
U Kang

Introduction to Data Mining

Frequent Itemsets-1

U Kang
Seoul National University

U Kang

In This Lecture

 Motivation of association rule mining

 Important concepts of association rules

 Naïve approaches for finding frequent itemsets

U Kang

Association Rule Discovery

Supermarket shelf management – Market-basket
model:

 Goal: Identify items that are bought together by
sufficiently many customers

 Approach: Process the sales data collected with
barcode scanners to find dependencies among
items

 A classic rule:
 If someone buys diaper and milk, then he/she is

likely to buy beer

 Don’t be surprised if you find six-packs next to diapers!

U Kang

The Market-Basket Model

 A large set of items
 e.g., things sold in a

supermarket

 A large set of baskets

 Each basket is a
small subset of items
 e.g., the things one

customer buys on one day

 Want to discover
association rules
 People who bought {x,y,z} tend to buy {v,w}

 Amazon!

Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Output:

U Kang

Applications – (1)

 Items = products; Baskets = sets of products
someone bought in one trip to the store

 Real market baskets: Chain stores keep TBs of data
about what customers buy together

 Tells how typical customers navigate stores, lets them
position tempting items

 Suggests tie-in “tricks”, e.g., run sale on diapers
and raise the price of beer

 Need the rule to occur frequently, or no $$’s

 Amazon’s people who bought X also bought Y

U Kang

Applications – (2)

 Baskets = sentences; Items = documents containing
those sentences
 How can we interpret items that appear together too often?

 Items that appear together too often could represent
plagiarism

 Notice items do not have to be “in” baskets

 Baskets = patients; Items = biomarkers(genes,
proteins), diseases
 How can we interpret frequent itemset (disease and

biomarker)?

 Frequent itemset consisting of one disease and one or more
biomarkers suggests a test for the disease

U Kang

More generally

 A general many-to-many mapping (association)
between two kinds of things

 But we ask about connections among “items”,
not “baskets”

 For example:

 Finding communities in graphs (e.g., Twitter)

U Kang

Example:

 Finding communities in graphs (e.g., Twitter)

 Baskets = nodes; Items = outgoing neighbors

 Searching for complete bipartite subgraphs Ks,t of a big
graph

 How?

 View each node i as a
basket Bi of nodes i points to

 Ks,t = a node set Y of size t that
occurs in s baskets Bi

 Looking for Ks,t all frequent
sets of size t that appear s times

…

…

A dense 2-layer graph

s
n
o
d
e
s

t
n
o
d
e
s

U Kang

First: Define
Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs

A-Priori algorithm

PCY algorithm + 2 refinements

ROADMAP

U Kang

Outline

Frequent Itemsets

Finding Frequent Itemsets

U Kang

Frequent Itemsets

 Simplest question: Find sets of items that appear
together “frequently” in baskets

 Support for itemset I: Number of baskets
containing all items in I

 (Often expressed as a fraction
of the total number of baskets)

 Given a minimum support s,
then sets of items that appear
in at least s baskets are called
frequent itemsets

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of

{Beer, Bread} = 2

U Kang

Example: Frequent Itemsets

 Items = {milk, coke, pepsi, beer, juice}

 Minimum support = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets:

 {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}

U Kang

Association Rules

 Association Rules:
If-then rules about the contents of baskets

 {i1, i2,…,ik} → j means: “if a basket contains all
of i1,…,ik then it is likely to contain j”

 In practice there are many rules, want to find
significant/interesting ones!

 Confidence of this association rule is the
probability of j given I = {i1,…,ik}

)support(

)support(
)conf(

I

jI
jI

U Kang

Interesting Association Rules

 Not all high-confidence rules are interesting

 The rule X → milk may have high confidence for many
itemsets X, because milk is just purchased very often
(independent of X) and the confidence will be high

 Interest of an association rule I → j:
difference between its confidence and the fraction
of baskets that contain j

 Interesting rules are those with high positive or negative
interest values (usually above 0.5)

]Pr[)conf()Interest(jjIjI

U Kang

Interesting Association Rules

 Interest of an association rule I → j:
difference between its confidence and the fraction
of baskets that contain j

 Interesting rules are those with high positive or negative
interest values (usually above 0.5)

 E.g. examples of the following cases?

 conf[I -> j] is large, but Pr[j] is small

 conf[I -> j] is small, but Pr[j] is large

]Pr[)conf()Interest(jjIjI

U Kang

Example: Confidence and Interest

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Association rule: {m, b} →c

 Confidence = 2/4 = 0.5

 |Interest| = |0.5 – 5/8| = 1/8

 Item c appears in 5/8 of the baskets

 Rule is not very interesting!

U Kang

Finding Association Rules

 Problem: Find all association rules with support
≥s and confidence ≥c

 Note: Support of an association rule is the support of
the set of items on the left side

 Hard part: Finding the frequent itemsets!

 If {i1, i2,…, ik} → j has high support and confidence,
then both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”

)support(

)support(
)conf(

I

jI
jI

U Kang

Mining Association Rules

 Step 1: Find all frequent itemsets I

 (we will explain this next)

 Step 2: Rule generation
 For every subset A of I, generate a rule A → I \ A

 Since I is frequent, A is also frequent

 Variant 1: Single pass to compute the confidence rule

 confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)

 Variant 2:
 Observation: If A,B,C→D is below confidence, so is A,B→C,D

 Can generate “bigger” rules from smaller ones!

