DUEID
\‘}'"’3’9
y,

/‘3))(4&

Introduction to Data Mining

Link Analysis-2

U Kang
Seoul National University

U Kang

= In This Lecture

m Pagerank: Google formulation
2 Make the solution to converge

m Computing Pagerank for very large graphs

a Pagerank vector and/or stochastic matrix do not fit in the
memory

m Topic specific Pagerank

U Kang

7 33

¥y

/LN
TR
v
A
Ny 7 [|
e Outline

)
N
¥

®» [0 PageRank: Google Formulation
[0 Computing PageRank
[d Topic-Specific PageRank
[0 Measuring Proximity in Graphs

U Kang

DI
& 9

2 F
TR,

= PageRank: Three Questions

(t+1)
Z_ equi\?atlently r — I\/Ir

1— | i

m Does this converge?
m Does it converge to what we want?

m Are results reasonable?

U Kang

N
P

- l‘}‘v'}‘\.\

.

1,&((({(«4’
=) W4
S

e

K

m Example:
ra
'

0—0

1 0 1
0 1 0

lteration O, 1, 2, ...

U Kang

I

Does this converge?

(t+1)
j —

2

1—]

I

()
it
d.

UEIND

l!' '4

Wy
*= Does it converge to what we want?

e ’Q g o Z qa

= i

m Example:
. 1 0 0 0
r 0 1 0 0

lteration O, 1, 2, ...

U Kang

LI

2

¢

S

Eﬂ;
v,

R

X

'.L.‘((F =
E El
s

2N

PageRank: Problems

Dead end
2 problems:
m (1) Some pages are
dead ends (have no out-links)
o Random walk has “nowhere” to go to
a Such pages cause importance to “leak out” Spider 1

m (2) Spider traps:
(all out-links are within the group)
2 Random walked gets “stuck” in a trap
0 And eventually spider traps absorb all importance

U Kang

DI
(L)
LR

V. . ¥
% -@ 0 ;I\;
*L—JK
SN AE

Problem: Spider Traps

m Power lteration:

Q Setrj=1
_ i
- G_Zi—ﬂ'di

m And iterate

m Example:

lteration O, 1, 2, ...

1/3 216 3/12

1/3 16 2/12
1/3 36 7/12

y a m
el % | 0
al % | 0 | O
m| 0O | % | 1

m is a spider trap r,=r, 12+, /2

r, =r,/2

rm=r,/2+r,

5/24 0
324 ... 0
16/24 1

All the PageRank score gets “trapped” in node m.

U Kang

i N
UEHE
A
v- |v
VY
i
SN AE

Solution: Teleports!

m The Google solution for spider traps: At each time
step, the random surfer has two options
o With prob. g, follow a link at random
o With prob. 1-8, jump to some random page
o Common values for £ are in the range 0.8 t0 0.9

m Surfer will teleport out of spider trap
within a few time steps

U Kang

DI
(L)
LR

> Problem: Dead Ends
y a m
m Power lteration: VN A
al ¥ 0 0
0 Setr; =1 ;
m| O Y 0
T
071 =Y. .—
! Zl_)]di r, =r,/2+r,/2
m And iterate ry =r,/2
=112

m Example:
lteration O, 1, 2, ...

(n 13 2/6 312 5/24 0
o|l= W3 e 212 324 .. O
T 13 16 112 2/24 0

Here the PageRank “leaks” outus.|i<nce the matrix is not column stochastic.
ang

DI
(L)
LR

V. . ¥
% -@ 0 ;I\;
*L—JK
SN AE

m Teleports: Follow random teleport links with
probability 1.0 from dead-ends

o Adjust matrix accordingly

QD

Y

Y

Y

Y

m
0
0
0

—

o

U Kang

Solution: Always Teleport!

Y

Y

Y

Y

Ys

Y

V&

:?'é”Why Teleports Solve the Problem?

|..
\\‘v:
Y.
bl

Iy

Why are dead-ends and spider traps a problem
and why do teleports solve the problem?

m Spider-traps are not a problem, but with traps
PageRank scores are not what we want

o Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps

m Dead-ends are a problem
2 The matrix is not column stochastic so our initial
assumptions are not met
o Solution: Make matrix column stochastic by always
teleporting when there is nowhere else to go

U Kang

DAEIND
l!rA\ '\’4

B solution: Random Teleports

m Google’s solution:
At each step, random surfer has two options:

o With probability B, follow a link at random

0 With probability 1-8, jump to some random page

m PageRank equation [Brin Page, 98]

