 
A-Priori limits the need for 
main memory

 Key idea: monotonicity
 If a set of items I appears at 

least s times, so does every subset J of I

 E.g., if {A,C} is frequent, then {A} is frequent (so is {C})

 Contrapositive for pairs:
If item i does not appear in s baskets, then no pair 
including i can appear in s baskets
 E.g., if {A} is not frequent, then {A,C} is not frequent

 So, how does A-Priori find freq. pairs?
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A-Priori Algorithm – (2)

 Pass 1: Read baskets and count in main memory 
the occurrences of each individual item

 Requires only memory proportional to #items

 Items that appear ≥ 𝒔 times are the frequent items

 Pass 2: Read baskets again and count in main memory 
only those pairs where both elements 
are frequent (from Pass 1)
 Requires memory proportional to square of frequent items 

only (for counts)

 Plus a list of the frequent items (so you know what must be 
counted)
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Main-Memory: Picture of A-Priori
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Detail for A-Priori

 You can use the triangular 
matrix method with n = 
number of frequent items

 May save space compared 
with storing triples

 Trick: re-number frequent 
items 1,2,… and keep a 
table relating new 
numbers to original item 
numbers
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Frequent Triples, Etc.

 For each k, we construct two sets of k-tuples
(sets of size k):

 Ck = candidate k-tuples = those that might be frequent 
sets (support > s) based on information from the pass 
for k–1

 Lk = the set of truly frequent k-tuples
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Example

 Hypothetical steps of the A-Priori algorithm
 C1 = { {b} {c} {j} {m} {n} {p} }

 Count the support of itemsets in C1

 Prune non-frequent: L1 = { b, c, j, m }

 Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }

 Count the support of itemsets in C2

 Prune non-frequent: L2 = { {b,c} {b,m}  {c,j}  {c,m} }

 Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

 Count the support of itemsets in C3

 Prune non-frequent: L3 = { {b,c,m} }
** Note here we generate new candidates by 

generating Ck from Lk-1.

But one can be more careful with candidate 

generation. For example, in C3 we know {b,m,j} 

cannot be frequent since {m,j} is not frequent

**
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Generating C3 From L2

 Assume {x1, x2, x3} is frequent. 

 Then, {x1,x2}, {x1, x3}, {x2, x3} are frequent, too.

 => if any of {x1,x2}, {x1, x3}, {x2, x3} is NOT frequent, 
then {x1, x2, x3} is NOT frequent!

 So, to generate C3 from L2, 

 Find two frequent pairs in the form of {a, b}, and {a, c}

 This can be done efficiently if we sort L2

 Check whether {b,c} is also frequent

 If yes, include {a,b,c} to C3
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A-Priori for All Frequent Itemsets

 One pass for each k (itemset size)
 Needs room in main memory to count 

each candidate k–tuple
 For typical market-basket data and reasonable 

minimum support (e.g., 1%), k = 2 requires the most 
memory

 Many possible extensions:
 Association rules with intervals: 

 For example: Men over 60 have 2 cars

 Association rules when items are in a taxonomy
 Bread, Butter → FruitJam
 BakedGoods, MilkProduct → PreservedGoods

 Lower the min. support s as itemset gets bigger
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PCY (Park-Chen-Yu) Algorithm

 Observation: 
In pass 1 of A-Priori, most memory is idle
 We store only individual item counts

 Can we use the idle memory to reduce memory 
required in pass 2?

 Pass 1 of PCY: In addition to item counts, 
maintain a hash table with as many buckets as fit 
in memory 
 Keep a count for each bucket into which pairs of items 

are hashed
 For each bucket just keep the count, not the actual pairs 

that hash to the bucket!
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PCY Algorithm – First Pass  

FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items in the basket) :

hash the pair to a bucket;

add 1 to the count for that bucket;

 Few things to note:
 Pairs of items need to be generated from the input file; 

they are not present in the file

 We are not just interested in the presence of a pair, but 
we need to see whether it is present at least s (support) 
times

New 

in 

PCY



U Kang

Example

 Assume support threshold = 10

 Sup(1,2) = 10

 Sup(3,5) = 10

 Sup(2,3) = 5

 Sup(1,5) = 4

 Sup(1,6) = 7

 Sup(4,5) = 8
{1,2} {3,5}

{2,3} {1,5}

{1,6} {4,5}

Total count: 20

Total count: 9

Total count: 15

Note that {2,3}, and {1,5} cannot be frequent itemsets
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Observations about Buckets

 Observation: If a bucket contains a frequent pair, then 
the bucket is surely frequent

 However, even without any frequent pair, 
a bucket can still be frequent 
 So, we cannot use the hash to eliminate any 

member (pair) of a “frequent” bucket

 But, for a bucket with total count less than s, 
none of its pairs can be frequent 
 Pairs that hash to this bucket can be eliminated from 

candidates (even if the pair consists of 2 frequent items)
 E.g., even though {A}, {B} are frequent, count of the bucket containing 

