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In This Lecture

 Pagerank: Google formulation

 Make the solution to converge

 Computing Pagerank for very large graphs

 Pagerank vector and/or stochastic matrix do not fit in the 
memory

 Topic specific Pagerank
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PageRank: Three Questions

 Does this converge?

 Does it converge to what we want?

 Are results reasonable?
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Does this converge?

 Example:

ra 1 0 1 0

rb 0 1 0 1
=

ba

Iteration 0, 1, 2, …
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 Example:

ra 1 0 0 0

rb 0 1 0 0
=

ba

Iteration 0, 1, 2, …
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Does it converge to what we want?
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PageRank: Problems

2 problems:

 (1) Some pages are 
dead ends (have no out-links)

 Random walk has “nowhere” to go to

 Such pages cause importance to “leak out”

 (2) Spider traps:
(all out-links are within the group)

 Random walked gets “stuck” in a trap

 And eventually spider traps absorb all importance

Dead end
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Problem: Spider Traps

 Power Iteration:

 Set 𝑟𝑗 = 1

 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:

ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.
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 The Google solution for spider traps: At each time 
step, the random surfer has two options

 With prob. , follow a link at random

 With prob. 1-, jump to some random page

 Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps

y

a m

y

a m

Solution: Teleports!
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Problem: Dead Ends

 Power Iteration:

 Set 𝑟𝑗 = 1

 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

 And iterate

 Example:

ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not column stochastic.
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Solution: Always Teleport!

 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

 Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m
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Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?

 Spider-traps are not a problem, but with traps 
PageRank scores are not what we want

 Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

 Dead-ends are a problem

 The matrix is not column stochastic so our initial 
assumptions are not met

 Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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Solution: Random Teleports

 Google’s solution:
At each step, random surfer has two options:

 With probability ,  follow a link at random

 With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 =෍

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

di … out-degree 

of node i

This formulation assumes that 𝑴 has no dead ends. We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.
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The Google Matrix

 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =෍

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 In matrix form:

 𝑟 = 𝛽𝑀𝑟 + 1 − 𝛽 [
1

𝑁
]𝑁×𝑁𝑟

= {𝛽𝑀 + 1 − 𝛽 [
1

𝑁
]𝑁×𝑁}𝑟

[1/N]NxN…N by N matrix

where all entries are 1/N

This is called the “Google Matrix”

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

E.g., for N=3
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The Google Matrix

 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =෍

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁
𝑁×𝑁

 We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓
And the Power method still works!

 What is  ?

 In practice  =0.8,0.9 (make ~5 steps on avg., jump)

[1/N]NxN…N by N matrix

where all entries are 1/N
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y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

5/33

21/33

. . .

y

a
m

13/15

7/15

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A

Random Teleports (𝜷 = 0.8)
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Computing Page Rank

 Key step is matrix-vector multiplication
 rnew = A ∙ rold

 Easy if we have enough main memory to hold A
, rold, rnew

 Say N = 1 billion pages
 We need 4 bytes for 

each entry (say)

 Total 2 billion entries for 
2 vectors(rold, rnew): ~ 8GB

 Matrix A has N2 entries
 N2 = 1018 (1000 Peta) is a large number!

 We need to exploit sparsity of M

½    ½    0

½    0   0

0    ½    1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15  7/15   1/15

7/15  1/15   1/15

1/15  7/15  13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =
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Sparse Matrix Formulation

 𝒓 = 𝑨 ⋅ 𝒓, where 𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁 𝑁×𝑁

 Main idea: do not construct A explicitly

 Specifically: 

 𝒓 = 𝜷𝑴 ⋅ 𝒓 + (𝟏 − 𝜷)
𝟏

𝑵 𝑵×𝑵
𝒓

 = 𝜷𝑴 ⋅ 𝒓 + (𝟏 − 𝜷)
𝟏

𝑵 𝑵

[x]N … a vector  of length N with all entries x
Note: Here we assume M

has no dead-ends.
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Sparse Matrix Formulation