.out—degres
Z f o+ (-Py

This formulat|on assumes that M has no dead ends. We can either
preprocess matrix M to remove all dead ends or explicitly follow random

teleport links with prob?(blllty 1.0 from dead-ends.
ang

= The Google Matrix

m PageRank equation [Brin-Page, ‘98]
_Z T; e 1
1]

= In matrix form:

iy
_ . = INT - - X
ar ,BMr + (1 '8) -N- NxNT \[/ihg]re all Dn?r?/e[s\la:?:t{/N
iy
= {M + (1 = P)[ZInxn}T 131/31/3
This is called the “Google Matrix” 1/3 1/3 1/3
1/3 1/3 1/3
E.g., for N=3

U Kang

The Google Matrix

m PageRank equation [Brin-Page, ‘98]

; 1
=) Bt =Py

=]
m The Google Matrix A:
A=pM+(1-p)

e

N

“NXN

[1/N]xn---N by N matrix
where all entries are 1/N

m We have a recursive problem:r = A - r
And the Power method still works!

m Whatis §?

0 In practice £=0.8,0.9 (make ~5 steps on avg., jump)

U Kang

Random Teleports (5 = 0.8)

1/3
1/3
1/3

M

1/21/2 0
1/2 0 O
0 1/2 1

[1/N] NXN

+ 0.2

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y |7/15 7/15 1/15
a |7/15 1/15 1/15
m|1/15 7/15 13/15

033 024 0.26
0.20 0.20 0.18
046 052 0.56

U Kang

A

7133
5/33
21/33

20D
“q‘i "J
N
\\7 j | VERTTLUX [V’
‘\@.| MEA v

—_—
Y

Outline

PageRank: Google Formulation

®» OO0 Computing PageRank
[d Topic-Specific PageRank

[0 Measuring Proximity in Graphs

U Kang

Computing Page Rank

m Key step is matrix-vector multiplication

O rew=A. rold

m Easy if we have enough main memory to hold A

’ rold’ yhew

Y

0 1/31/3 1/3

0 0|+0.2|1/31/31/3

Y

1 1/31/3 1/3

m Say N =1 billion pages A = B-M + (1-B) [1/N]nxn
2 We need 4 bytes for
each entry (say) 7
o Total 2 billion entries for A =0.8| ¥
2 vectors(re'd, rew): ~ 8GB 0

a Matrix A has N2 entries
m N? =10*'® (1000 Peta) is a large number! =
m We need to exploit sparsity of M

U Kang

7115 7/15 1/15
7115 1/15 1/15
1/15 7/15 13/15

= Sparse Matrix Formulation

nr =471, whereA=,BM+(1—,8)[ﬂ
NXN

m Main idea: do not construct A explicitly

m Specifically:

1-
ar=pM-r+ (1-— — r
B A-B 5l
11
a =pM-r+(1- —
B -8 [5]
E;)Ster; OHdeerdefnzs;ume M [X]y --- @ vector of length N with all entries x

U Kang

Sparse Matrix Formulation

m The PageRank equation

1 — ﬁ
! N 15y,
= where [(1-B)/N], is a vector with all N entries (1-B)/N

r=pM- -1+

m Mis a sparse matrix!
2 10 links per node, approx 10N entries

m So in each iteration, we need to:
o Compute r'ew = S M - rold
0 Add a constant value (1-B)/N to each entry in r"eV

» Note if M contains dead-ends then ; r}-‘ew < 1 and

we also have to renormalize r"¢V so that it sums to 1
U Kang

k\(_(B\

Iv‘\

4((((

'\J

&!PageRank: The Complete Algorithm

= Input: Graph G and parameter £

o Directed graph G (can have spider traps and dead ends)
o Parameter 8

m Output: PageRank vector r"¢%

1
0 Set: r-ozd ==
N

0 repeat until convergence: Y |r"ew —rfll| < ¢

J
old

. VT =3, B0

m Now re-insert the Ieaked PageRank:

. _new _ ,onew , 1-§ where: § = 2 rnew
Vierimt =r + v

s pold — ,mnew

If the graph has no dead-ends then the amount of leaked PageRank is 1-B. But since we have dead-ends

the amount of leaked PageRank may be Iarger.UV\Iée have to explicitly account for it by computing S.
ang

fiid, Sparse Matrix Encoding

m Encode sparse matrix using only nonzero entries
0 Space proportional roughly to number of links
2 Assuming N =1 billion,
10N edges would require 4*10*1 billion = 40GB
o Still won’t fit in memory, but will fit on disk

igl(jrece degree destination nodes

0 3 1,5, 7

1 5 17,64, 113, 117, 245
2 2 13, 23

U Kang

L

<l

Zal\

gl_

X .

