
U Kang

Introduction to Data Mining

Frequent Itemsets-1

U Kang
Seoul National University

U Kang

In This Lecture

 Motivation of association rule mining

 Important concepts of association rules

 Naïve approaches for finding frequent itemsets

U Kang

Association Rule Discovery

Supermarket shelf management – Market-basket
model:

 Goal: Identify items that are bought together by
sufficiently many customers

 Approach: Process the sales data collected with
barcode scanners to find dependencies among
items

 A classic rule:
 If someone buys diaper and milk, then he/she is

likely to buy beer

 Don’t be surprised if you find six-packs next to diapers!

U Kang

The Market-Basket Model

 A large set of items
 e.g., things sold in a

supermarket

 A large set of baskets

 Each basket is a
small subset of items
 e.g., the things one

customer buys on one day

 Want to discover
association rules
 People who bought {x,y,z} tend to buy {v,w}

 Amazon!

Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Output:

U Kang

Applications – (1)

 Items = products; Baskets = sets of products
someone bought in one trip to the store

 Real market baskets: Chain stores keep TBs of data
about what customers buy together

 Tells how typical customers navigate stores, lets them
position tempting items

 Suggests tie-in “tricks”, e.g., run sale on diapers
and raise the price of beer

 Need the rule to occur frequently, or no $$’s

 Amazon’s people who bought X also bought Y

U Kang

Applications – (2)

 Baskets = sentences; Items = documents containing
those sentences
 How can we interpret items that appear together too often?

 Items that appear together too often could represent
plagiarism

 Notice items do not have to be “in” baskets

 Baskets = patients; Items = biomarkers(genes,
proteins), diseases
 How can we interpret frequent itemset (disease and

biomarker)?

 Frequent itemset consisting of one disease and one or more
biomarkers suggests a test for the disease

U Kang

More generally

 A general many-to-many mapping (association)
between two kinds of things

 But we ask about connections among “items”,
not “baskets”

 For example:

 Finding communities in graphs (e.g., Twitter)

U Kang

Example:

 Finding communities in graphs (e.g., Twitter)

 Baskets = nodes; Items = outgoing neighbors

 Searching for complete bipartite subgraphs Ks,t of a big
graph

 How?

 View each node i as a
basket Bi of nodes i points to

 Ks,t = a node set Y of size t that
occurs in s baskets Bi

 Looking for Ks,t all frequent
sets of size t that appear s times

…

…

A dense 2-layer graph

s
n
o
d
e
s

t
n
o
d
e
s

U Kang

First: Define
Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs

A-Priori algorithm

PCY algorithm + 2 refinements

ROADMAP

U Kang

Outline

Frequent Itemsets

Finding Frequent Itemsets

U Kang

Frequent Itemsets

 Simplest question: Find sets of items that appear
together “frequently” in baskets

 Support for itemset I: Number of baskets
containing all items in I

 (Often expressed as a fraction
of the total number of baskets)

 Given a minimum support s,
then sets of items that appear
in at least s baskets are called
frequent itemsets

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of

{Beer, Bread} = 2

U Kang

Example: Frequent Itemsets

 Items = {milk, coke, pepsi, beer, juice}

 Minimum support = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets:

 {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}

U Kang

Association Rules

 Association Rules:
If-then rules about the contents of baskets

 {i1, i2,…,ik} → j means: “if a basket contains all
of i1,…,ik then it is likely to contain j”

 In practice there are many rules, want to find
significant/interesting ones!

 Confidence of this association rule is the
probability of j given I = {i1,…,ik}

)support(

)support(
)conf(

I

jI
jI




U Kang

Interesting Association Rules

 Not all high-confidence rules are interesting

 The rule X → milk may have high confidence for many
itemsets X, because milk is just purchased very often
(independent of X) and the confidence will be high

 Interest of an association rule I → j:
difference between its confidence and the fraction
of baskets that contain j

 Interesting rules are those with high positive or negative
interest values (usually above 0.5)

]Pr[)conf()Interest(jjIjI 

U Kang

Interesting Association Rules

 Interest of an association rule I → j:
difference between its confidence and the fraction
of baskets that contain j

 Interesting rules are those with high positive or negative
interest values (usually above 0.5)

 E.g. examples of the following cases?

 conf[I -> j] is large, but Pr[j] is small

 conf[I -> j] is small, but Pr[j] is large

]Pr[)conf()Interest(jjIjI 

U Kang

Example: Confidence and Interest

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Association rule: {m, b} →c

 Confidence = 2/4 = 0.5

 |Interest| = |0.5 – 5/8| = 1/8

 Item c appears in 5/8 of the baskets

 Rule is not very interesting!

U Kang

Finding Association Rules

 Problem: Find all association rules with support
≥s and confidence ≥c

 Note: Support of an association rule is the support of
the set of items on the left side

 Hard part: Finding the frequent itemsets!

 If {i1, i2,…, ik} → j has high support and confidence,
then both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”

)support(

)support(
)conf(

I

jI
jI




U Kang

Mining Association Rules

 Step 1: Find all frequent itemsets I

 (we will explain this next)

 Step 2: Rule generation
 For every subset A of I, generate a rule A → I \ A

 Since I is frequent, A is also frequent

 Variant 1: Single pass to compute the confidence rule

 confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)

 Variant 2:
 Observation: If A,B,C→D is below confidence, so is A,B→C,D

 Can generate “bigger” rules from smaller ones!

