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In This Lecture

 Pagerank: Google formulation

 Make the solution to converge

 Computing Pagerank for very large graphs

 Pagerank vector and/or stochastic matrix do not fit in the 
memory

 Topic specific Pagerank
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PageRank: Three Questions

 Does this converge?

 Does it converge to what we want?

 Are results reasonable?
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Does this converge?

 Example:

ra 1 0 1 0

rb 0 1 0 1
=

ba

Iteration 0, 1, 2, …
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 Example:

ra 1 0 0 0

rb 0 1 0 0
=

ba

Iteration 0, 1, 2, …
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PageRank: Problems

2 problems:

 (1) Some pages are 
dead ends (have no out-links)

 Random walk has “nowhere” to go to

 Such pages cause importance to “leak out”

 (2) Spider traps:
(all out-links are within the group)

 Random walked gets “stuck” in a trap

 And eventually spider traps absorb all importance

Dead end
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Problem: Spider Traps

 Power Iteration:

 Set 𝑟𝑗 = 1

 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:

ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.
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 The Google solution for spider traps: At each time 
step, the random surfer has two options

 With prob. , follow a link at random

 With prob. 1-, jump to some random page

 Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps

y

a m

y

a m

Solution: Teleports!
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Problem: Dead Ends

 Power Iteration:

 Set 𝑟𝑗 = 1

 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:

ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not column stochastic.
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Solution: Always Teleport!

 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

 Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m
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Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?

 Spider-traps are not a problem, but with traps 
PageRank scores are not what we want

 Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

 Dead-ends are a problem

 The matrix is not column stochastic so our initial 
assumptions are not met

 Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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Solution: Random Teleports

 Google’s solution:
At each step, random surfer has two options:

 With probability ,  follow a link at random

 With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

di … out-degree 

of node i

This formulation assumes that 𝑴 has no dead ends. We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.
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The Google Matrix

 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 In matrix form:

 𝑟 = 𝛽𝑀𝑟 + 1 − 𝛽 [
1

𝑁
]𝑁×𝑁𝑟

= {𝛽𝑀 + 1 − 𝛽 [
1

𝑁
]𝑁×𝑁}𝑟

[1/N]NxN…N by N matrix

where all entries are 1/N

This is called the “Google Matrix”

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

E.g., for N=3
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The Google Matrix

 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁
𝑁×𝑁

 We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓
And the Power method still works!

 What is  ?

 In practice  =0.8,0.9 (make ~5 steps on avg., jump)

[1/N]NxN…N by N matrix

where all entries are 1/N
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y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

5/33

21/33

. . .

y

a
m

13/15

7/15

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A

Random Teleports (𝜷 = 0.8)
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Computing Page Rank

 Key step is matrix-vector multiplication
 rnew = A ∙ rold

 Easy if we have enough main memory to hold A
, rold, rnew

 Say N = 1 billion pages
 We need 4 bytes for 

each entry (say)

 Total 2 billion entries for 
2 vectors(rold, rnew): ~ 8GB

 Matrix A has N2 entries
 N2 = 1018 (1000 Peta) is a large number!

 We need to exploit sparsity of M

½    ½    0

½    0   0

0    ½    1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15  7/15   1/15

7/15  1/15   1/15

1/15  7/15  13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =
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Sparse Matrix Formulation

 𝒓 = 𝑨 ⋅ 𝒓, where 𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁 𝑁×𝑁

 Main idea: do not construct A explicitly

 Specifically: 

 𝒓 = 𝜷𝑴 ⋅ 𝒓 + (𝟏 − 𝜷)
𝟏

𝑵 𝑵×𝑵
𝒓

 = 𝜷𝑴 ⋅ 𝒓 + (𝟏 − 𝜷)
𝟏

𝑵 𝑵

[x]N … a vector  of length N with all entries x
Note: Here we assume M

has no dead-ends.
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Sparse Matrix Formulation