4

3

= Basic Algorithm: Update Step

(2

m Assume enough RAM to fit r"¢* into memory
o Store r°'@ and matrix M on disk

m 1 step of power-iteration is:
Initialize all entries of r"ew = (1-B) / N
For each page i (of out-degree d.):
Read into memory: i, d;, dest,, ..., destg;, re'd(i)

Forj=1...d
rmew(dest;) += P rod(i) / d,

0 rew source degree destination rod0
S I R I N >
2 2
3 1 4 17, 64, 113, 117 3
4 2 2 [13,23 .
S S
6 . U Kang 6

Basic Algorithm: Update Step

Memory Disk

el : |

source

Zoll

|
destination
X

I
[l
+
+
7
+

DI
(L)
LR

V. . ¥
oy 4_,5(

P SSVZ.

Analysis

m Assume enough RAM to fit r'¢¥ into memory
o Store r°’? and matrix M on disk

m In each iteration, we have to:
a0 Read rY' and M
o Write re" back to disk

a Cost (disk 1/0) per iteration of Power method:
=2|r| + M|

m Question:

2 What if we could not even fit r’'*" in memory?

U Kang

DAEIND
PR,

0
1

2
3

4
5

o Break r"¢V into k blocks that fit in memory
a0 Scan M and r°'d once for each block

rnew

SIc

degree destination

1

2

0,5

2

2

3,4

M

U Kang

B Block-based Update Algorithm

r0|d

ah~r,wWMNPELO

Block-based Update Algorithm

Memory Disk

{_A_\ A
[|
source

Zoll

|
destination
X

I
1If
+
+
7
+

Analysis of Block Update

m Similar to nested-loop join in databases
o Break r"®¥ into k blocks that fit in memory
0 Scan M and r°' once for each block

m Total cost:
a k scans of M and rold

o Cost per iteration of Power method:
k(IM]| + |r|)+ [r| =k|M]| + (k+1)]|r|

m Can we do better?

0 Hint: M is much bigger than r (approx 10-20x), so we
must avoid reading it k times per iteration

U Kang

N PR
== Block-Stripe Update Algorithm

Memory Disk

I_A_\ A
, |
source

Zoll

|
destination
X

Il
]
7,
]

U Kang

&, 41—-\;’5
)

0
1

N

ol A~

src degree destination
" B

2 2 1

0 4 3

2 2 3

0 4)

1 3 5

2 2 4

Break M into stripes! Each stripe contains only
destination nodes in the corresponding block of rnew

U Kang

= Block-Stripe Update Algorithm

r0|d

ah~r,wWMNPELO

(W70

DS
A
v- 0 v
VY
bl
I E

Block-Stripe Analysis

m Break M into stripes

o Each stripe contains only destination nodes
in the corresponding block of r"ew

m Some additional overhead per stripe
o But it is usually worth it

m Cost per iteration of Power method:
=|M|(1+€) + (k+1) ||

U Kang

DI
(L)
LR

== Limitations in Page Rank

m Measures generic popularity of a page
0 Biased against topic-specific authorities
a Solution: Topic-Specific PageRank (next)

m Uses a single measure of importance
o Other models of importance
0 Solution: Hubs-and-Authorities

m Susceptible to Link spam

o Artificial link topographies created in order to boost
page rank

o Solution: TrustRank

U Kang

0
r{;,

/‘3))49&

—_—
Y

V]

Outline

PageRank: Google Formulation
Computing PageRank

®» O Topic-Specific PageRank
[0 Measuring Proximity in Graphs

U Kang

DEIND
(L)
LR

V. . ¥
% -@ 0 ;I\;
*L—JK
SN AE

Topic-Specific PageRank

m Instead of generic popularity, can we measure
popularity within a topic?
m Goal: Evaluate Web pages not just according to

their popularity, but by how close they are to a
particular topic, e.g. “sports” or “history”

m Allows search queries to be answered based on
interests of the user

a0 Example: Answer the query “Jaguar” differently

*= Topic-Specific PageRank

m Random walker has a small probability of
teleporting at any step

m Teleport can go to:
o Standard PageRank: Any page with equal probability
m To avoid dead-end and spider-trap problems
o Topic Specific PageRank: A topic-specific set of
“relevant” pages (teleport set)

m |dea: Bias the random walk
2 When walker teleports, she picks a page from a set S

a0 S contains only pages that are relevant to the topic
m E.g., Yahoo or DMOZ pages for a given topic/query

a For each teleport set S, we get a different vector rq

U Kang

i N
UGHE
A
v- |v
VY
i
SN AE

Matrix Formulation

m To make this work all we need is to update the
teleportation part of the PageRank formulation:

