
U Kang

Introduction to Data Mining

Mining Data Streams-3

U Kang
Seoul National University

U Kang

Outline

Estimating Moments

Counting Frequent Items

U Kang

Generalization: Moments

 Suppose a stream has elements chosen
from a set A of N values

 Let mi be the number of times value i occurs in the
stream

 The kth moment is

 E.g., for a stream (x, y, x, y, z, z, z, x, z),
 The 2nd moment is 32 + 22 + 42 = 29

 (x appears 3 times, y appears 2 times, z appears 4 times)

 Ai

k

im)(

U Kang

Special Cases

 0thmoment = number of distinct elements

 The problem considered in the last lecture

 1st moment = count of the numbers of elements
= length of the stream

 Easy to compute

 2nd moment = surprise number S =
a measure of how uneven the distribution is

Ai

k

im)(

U Kang

Example: Surprise Number

 Stream of length 100

 11 distinct values

 Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 Surprise
S = 910

 Item counts: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1 Surprise
S = 8,110

U Kang

Problem Definition

 Q: Given a stream, how can we estimate k-th
moments efficiently, with small memory space?

 A: AMS method

U Kang

AMS Method

 AMS method works for all moments

 Gives an unbiased estimate

 We first concentrate on the 2nd moment S

 We pick and keep track of many variables X:

 For each variable X we store X.el and X.val

 X.el corresponds to the item i

 X.val corresponds to the count of item i

 Note this requires a count in main memory,
so number of Xs is limited

 Our goal is to compute 𝑺 = σ𝒊𝒎𝒊
𝟐

[Alon, Matias, and Szegedy]

U Kang

One Random Variable (X)

 How to set X.val and X.el?

 Assume stream has length n (we relax this later)

 Pick some random time t (t<n) to start,
so that any time is equally likely

 If the stream has item i at time t, we set X.el = i

 Then we maintain count c (X.val = c) of the number of is
in the stream starting from the chosen time t

 Then the estimate of the 2nd moment (σ𝒊𝒎𝒊
𝟐) is:

𝑺 = 𝒇(𝑿) = 𝒏 (𝟐 · 𝒄 – 𝟏)

 Note, we will keep track of multiple Xs, (X1, X2,… Xk)

and our final estimate will be 𝑺 =
𝟏

𝒌
σ𝒋=𝟏
𝒌 𝒇(𝑿𝒋)

U Kang

Expectation Analysis

 2nd moment is 𝑺 = σ𝒊𝒎𝒊
𝟐

 ct … number of times item at time t appears
from time t onwards (c1=ma , c2=ma-1, c3=mb)

 𝑬 𝒇(𝑿) =
𝟏

𝒏
σ𝒕=𝟏
𝒏 𝒏(𝟐𝒄𝒕 − 𝟏)

= σ𝒊 (𝟏 + 𝟑 + 𝟓 +⋯+ 𝟐𝒎𝒊 − 𝟏)

Time t when

the last i is

seen (ct=1)

Time t when

the penultimate

i is seen (ct=2)

Time t when

the first i is

seen (ct=mi)

Group times

by the value

seen

a a a a

1 32 ma

b b b b

Count:

Stream:

mi … total count of

item i in the stream

(we are assuming

stream has length n)

U Kang

Expectation Analysis

 𝐸 𝑓(𝑋) =
1

𝑛
σ𝑖 𝑛 (1 + 3 + 5 +⋯+ 2𝑚𝑖 − 1)

 Little side calculation: 1 + 3 + 5 +⋯+ 2𝑚𝑖 − 1 =

σ
𝑗=1
𝑚𝑖 (2𝑗 − 1) = 2

𝑚𝑖 𝑚𝑖+1

2
−𝑚𝑖 = 𝑚𝑖

2

 Then 𝑬 𝒇(𝑿) =
𝟏

𝒏
σ𝒊 𝒏 𝒎𝒊

𝟐

 So, 𝐄 𝐟(𝐗) = σ𝒊 𝒎𝒊
𝟐 = 𝑺

 We have the second moment (in expectation)!

a a a a

1 32 ma

b b b bStream:

Count:

U Kang

Higher-Order Moments

 For estimating kth moment we essentially use the
same algorithm but change the estimate:

 For k=2 we used n (2·c – 1)

 For k=3 we use: n (3·c2 – 3c + 1) (where c=X.val)

 Why?

 For k=2: Remember we had 1 + 3 + 5 +⋯+ 2𝑚𝑖 − 1
and we showed terms 2c-1 (for c=1,…,m) sum to m2

 𝑚2 = σ𝑐=1
𝑚 𝑐2 − σ𝑐=1

𝑚 𝑐 − 1 2 =σ𝑐=1
𝑚 (2𝑐 − 1)

 So: 𝟐𝒄 − 𝟏 = 𝒄𝟐 − 𝒄 − 𝟏 𝟐

 For k=3: c3 - (c-1)3 = 3c2 - 3c + 1

 Generally: Estimate = 𝑛 (𝑐𝑘 − 𝑐 − 1 𝑘)

U Kang

Combining Samples

 In practice:

 Compute 𝒇(𝑿) = 𝒏(𝟐 𝒄 – 𝟏) for
as many variables X as you can fit in memory

 Average them

 Problem: Streams never end

 We assumed there was a number n,
the number of positions in the stream

 But real streams go on forever, so n is
a variable – the number of inputs seen so far

U Kang

Streams Never End: Fixups

 (1) f(X)= n (2c-1) has n as a factor –
keep n separately; just hold the count c in X

 (2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:

 Objective: Each starting time t is selected with
probability k/n

 Solution: (fixed-size sampling = reservoir sampling!)

