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Introduction to Data Mining

Frequent Itemsets-1

U Kang
Seoul National University
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In This Lecture

m Motivation of association rule mining
m Important concepts of association rules

m Naive approaches for finding frequent itemsets

U Kang
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Association Rule Discovery

Supermarket shelf management — Market-basket
model:

m Goal: Identify items that are bought together by
sufficiently many customers

m Approach: Process the sales data collected with
barcode scanners to find dependencies among
items

. y -

m A classic rule: —

o If someone buys diaper and milk, then he/she is
likely to buy beer [

o Don’t be surprised if you find six-packs next to diapers!

U Kang
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m A large set of items 'PU
| |
0 e.g., thingssoldina 1 |Bread, Coke, Milk
supermarket 2 Beer, Bread
3 Beer, Coke, Diaper, Milk
N A Iarge Set Of baSkEtS 4 Beer, Bread, Diaper, Milk
- EaCh basket iS 3 5 Coke, Diaper, Milk

small subset of items
0 e.g., the things one

Output:
Rules Discovered:

customer buys on one day {Milk} —-> {Coke}
{Diaper, Milk} --> {Beer}

m Want to discover
association rules

o People who bought {x,y,z} tend to buy {v,w}
= Amazon!
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Applications — (1)

m [tems = products; Baskets = sets of products
someone bought in one trip to the store

m Real market baskets: Chain stores keep TBs of data
about what customers buy together

o Tells how typical customers navigate stores, lets them
position tempting items

0 Suggests tie-in “tricks”, e.g., run sale on diapers
and raise the price of beer

o Need the rule to occur frequently, or no $S’s

m Amazon’s people who bought X also bought Y

U Kang



Applications — (2)

m Baskets = sentences; Items = documents containing
those sentences
o How can we interpret items that appear together too often?

0 ltems that appear together too often could represent
plagiarism

0 Notice items do not have to be “in” baskets

m Baskets = patients; Items = biomarkers(genes,
proteins), diseases

o How can we interpret frequent itemset (disease and
biomarker)?

0 Frequent itemset consisting of one disease and one or more
biomarkers suggests a test for the disease

U Kang
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== More generally

m A general many-to-many mapping (association)
between two kinds of things

o But we ask about connections among “items”,
not “baskets”

m For example:
o Finding communities in graphs (e.g., Twitter)

U Kang
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= Example:

m Finding communities in graphs (e.g., Twitter)
m Baskets = nodes; Items = outgoing neighbors

0 Searching for complete bipartite subgraphs K, , of a big
graph
s How?
2o View each nodeias a
basket B; of nodes i points to

s nodes
t nodes

0 K, =anode setY of size t that
occurs in s baskets B,;

0 Looking for K, .= all frequent

sets of size t that appear s times
U Kang

A dense 2-layer graph
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First: Define

Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs

A-Priori algorithm

PCY algorithm + 2 refinements
U Kang
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[d Finding Frequent Itemsets
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m Simplest question: Find sets of items that appear
together “frequently” in baskets

m Support for itemset |: Number of baskets
containing all items in |

TID Items

o (Often expressed as a fraction 1 |Bread, Coke, Milk

of the total number of baskets) e

. e o 4 Beer, Bread, Diaper, Milk

m Given a minimum support S, 5 | Coke, Diaper, Milk

then sets of items that appear Support of
. {Beer, Bread} =2
in at least S baskets are called
frequent itemsets

U Kang



20D
e @
S

. Tux|§
Yi: MEA|

== Example: Frequent Itemsets
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m Items = {milk, coke, pepsi, beer, juice}
m Minimum support = 3 baskets

B, ={m, c, b} B, ={m, p, j}
B; ={m, b} B,=1{c, j}

B, ={m, p, b} B, ={m, c, b, j}
B, ={c, b, j} B; = {b, c}

m Frequent itemsets:

0 imj, ic}, b}, {j}, im,b}, 1b,c}, 1¢,j}

U Kang



S

A
<4

e

l—‘é-h

o
My
2= (2]
=5
7?«@4& O

1&({(

TSWZ7L 0l

Association Rules

m Association Rules:
If-then rules about the contents of baskets

m {I}, Ip...,I,} — ] means: “if a basket contains all
of iy,...,I, then it is likely to contain j

m In practice there are many rules, want to find
significant/interesting ones!