A = {ﬁMi]-+(1—ﬁ)/|S| ifie S
pM;+0 otherwise

0 Ais column stochastic!

m We weighted all pages in the teleport set S equally
0 Could also assign different weights to pages!

m Compute as for regular PageRank:
o Multiply by M, then add a vector

0 Maintains sparseness
U Kang

¥8! Example: Topic-Specific PageRank

Suppose S ={1}, £=0.8

Node | Iteration
0 1 2 ... stable
1 0.25 0.4 0.28 0.294
2 0.25 0.1 0.16 0.118
1 1 3 0.25 0.3 0.32 0.327
0.8 0.8 4 0.25 0.2 0.24 0.261
S={1,2,3,4}, B=0.8:
r=[0.13, 0.10, 0.39, 0.36]
S={1}, B=0.90: S={1,2,3}, B=0.8:

r=

S={1}, B=0.8:

r=

S={1}, B=0.70:

r=

0.17, 0.07, 0.40, 0.36]

0.29, 0.11, 0.32, 0.26

0.39, 0.14, 0.27, 0.19

U Kang

r=[0.17, 0.13, 0.38, 0.30]
S={1,2} , B=0.8:
r=[0.26, 0.20, 0.29, 0.23]
S={1}, B=0.8:

r=[0.29, 0.11, 0.32, 0.26]

DEIND
VL‘ ’J
Rl

B : : i
== Discovering the Topic Vector S

K

m Create different PageRanks for different topics
2 The 16 DMOZ top-level categories:

m arts, business, sports,...
m Which topic ranking to use?
o User can pick from a menu
o Classify query into a topic
o Can use the context of the query

m E.g., queryis launched from a web page talking about a known
topic

m History of queries e.g., “basketball” followed by “Jordan”

o User context, e.g., user’s bookmarks, ...

U Kang

L=
D

(W)
" =
\'l}"‘ sl
\V' LUX N/
“i&:@L:(‘-"' o
e O U t I I n e

] PageRank: Google Formulation
7] Computing PageRank

7] Topic-Specific PageRank

®» [0 Measuring Proximity in Graphs

U Kang

\4, -\35

()

Proximity on Graphs

ORI

a.k.a.: Relevance, Closeness, ‘Similarity’...

U Kang

= Good proximity measure?

m Shortest path is not good:

e - @ 0

® ¢ @
® - @
Oy, ® - @

N>

m No effect of degree-1 nodes (E, F, G)!
m Multi-faceted relationships

U Kang

\4, -\35

) Good proximity measure?

m Network flow is not good:

e - @
@ @

m Does not punish long paths

U Kang

* Multiple connections
* Quality of connection
Length, Degree,

Weight...

U Kang

D,

N ‘!‘_‘4-:%.\‘?
e,
il

¥
V.
Y

.;-_-‘.’
~ Random Wal

s RWR: Random wal
m E.g., k-partite grap

k with Restart: Idea

ks from a fixed node

N Conferences

Authors
H11
Al

Tags

Bl

with k types of noc

o E.g.: Authors, Conferences, Tags

m Topic Specific PageRank

from node u: telep

es

A2

ort set S = {u}

m Resulting scores measures similarity to node u

m Problem:
2 Must be done once

for each node u

o Suitable for sub-Web-scale applications

U Kang

G

¢
v

(3
Y/
Y

*RWR: Example

Ccal Q: What is the most

related conference to
ICDM?

A: Topic-Specific
PageRank with
teleport set S={ICDM}

Conference Author

U Kang

What You Need to Know

I”

s Normal” PageRank:
0 Teleports uniformly at random to any node
o All nodes have the same probability of surfer landing there:
$=[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1, 0.1, 0.1]
m Topic-Specific PageRank also known as Personalized
PageRank:
0 Teleports to a topic specific set of pages

0 Nodes can have different probabilities of surfer landing
there: $=[0.1,0,0,0.2,0,0,0.5,0, 0, 0.2]

m Random Walk with Restarts:

0 Topic-Specific PageRank where teleport is always to the
same node. $=[0,0,0,0,1,0,0,0, 0, 0, O]

U Kang

\Y

%Z;\‘
S

4
=) ﬂ

i
£

"7

U Kang

Questions?