 Output the rules with confidence ≥ c

U Kang

Example

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Minimum support s = 3, confidence c = 0.75

 1) Frequent itemsets:

 {b,m} {b,c} {c,m} {c,j} {m,c,b}

 2) Generate rules:

 b→m: c=4/6 b→c: c=5/6 b,c→m: c=3/5

 m→b: c=4/5 … b,m→c: c=3/4

 b→c,m: c=3/6

U Kang

Compacting the Output

 To reduce the number of rules we can
post-process them and only output:

 Maximal frequent itemsets:
No superset is frequent

 E.g., if {A}, {A, B}, {B,C} are frequent, {A,B}, {B,C} are maximal

 Gives more pruning

or

 Closed frequent itemsets:
No immediate superset has the same count (> 0)

 E.g., if {A}, {A,C} both have support 5, {A} is not closed

 Stores not only frequent information, but exact counts

U Kang

Example: Maximal/Closed

Support Maximal(s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No No

Frequent, but

superset BC

also frequent.

Frequent, and

its only superset,

ABC, not freq.

Superset BC

has same count.

Its only super-

set, ABC, has

smaller count.

U Kang

Outline

Frequent Itemsets

Finding Frequent Itemsets

U Kang

Itemsets: Computation Model

 Back to finding frequent itemsets

 Typically, data are kept in flat files
rather than in a database system:

 Stored on disk

 Stored basket-by-basket

 Baskets are small but we have
many baskets and many items

 Expand baskets into pairs, triples, etc.
as you read baskets

 Use k nested loops to generate all
sets of size k

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,

and boundaries between

baskets are –1.

Note: We want to find frequent itemsets. To find them, we

have to count them. To count them, we have to generate them.

U Kang

Computation Model

 The true cost of mining disk-resident data is
usually the number of disk I/Os

 In practice, association-rule algorithms read the
data in passes – all baskets read in turn

 We measure the cost by the number of passes an
algorithm makes over the data

 1-pass, 2-pass, …

U Kang

Main-Memory Bottleneck

 For many frequent-itemset algorithms,
main-memory is the critical resource

 As we read baskets, we need to count
something, e.g., occurrences of pairs of items

 The number of different things we can count
is limited by main memory

 Swapping counts in/out from/to disk is a disaster
(why?)

U Kang

Finding Frequent Pairs

 The hardest problem often turns out to be finding
the frequent pairs of items {i1, i2}

 Why? Freq. pairs are common, freq. triples are rare

 Let’s first concentrate on pairs, then extend to
larger sets

 The approach:

 We always need to generate all the itemsets

 But we would only like to count (keep track of) those
itemsets that in the end turn out to be frequent

U Kang

Naïve Algorithm

 Naïve approach to finding frequent pairs

 Read file once, counting in main memory
the occurrences of each pair:

 From each basket of n items, generate its
n(n-1)/2 pairs by two nested loops

 Fails if (#items)2 exceeds main memory

 Remember: #items can be
100K (Wal-Mart) or 10B (Web pages)

 Suppose 105 items, counts are 4-byte integers

 Number of pairs of items: 105(105-1)/2 ≈ 5*109

 Therefore, 2*1010 (20 gigabytes) of memory needed

U Kang

Counting Pairs in Memory

Two approaches:

 Approach 1: Count all pairs using a matrix

 Approach 2: Keep a table of triples [i, j, c] = “the
count of the pair of items {i, j} is c.” (where c>0)
 If integers and item ids are 4 bytes, we need

approximately 12 bytes for pairs with count > 0

 Plus some additional overhead for the hashtable

Note:

 Approach 1 only requires 4 bytes per pair

 Approach 2 uses 12 bytes per pair
(but only for pairs with count > 0)

U Kang

Comparing the two approaches

4 bytes per pair

Triangular Matrix

(Approach 1)

Store all (i,j) where i<j

Triples

(Approach 2)

Store (i,j) whose sup≥1

12 per

occurring pair

#
 o

f
a
ll

it
e
m

s

of all items

U Kang

Comparing the two approaches

 Approach 1: Triangular Matrix
 n = total number items

 Count pair of items {i, j} only if i<j

 Can use one-dimensional array to store the tri. matrix
 Keep pair counts in lexicographic order:

 {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

 Pair {i, j} is at position (i –1)(n– i/2) + j –i (array index starts from 1)

 Proof: σ𝑘=1
𝑖−1 (𝑛 − 𝑘) + (𝑗 − 𝑖)

 Total number of pairs n(n –1)/2; total bytes ~ 2n2

 Triangular Matrix requires 4 bytes per pair

 Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)
 When should we prefer Approach 2 over Approach 1?

U Kang

Comparing the two approaches

 Approach 1: Triangular Matrix
 n = total number items
 Count pair of items {i, j} only if i<j
 Can use one-dimensional array to store the tri. matrix

 Keep pair counts in lexicographic order:
 {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

 Pair {i, j} is at position (i –1)(n– i/2) + j –i (array index starts from 1)

 Proof: σ𝑘=1
𝑖−1 (𝑛 − 𝑘) + (𝑗 − 𝑖)

 Total number of pairs n(n –1)/2; total bytes ~ 2n2

 Triangular Matrix requires 4 bytes per pair

 Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)
 When should we prefer Approach 2 over Approach 1?

 If less than 1/3 of possible pairs actually occur

Problem is if we have too

many items so the pairs

do not fit into memory.

Can we do better?

U Kang

What You Need to Know

 Motivation of association rule mining

 The beginning of ‘data mining’ at 90’s

 Important concepts of association rules

 Support, confidence, interest, maximal frequent itemset,
closed itemset

 Naïve approaches for finding frequent itemsets

 Fails if (#items)2 exceeds main memory

U Kang

Questions?