 The PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

 where [(1-)/N]N is a vector with all N entries (1-)/N

 M is a sparse matrix! 
 10 links per node, approx 10N entries

 So in each iteration, we need to:
 Compute rnew =  M ∙ rold

 Add a constant value (1-)/N to each entry in rnew

 Note if M contains dead-ends then σ𝒋 𝒓𝒋
𝒏𝒆𝒘 < 𝟏 and 

we also have to renormalize rnew so that it sums to 1



U Kang

PageRank: The Complete Algorithm

 Input: Graph 𝑮 and parameter 𝜷

 Directed graph 𝑮 (can have spider traps and dead ends)

 Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

 Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

 repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 < 𝜀

 ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊

 Now re-insert the leaked PageRank:

∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′𝒋

𝒏𝒆𝒘
+

𝟏−𝑺

𝑵

 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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Sparse Matrix Encoding

 Encode sparse matrix using only nonzero entries

 Space proportional roughly to number of links

 Assuming N = 1 billion,

10N edges would require 4*10*1 billion = 40GB

 Still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source

node degree destination nodes
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Basic Algorithm: Update Step

 Assume enough RAM to fit rnew into memory
 Store rold and matrix M on disk

 1 step of power-iteration is:

0 3 1, 5, 6

1 4 17, 64, 113, 117

2 2 13, 23

source degree destination0
1

2

3
4

5

6

0
1

2

3
4

5

6

rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

Read into memory: i, di, dest1, …, destdi, rold(i)

For j = 1…di

rnew(destj) +=  rold(i) / di
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Basic Algorithm: Update Step

= x….

= + + + ….

source
d
e
s
ti
n
a
ti
o
n

DiskMemory
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Analysis

 Assume enough RAM to fit rnew into memory

 Store rold and matrix M on disk

 In each iteration, we have to:

 Read rold and M

 Write rnew back to disk

 Cost (disk I/O) per iteration of Power method:
= 2|r| + |M|

 Question:

 What if we could not even fit rnew in memory?
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Block-based Update Algorithm

 Break rnew into k blocks that fit in memory

 Scan M and rold once for each block

0 4 0, 1, 3, 5

1 2 0, 5

2 2 3, 4

src degree destination

0
1

2

3

4

5

0
1

2

3
4

5

rnew rold

M
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Block-based Update Algorithm

= x….

= + + + ….

source
d
e
s
ti
n
a
ti
o
n

DiskMemory
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Analysis of Block Update

 Similar to nested-loop join in databases
 Break rnew into k blocks that fit in memory

 Scan M and rold once for each block

 Total cost:
 k scans of M and rold

 Cost per iteration of Power method:
k(|M| + |r|) + |r| = k|M| + (k+1)|r|

 Can we do better?
 Hint: M is much bigger than r (approx 10-20x), so we 

must avoid reading it k times per iteration
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Block-Stripe Update Algorithm

= x

….

= + + + ….

source
d
e
s
ti
n
a
ti
o
n

DiskMemory
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Block-Stripe Update Algorithm

0 4 0, 1

1 3 0

2 2 1

src degree destination

0
1

2

3

4

5

0
1

2

3
4

5

rnew

rold

0 4 5

1 3 5

2 2 4

0 4 3

2 2 3

Break M into stripes! Each stripe contains only 

destination nodes in the corresponding block of rnew
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Block-Stripe Analysis

 Break M into stripes

 Each stripe contains only destination nodes 
in the corresponding block of rnew

 Some additional overhead per stripe

 But it is usually worth it

 Cost per iteration of Power method:
=|M|(1+) + (k+1)|r|
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Limitations in Page Rank

 Measures generic popularity of a page
 Biased against topic-specific authorities

 Solution: Topic-Specific PageRank (next)

 Uses a single measure of importance
 Other models of importance

 Solution: Hubs-and-Authorities

 Susceptible to Link spam
 Artificial link topographies created in order to boost 

page rank

 Solution: TrustRank
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Topic-Specific PageRank

 Instead of generic popularity, can we measure 
popularity within a topic?