m Confidence of this association rule is the
probability of | given | = {i,...,I, }

support(l v J)
support(l)

U Kang
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=~ Interesting Association Rules
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m Not all high-confidence rules are interesting

0 The rule X — milk may have high confidence for many
itemsets X, because milk is just purchased very often
(independent of X) and the confidence will be high

m Interest of an association rule I — j:
difference between its confidence and the fraction
of baskets that contain |
Interest(l — J) =conf(l — J)—Pr[ ]

0 Interesting rules are those with high positive or negative
interest values (usually above 0.5)

U Kang
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Interesting Association Rules

m Interest of an association rule I — j:
difference between its confidence and the fraction
of baskets that contain |
Interest(l — j)=conf(l — J)—Pr[|]
0 Interesting rules are those with high positive or negative
interest values (usually above 0.5)

o E.g. examples of the following cases?
m conf[l ->j]is large, but Pr[j] is small
m conf[l ->j] is small, but PrJ[j] is large

U Kang
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Example: Confidence and Interest
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B, ={m, c, b} B, ={m, p, j}
B, ={m, b} B,={c, j}

B. = {m, p, b} Bs={m, ¢, b, j}
B, ={c, b, j} B, = {b, c}

m Association rule: {m, b} —c

0 Confidence =2/4=0.5

o |Interest| = ]0.5-5/8| =1/8
m Item c appears in 5/8 of the baskets
m Rule is not very interesting!

U Kang
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Finding Association Rules

m Problem: Find all association rules with support
>s and confidence >c

o Note: Support of an association rule is the support of
the set of items on the left side

m Hard part: Finding the frequent itemsets!

a If {iy, l..., I,} — ] has high support and confidence,
then both {iy, I,..., I} and
{14, loseessly, J} Will be “frequent”

support(l v j)
support(l)

U Kang
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Mining Association Rules

m Step 1: Find all frequent itemsets |
2 (we will explain this next)

m Step 2: Rule generation

a For every subset A of I, generatearuled — I\ A
m Since |l isfrequent, Ais also frequent
m Variant 1: Single pass to compute the confidence rule
o confidence(A,B—C,D) = support(A,B,C,D) / support(A,B)
m Variant 2:
0 Observation: If A,B,C—D is below confidence, so is A,B—C,D
0 Can generate “bigger” rules from smaller ones!

0 Output the rules with confidence = ¢

U Kang
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= Example
Bl = {m, C b} Bz = {ml P, j}
B3 = {mr C, br n} B4= {C, J}
BS = {m, P, b} BG = {mr c, b, j}
B,={c, b, j} Bg = {b, c}

s Minimum support s = 3, confidence ¢ = 0.7/5

m 1) Frequent itemsets:
o {b,m} {b,c} {c,m} {c,j} {m,c,b}
m 2) Generate rules:

a0 b=—m—e=4/6— b—c: Cc=5/6 b,e—m€=3/5—
a0 m—b: c=4/5 b,m—c: c=3/4

- U Kang yurr !



Compacting the Output

m To reduce the number of rules we can
post-process them and only output:
o Maximal frequent itemsets:
No superset IS frequent

m E.g.,if{A}, {A, B}, {B,C}are frequent, {A,B}, {B,C} are maximal
m  Gives more pruning

or
0 Closed frequent itemsets:

No immediate superset has the same count (> 0)

m E.g,if {A}, {A,C}both have support 5, {A} is not closed
m Stores not only frequent information, but exact counts

U Kang



Example: Maximal/Closed

Frequent, but

. superset BC
Support Maximal(s=3) Closed .o frequent

A 4 No 0 Frequent, and

: 5 . / i%g"%;uf?s;?et,

C 3 No No S t BC

AB 4 Yes Yes\ hgszgsne]e count.

Its only super-

AC 2 No No set, ABC, has
_~~ smaller count.