 The PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

 where [(1-)/N]N is a vector with all N entries (1-)/N

 M is a sparse matrix! 
 10 links per node, approx 10N entries

 So in each iteration, we need to:
 Compute rnew =  M ∙ rold

 Add a constant value (1-)/N to each entry in rnew

 Note if M contains dead-ends then σ𝒋 𝒓𝒋
𝒏𝒆𝒘 < 𝟏 and 

we also have to renormalize rnew so that it sums to 1
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PageRank: The Complete Algorithm

 Input: Graph 𝑮 and parameter 𝜷

 Directed graph 𝑮 (can have spider traps and dead ends)

 Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

 Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

 repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 < 𝜀

 ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊

 Now re-insert the leaked PageRank:

∀𝒋: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′𝒋

𝒏𝒆𝒘
+

𝟏−𝑺

𝑵

 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 

the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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Sparse Matrix Encoding

 Encode sparse matrix using only nonzero entries

 Space proportional roughly to number of links

 Assuming N = 1 billion,

10N edges would require 4*10*1 billion = 40GB

 Still won’t fit in memory, but will fit on disk

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source

node degree destination nodes
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Basic Algorithm: Update Step

 Assume enough RAM to fit rnew into memory
 Store rold and matrix M on disk

 1 step of power-iteration is:

0 3 1, 5, 6

1 4 17, 64, 113, 117

2 2 13, 23

source degree destination0
1

2

3
4

5

6

0
1

2

3
4

5

6

rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

Read into memory: i, di, dest1, …, destdi, rold(i)

For j = 1…di

rnew(destj) +=  rold(i) / di
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Basic Algorithm: Update Step

= x….

= + + + ….

source
d
e
s
ti
n
a
ti
o
n

DiskMemory
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Analysis

 Assume enough RAM to fit rnew into memory

 Store rold and matrix M on disk

 In each iteration, we have to:

 Read rold and M

 Write rnew back to disk

 Cost (disk I/O) per iteration of Power method:
= 2|r| + |M|

 Question:

 What if we could not even fit rnew in memory?
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Block-based Update Algorithm

 Break rnew into k blocks that fit in memory

 Scan M and rold once for each block

0 4 0, 1, 3, 5

1 2 0, 5

2 2 3, 4

src degree destination

0
1

2

3

4

5

0
1

2

3
4

5

rnew rold

M
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Block-based Update Algorithm

= x….

= + + + ….

source
d
e
s
ti
n
a
ti
o
n

DiskMemory
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Analysis of Block Update

 Similar to nested-loop join in databases
 Break rnew into k blocks that fit in memory

 Scan M and rold once for each block

 Total cost:
 k scans of M and rold

 Cost per iteration of Power method:
k(|M| + |r|) + |r| = k|M| + (k+1)|r|

 Can we do better?
 Hint: M is much bigger than r (approx 10-20x), so we 

must avoid reading it k times per iteration
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Block-Stripe Update Algorithm

= x

….

= + + + ….

source
d
e
s
ti
n
a
ti
o
n

DiskMemory
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Block-Stripe Update Algorithm

0 4 0, 1

1 3 0

2 2 1

src degree destination

0
1

2

3

4

5

0
1

2

3
4

5

rnew

rold

0 4 5

1 3 5

2 2 4

0 4 3

2 2 3

Break M into stripes! Each stripe contains only 

destination nodes in the corresponding block of rnew
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Block-Stripe Analysis

 Break M into stripes

 Each stripe contains only destination nodes 
in the corresponding block of rnew

 Some additional overhead per stripe

 But it is usually worth it

 Cost per iteration of Power method:
=|M|(1+) + (k+1)|r|
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Limitations in Page Rank

 Measures generic popularity of a page
 Biased against topic-specific authorities

 Solution: Topic-Specific PageRank (next)

 Uses a single measure of importance
 Other models of importance

 Solution: Hubs-and-Authorities

 Susceptible to Link spam
 Artificial link topographies created in order to boost 

page rank

 Solution: TrustRank
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Topic-Specific PageRank

 Instead of generic popularity, can we measure 
popularity within a topic?