 Goal: Evaluate Web pages not just according to 
their popularity, but by how close they are to a 
particular topic, e.g. “sports” or “history”

 Allows search queries to be answered based on 
interests of the user

 Example: Answer the query “Jaguar” differently
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Topic-Specific PageRank

 Random walker has a small probability of 
teleporting at any step

 Teleport can go to:
 Standard PageRank: Any page with equal probability

 To avoid dead-end and spider-trap problems

 Topic Specific PageRank: A topic-specific set of 
“relevant” pages (teleport set)

 Idea: Bias the random walk
 When walker teleports, she picks a page from a set S

 S contains only pages that are relevant to the topic
 E.g., Yahoo or DMOZ pages for a given topic/query

 For each teleport set S, we get a different vector rS
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Matrix Formulation

 To make this work all we need is to update the 
teleportation part of the PageRank formulation: 

𝑨𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)/|𝑺| if 𝒊 ∈ 𝑺

𝜷𝑴𝒊𝒋 + 𝟎 otherwise

 A is column stochastic!

 We weighted all pages in the teleport set S equally

 Could also assign different weights to pages!

 Compute as for regular PageRank:

 Multiply by M, then add a vector

 Maintains sparseness
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Example: Topic-Specific PageRank

1

2 3

4

Suppose S = {1},  = 0.8

Node Iteration

0 1 2     … stable

1 0.25 0.4 0.28 0.294

2 0.25 0.1 0.16 0.118

3 0.25 0.3 0.32 0.327

4 0.25 0.2 0.24 0.261

0.2

0.5
0.5

1

1 1

0.4 0.4

0.8

0.8 0.8

S={1,2,3,4}, β=0.8:

r=[0.13, 0.10, 0.39, 0.36]

S={1,2,3} ,  β=0.8:

r=[0.17, 0.13, 0.38, 0.30]

S={1,2} ,  β=0.8:

r=[0.26, 0.20, 0.29, 0.23]

S={1} ,  β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.90:

r=[0.17, 0.07, 0.40, 0.36]

S={1} ,  β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.70:

r=[0.39, 0.14, 0.27, 0.19]
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Discovering the Topic Vector S

 Create different PageRanks for different topics
 The 16 DMOZ top-level categories:

 arts, business, sports,…

 Which topic ranking to use?

 User can pick from a menu

 Classify query into a topic

 Can use the context of the query

 E.g., query is launched from a web page talking about a known 
topic

 History of queries e.g., “basketball” followed by “Jordan”

 User context, e.g., user’s bookmarks, …
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Proximity on Graphs

A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

a.k.a.: Relevance, Closeness, ‘Similarity’…

[Tong-Faloutsos, ‘06]
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Good proximity measure?

 Shortest path is not good:

 No effect of degree-1 nodes (E, F, G)!

 Multi-faceted relationships
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Good proximity measure?

 Network flow is not good:

 Does not punish long paths
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What is good notion of proximity?

A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

• Multiple connections

• Quality of connection

•Length, Degree, 

Weight…

…

[Tong-Faloutsos, ‘06]
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Random Walk with Restart: Idea

 RWR: Random walks from a fixed node

 E.g., k-partite graph 
with k types of nodes
 E.g.: Authors, Conferences, Tags

 Topic Specific PageRank
from node u: teleport set S = {u}

 Resulting scores measures similarity to node u

 Problem:
 Must be done once for each node u

 Suitable for sub-Web-scale applications

Authors
Conferences Tags
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RWR: Example

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author

Q: What is the most 
related conference to 
ICDM?

A: Topic-Specific 
PageRank with 
teleport set S={ICDM}
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RWR: Example

ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011

0.008
0.007

0.005

0.005

0.005

0.004
0.004

0.004
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What You Need to Know

 “Normal” PageRank:
 Teleports uniformly at random to any node

 All nodes have the same probability of surfer landing there: 
S = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

 Topic-Specific PageRank also known as Personalized 
PageRank:
 Teleports to a topic specific set of pages

 Nodes can have different probabilities of surfer landing 
there: S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]

 Random Walk with Restarts:
 Topic-Specific PageRank where teleport is always to the 

same node. S=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
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Questions?