{A,B} might be < s

 Pass 2:
Only count pairs that hash to frequent buckets
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PCY Algorithm – Between Passes

 Replace the buckets by a bit-vector:

 1 means the bucket count exceeded the support s
(call it a frequent bucket); 0 means it did not

 4-byte integer counts are replaced by bits, 
so the bit-vector requires 1/32 of memory

 Also, decide which items are frequent 
and list them for the second pass



U Kang

PCY Algorithm – Pass 2

 Count all pairs {i, j} that meet the conditions for 
being a candidate pair:

1. Both i and j are frequent items

2. The pair {i, j} hashes to a bucket whose bit in the 
bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the 
pair to have a chance of being frequent



U Kang

Main-Memory: Picture of PCY
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Main-Memory Details

 Buckets require a few bytes each:

 Note: we do not have to count past s

 If s < 256, then we need at most 1 byte for a bucket

 #buckets is O(main-memory size)

 Large number of buckets helps. (How?)
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Refinement: Multistage Algorithm

 Limit the number of candidates to be counted

 Remember: Memory is the bottleneck

 We only want to count/keep track of the ones that are 
frequent

 Key idea: After Pass 1 of PCY, rehash only those 
pairs that qualify for Pass 2 of PCY

 i and j are frequent, and 

 {i, j} hashes to a frequent bucket from Pass 1

 On middle pass, fewer pairs contribute to 
buckets, so fewer false positives

 Requires 3 passes over the data
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Main-Memory: Multistage
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Multistage – Pass 3

 Count only those pairs {i, j} that satisfy these 
candidate pair conditions:

1. Both i and j are frequent items

2. Using the first hash function, the pair hashes to 
a bucket whose bit in the first bit-vector is 1

3. Using the second hash function, the pair hashes to a 
bucket whose bit in the second bit-vector is 1
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Important Points

1. The two hash functions have to be independent

2. We need to check both hashes on the third pass

 If not, we may end up counting pairs of items that 
hashed first to an infrequent bucket but happened to 
hash second to a frequent bucket
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Refinement: Multihash

 Key idea: Use several independent hash tables on 
the first pass

 Risk: Halving the number of buckets doubles the 
average count

 We have to be sure most buckets will still not reach 
count s

 If so, we can get a benefit like multistage, 
but in only 2 passes
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Main-Memory: Multihash
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PCY: Extensions

 Either multistage or multihash can use more than 
two hash functions

 In multistage, there is a point of diminishing returns, 
since the bit-vectors eventually consume all of main 
memory
 If we spend too much space for bit-vectors, then we run 

out of space for candidate pairs

 For multihash, the bit-vectors occupy exactly what 
one PCY bitmap does, but too many hash functions 
make all counts > s
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Frequent Itemsets in < 2 Passes

 A-Priori, PCY, etc., take k passes to find frequent 
itemsets of size k

 Can we use fewer passes?

 Methods that use 2 or fewer passes for all sizes:u

 Random sampling

 SON (Savasere, Omiecinski, and Navathe)

 Toivonen (see textbook)
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Random Sampling (1)

 Take a random sample of the market baskets

 Run a-priori or one of its improvements
in main memory

 So we don’t pay for disk I/O each 
time we increase the size of itemsets

 Reduce min. support proportionally 
to match the sample size
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Random Sampling (2)

 Optionally, verify that the candidate pairs are truly 
frequent in the entire data set by a second pass 
(avoid false positives)

 But you cannot catch sets frequent in the whole 
but not in the sample (cannot avoid false negatives)

 Smaller min. support, e.g., s/125, helps catch more truly 
frequent itemsets

 But requires more space



U Kang

SON Algorithm – (1)

 Repeatedly read small subsets of the baskets into 
main memory and run an in-memory algorithm 
to find all frequent itemsets

 We are not sampling, but processing the entire file in 
memory-sized chunks

 Min. support decreases to (s/k) for k chunks

 An itemset becomes a candidate if it is found to 
be frequent in any one or more subsets of the 
baskets.
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SON Algorithm – (2)

 On a second pass, count all the candidate itemsets
and determine which are frequent in the entire set

 Key “monotonicity” idea: an itemset cannot be 
frequent in the entire set of baskets unless it is 
frequent in at least one subset.

 Task: find frequent (≥ s) itemsets among n baskets

 n baskets divided into k subsets

 Load (n/k) baskets in memory, look for frequent (≥ s/k) 
pairs

 Will there be false positives and false negatives?
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What You Need to Know

 Frequent Itemsets

 One of the most ‘classical’ and important data mining 
task

 Association Rules: {A} -> {B}

 Confidence, Support, Interestingness

 Algorithms for Finding Frequent Itemsets

 A-Priori

 PCY

 ≤ 2-Pass algorithm: Random Sampling, SON
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Questions?