 Output the rules with confidence ≥ c

U Kang

Example

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Minimum support s = 3, confidence c = 0.75

 1) Frequent itemsets:

 {b,m} {b,c} {c,m} {c,j} {m,c,b}

 2) Generate rules:

 b→m: c=4/6 b→c: c=5/6 b,c→m: c=3/5

 m→b: c=4/5 … b,m→c: c=3/4

 b→c,m: c=3/6

U Kang

Compacting the Output

 To reduce the number of rules we can
post-process them and only output:

 Maximal frequent itemsets:
No superset is frequent

 E.g., if {A}, {A, B}, {B,C} are frequent, {A,B}, {B,C} are maximal

 Gives more pruning

or

 Closed frequent itemsets:
No immediate superset has the same count (> 0)

 E.g., if {A}, {A,C} both have support 5, {A} is not closed

 Stores not only frequent information, but exact counts

U Kang

Example: Maximal/Closed

Support Maximal(s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No No

Frequent, but

superset BC

also frequent.

Frequent, and

its only superset,

ABC, not freq.

Superset BC

has same count.

Its only super-

set, ABC, has

smaller count.

U Kang

Outline

Frequent Itemsets

Finding Frequent Itemsets

U Kang

Itemsets: Computation Model

 Back to finding frequent itemsets

 Typically, data are kept in flat files
rather than in a database system:

 Stored on disk

 Stored basket-by-basket

 Baskets are small but we have
many baskets and many items

 Expand baskets into pairs, triples, etc.
as you read baskets

 Use k nested loops to generate all
sets of size k

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,

and boundaries between

baskets are –1.

Note: We want to find frequent itemsets. To find them, we

have to count them. To count them, we have to generate them.

U Kang

Computation Model

 The true cost of mining disk-resident data is
usually the number of disk I/Os

 In practice, association-rule algorithms read the
data in passes – all baskets read in turn

 We measure the cost by the number of passes an
algorithm makes over the data

 1-pass, 2-pass, …

U Kang

Main-Memory Bottleneck

 For many frequent-itemset algorithms,
main-memory is the critical resource

 As we read baskets, we need to count
something, e.g., occurrences of pairs of items

 The number of different things we can count
is limited by main memory

 Swapping counts in/out from/to disk is a disaster
(why?)

U Kang

Finding Frequent Pairs

 The hardest problem often turns out to be finding
the frequent pairs of items {i1, i2}

 Why? Freq. pairs are common, freq. triples are rare

 Let’s first concentrate on pairs, then extend to
larger sets

 The approach:

 We always need to generate all the itemsets

 But we would only like to count (keep track of) those
itemsets that in the end turn out to be frequent

U Kang

Naïve Algorithm

 Naïve approach to finding frequent pairs

 Read file once, counting in main memory
the occurrences of each pair:

 From each basket of n items, generate its
n(n-1)/2 pairs by two nested loops

 Fails if (#items)2 exceeds main memory

 Remember: #items can be
100K (Wal-Mart) or 10B (Web pages)

 Suppose 105 items, counts are 4-byte integers

 Number of pairs of items: 105(105-1)/2 ≈ 5*109

 Therefore, 2*1010 (20 gigabytes) of memory needed

U Kang

Counting Pairs in Memory

Two approaches:

 Approach 1: Count all pairs using a matrix

 Approach 2: Keep a table of triples [i, j, c] = “the
count of the pair of items {i, j} is c.” (where c>0)
 If integers and item ids are 4 bytes, we need

approximately 12 bytes for pairs with count > 0

 Plus some additional overhead for the hashtable

Note:

 Approach 1 only requires 4 bytes per pair

 Approach 2 uses 12 bytes per pair
(but only for pairs with count > 0)

U Kang

Comparing the two approaches

4 bytes per pair

Triangular Matrix

(Approach 1)

Store all (i,j) where i<j

Triples

(Approach 2)

Store (i,j) whose sup≥1

12 per

occurring pair

#
 o

f
a
ll

it
e
m

s

of all items

U Kang

Comparing the two approaches

 Approach 1: Triangular Matrix
 n = total number items

 Count pair of items {i, j} only if i<j

 Can use one-dimensional array to store the tri. matrix
 Keep pair counts in lexicographic order:

 {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

 Pair {i, j} is at position (i –1)(n– i/2) + j –i (array index starts from 1)

 Proof: σ𝑘=1
𝑖−1 (𝑛 − 𝑘) + (𝑗 − 𝑖)

 Total number of pairs n(n –1)/2; total bytes ~ 2n2

 Triangular Matrix requires 4 bytes per pair

 Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)
 When should we prefer Approach 2 over Approach 1?

U Kang

Comparing the two approaches

 Approach 1: Triangular Matrix
 n = total number items
 Count pair of items {i, j} only if i<j
 Can use one-dimensional array to store the tri. matrix

 Keep pair counts in lexicographic order:
 {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

 Pair {i, j} is at position (i –1)(n– i/2) + j –i (array index starts from 1)

 Proof: σ𝑘=1
𝑖−1 (𝑛 − 𝑘) + (𝑗 − 𝑖)

 Total number of pairs n(n –1)/2; total bytes ~ 2n2

 Triangular Matrix requires 4 bytes per pair

 Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)
 When should we prefer Approach 2 over Approach 1?

 If less than 1/3 of possible pairs actually occur

Problem is if we have too

many items so the pairs

do not fit into memory.

Can we do better?

U Kang

What You Need to Know

 Motivation of association rule mining

 The beginning of ‘data mining’ at 90’s

 Important concepts of association rules

 Support, confidence, interest, maximal frequent itemset,
closed itemset

 Naïve approaches for finding frequent itemsets

 Fails if (#items)2 exceeds main memory

U Kang

Questions?