 Goal: Evaluate Web pages not just according to 
their popularity, but by how close they are to a 
particular topic, e.g. “sports” or “history”

 Allows search queries to be answered based on 
interests of the user

 Example: Answer the query “Jaguar” differently
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Topic-Specific PageRank

 Random walker has a small probability of 
teleporting at any step

 Teleport can go to:
 Standard PageRank: Any page with equal probability

 To avoid dead-end and spider-trap problems

 Topic Specific PageRank: A topic-specific set of 
“relevant” pages (teleport set)

 Idea: Bias the random walk
 When walker teleports, she picks a page from a set S

 S contains only pages that are relevant to the topic
 E.g., Yahoo or DMOZ pages for a given topic/query

 For each teleport set S, we get a different vector rS
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Matrix Formulation

 To make this work all we need is to update the 
teleportation part of the PageRank formulation: 

𝑨𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)/|𝑺| if 𝒊 ∈ 𝑺

𝜷𝑴𝒊𝒋 + 𝟎 otherwise

 A is column stochastic!

 We weighted all pages in the teleport set S equally

 Could also assign different weights to pages!

 Compute as for regular PageRank:

 Multiply by M, then add a vector

 Maintains sparseness
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Example: Topic-Specific PageRank

1

2 3

4

Suppose S = {1},  = 0.8

Node Iteration

0 1 2     … stable

1 0.25 0.4 0.28 0.294

2 0.25 0.1 0.16 0.118

3 0.25 0.3 0.32 0.327

4 0.25 0.2 0.24 0.261

0.2

0.5
0.5

1

1 1

0.4 0.4

0.8

0.8 0.8

S={1,2,3,4}, β=0.8:

r=[0.13, 0.10, 0.39, 0.36]

S={1,2,3} ,  β=0.8:

r=[0.17, 0.13, 0.38, 0.30]

S={1,2} ,  β=0.8:

r=[0.26, 0.20, 0.29, 0.23]

S={1} ,  β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.90:

r=[0.17, 0.07, 0.40, 0.36]

S={1} ,  β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.70:

r=[0.39, 0.14, 0.27, 0.19]
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Discovering the Topic Vector S

 Create different PageRanks for different topics
 The 16 DMOZ top-level categories:

 arts, business, sports,…

 Which topic ranking to use?

 User can pick from a menu

 Classify query into a topic

 Can use the context of the query

 E.g., query is launched from a web page talking about a known 
topic

 History of queries e.g., “basketball” followed by “Jordan”

 User context, e.g., user’s bookmarks, …
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Proximity on Graphs

A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

a.k.a.: Relevance, Closeness, ‘Similarity’…

[Tong-Faloutsos, ‘06]
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Good proximity measure?

 Shortest path is not good:

 No effect of degree-1 nodes (E, F, G)!

 Multi-faceted relationships
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Good proximity measure?

 Network flow is not good:

 Does not punish long paths
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What is good notion of proximity?

A BH1 1

D
1 1

E

F

G

1 11

I J1

1 1

• Multiple connections

• Quality of connection

•Length, Degree, 

Weight…

…

[Tong-Faloutsos, ‘06]
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Random Walk with Restart: Idea

 RWR: Random walks from a fixed node

 E.g., k-partite graph 
with k types of nodes
 E.g.: Authors, Conferences, Tags

 Topic Specific PageRank
from node u: teleport set S = {u}

 Resulting scores measures similarity to node u

 Problem:
 Must be done once for each node u

 Suitable for sub-Web-scale applications

Authors
Conferences Tags
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RWR: Example

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author

Q: What is the most 
related conference to 
ICDM?

A: Topic-Specific 
PageRank with 
teleport set S={ICDM}
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RWR: Example

ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011

0.008
0.007

0.005

0.005

0.005

0.004
0.004

0.004
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What You Need to Know

 “Normal” PageRank:
 Teleports uniformly at random to any node

 All nodes have the same probability of surfer landing there: 
S = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

 Topic-Specific PageRank also known as Personalized 
PageRank:
 Teleports to a topic specific set of pages

 Nodes can have different probabilities of surfer landing 
there: S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]

 Random Walk with Restarts:
 Topic-Specific PageRank where teleport is always to the 

same node. S=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
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Questions?