BC 3 Yes Yes

ABC 2 NO NG

U Kang
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m Back to finding frequent itemsets

m Typically, data are kept in flat files
rather than in a database system:

o Stored on disk
o Stored basket-by-basket

0 Baskets are small but we have
many baskets and many items

m Expand baskets into pairs, triples, etc.
as you read baskets

m Use k nested loops to generate all
sets of size k
Note: We want to find frequent itemsets. To find them, we

have to count them. To count them, we have to generate them.
U Kang

= Itemsets: Computation Model

ltem

ltem

Item

Item

ltem

Item

Item

ltem

Item

Item

Item

ltem

Etc.

Items are positive integers,
and boundaries between
baskets are —1.
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Computation Model

m The true cost of mining disk-resident data is
usually the number of disk I/Os

m |n practice, association-rule algorithms read the
data in passes — all baskets read in turn

m We measure the cost by the number of passes an
algorithm makes over the data

o 1-pass, 2-pass, ...

U Kang
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= Main-Memory Bottleneck

m For many frequent-itemset algorithms,
main-memory is the critical resource

o As we read baskets, we need to count
something, e.g., occurrences of pairs of items

o The number of different things we can count
is limited by main memory

o Swapping counts in/out from/to disk is a disaster
(why?)

U Kang
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Finding Frequent Pairs
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m The hardest problem often turns out to be finding
the frequent pairs of items {i, I,}
o Why? Freq. pairs are common, freq. triples are rare

m Let’s first concentrate on pairs, then extend to
larger sets
m The approach:

o We always need to generate all the itemsets

o But we would only like to count (keep track of) those
itemsets that in the end turn out to be frequent

U Kang
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Naive Algorithm

m Naive approach to finding frequent pairs

m Read file once, counting in main memory

the occurrences of each pair:

o From each basket of n items, generate its
n(n-1)/2 pairs by two nested loops

m Fails if (#items)? exceeds main memory

0 Remember: #items can be
100K (Wal-Mart) or 10B (Web pages)
m Suppose 10° items, counts are 4-byte integers
m  Number of pairs of items: 10°(10°-1)/2 =~ 5*10°
m Therefore, 2*10%0 (20 gigabytes) of memory needed

U Kang



Counting Pairs in Memory

Two approaches:
m Approach 1: Count all pairs using a matrix

m Approach 2: Keep a table of triples [j, j, c] = “the
count of the pair of items {j, j}isc.” (where c>0)

o If integers and item ids are 4 bytes, we need
approximately 12 bytes for pairs with count >0

o Plus some additional overhead for the hashtable
Note:
m Approach 1 only requires 4 bytes per pair

m Approach 2 uses 12 bytes per pair
(but only for pairs with count > 0)

U Kang



# of all items

4 bytes per pair

# of all items

Triangular Matrix
(Approach 1)
Store all (i,)) where i<j

U Kang

12 per
occurring pair

Triples
(Approach 2)
Store (i,])) whose sup=21
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Comparing the two approaches

m Approach 1: Triangular Matrix
0 n =total number items
0 Count pair of items {j, j} only if i<j

0 Can use one-dimensional array to store the tri. matrix
m  Keep pair counts in lexicographic order:
o {1,2},{1,3},..., {1,n}, {2,3}, {2,4},....{2,n}, {3,4},...
m Pair {j, j}is at position (i =1)(n—1i/2) + j—i (array index starts from 1)
a Proof: (Xki(n—k)) + (j — 1)
a Total number of pairs n(n —-1)/2; total bytes ~ 2n?
o Triangular Matrix requires 4 bytes per pair

m Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)

o When should we prefer Approach 2 over Approach 17?

U Kang



== Comparing the two approaches

m Approach 1: Triangular Matrix

Problem is if we have too
many items so the pairs

do not fit Into memory.
Can we do better?

o When should we prefer Approach 2 over Approach 17?

m If less than 1/3 of possible pairs actually occur

U Kang
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What You Need to Know

m Motivation of association rule mining
0 The beginning of ‘data mining’ at 90’s

m Important concepts of association rules

0 Support, confidence, interest, maximal frequent itemset,
closed itemset

m Naive approaches for finding frequent itemsets

a Fails if (Hitems)? exceeds main memory

U Kang
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Questions?