 Choose the first k elements for k variables

 When the nth element arrives (n > k), choose it with
probability k/n

 If you choose it, throw one of the previously stored variables
X out, with equal probability

U Kang

Outline

Estimating Moments

Counting Frequent Items

U Kang

Counting Itemsets

 New Problem: Given a stream, how can we find
recent frequent items (= which appear more
than s times in the window) efficiently?

U Kang

Counting Itemsets

 New Problem: Given a stream, which items
appear more than s times in the window?

 Possible solution: Think of the stream of baskets
as one binary stream per item

 1 = item present; 0 = not present

 Use DGIM to estimate counts of 1s for all items

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0

N

01

12

23

4

106

U Kang

Extensions

 In principle, you could count frequent pairs or
even larger sets the same way

 One stream per itemset

 E.g., for a basket {i, j, k}, assume 7 independent
streams: (i) (j) (k) (i, j) (i, k) (j, k) (i, j, k)

 Drawback:

 Number of itemsets is way too big

U Kang

Exponentially Decaying Windows

 Exponentially decaying windows: A heuristic for
selecting likely frequent item(sets)

 What are “currently” most popular movies?

 Instead of computing the raw count in last N elements

 Compute a smooth aggregation over the whole stream

 If stream is a1, a2,… and we are taking the sum of
the stream, take the answer at time t to be: =
σ𝒊=𝟏
𝒕 𝒂𝒊 𝟏 − 𝒄 𝒕−𝒊

 c is a constant, presumably tiny, like 10-6 or 10-9

 When new at+1 arrives:
Multiply current sum by (1-c) and add at+1

U Kang

Example: Counting Items

 If each ai is an “item” we can compute the
characteristic function of each possible
item x as an Exponentially Decaying Window
 That is: σ𝒊=𝟏

𝒕 𝜹𝒊 ⋅ 𝟏 − 𝒄 𝒕−𝒊

where δi=1 if ai=x, and 0 otherwise

 Imagine that for each item x we have a binary stream (1
if x appears, 0 if x does not appear)

 New item x arrives:
 Multiply all counts by (1-c)

 Add +1 to count for element x

 Remove all items whose weights < s

 Call this sum the “weight” of item x

Note: Assume we are

interested in

items with weights ≥ s

U Kang

Example: Counting Items

 (T1) x: 1

 (T2) x: 0.8*1, y: 1

 (T3) x: 0.8*0.8 + 1, y: 0.8*1

 (T4) x: 0.8*1.64, y: 0.8*0.8, z = 1

 (T5) x: 1.312+1, y: 0.8*0.64=0.512, z: 0.8*1

 (T6) x: 0.8*2.312, y: 0.8*0.512, z:0.8*0.8 + 1
 Remove y

 (T7) x: 0.8*1.8496+1, z: 0.8*1.64

 …

x y z

1 32

x z x x

Time:

Stream:

4 5 6 7

Assume c = 0.2,

Keep items with weights ≥ 1/2

𝒊=𝟏

𝒕

𝜹𝒊 ⋅ 𝟏 − 𝒄 𝒕−𝒊

U Kang

Sliding vs. Decaying Windows

 Important property: Sum over all weights
σ𝒕 𝟏 − 𝒄 𝒕 is 1/[1 – (1 – c)] = 1/c

1/c

. . .

U Kang

Example: Counting Items

 What are “currently” most popular movies?

 Suppose we want to find movies of weight > ½

 Important property: Sum over all weights σ𝑡 1 − 𝑐 𝑡 is
1/[1 – (1 – c)] = 1/c

 Thus:

 There cannot be more than 2/c movies with
weight > ½

 So, 2/c is a limit on the number of
movies being counted at any time (if we remove
movies whose weight <= ½)

U Kang

Extension to Itemsets

 Assume at each time we are given an itemset

 E.g., {i, j, k}, {k, x}, {i,j}

 Count (some) itemsets in an E.D.W.

 What are currently “hot” itemsets?

 Problem: Too many itemsets to keep counts of
all of them in memory

U Kang

Extension to Itemsets

 Count (some) itemsets in an E.D.W.

 What are currently “hot” itemsets?

 Problem: Too many itemsets to keep counts of
all of them in memory

 When a basket B comes in:

 Multiply all counts by (1-c)

 For uncounted items in B, create new count

 Add 1 to count of any item in B and to any itemset
contained in B that is already being counted

 Remove items and itemsets whose counts < ½

 Initiate new counts (next slide)

U Kang

Initiation of New Counts

 Start a count for an itemset S ⊆ B if every proper
subset of S had a count prior to arrival of basket B

 Intuitively: If all subsets of S are being counted this
means they are “frequent/hot” and thus S has a
potential to be “hot”

 Example:

 Start counting S={i, j} iff both i and j were counted prior
to seeing B

 Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} were all
counted prior to seeing B

U Kang

Summary – Stream Mining

 Important tools for stream mining

 Sampling from Data Stream (Reservoir Sampling)

 Querying Over Sliding Windows (DGIM method for
counting the number of 1s or sums in the window)

 Filtering a Data Stream (Bloom Filter)

 Counting Distinct Elements (Flajolet-Martin)

 Estimating Moments (AMS method; surprise number)

 Counting Frequent Itemsets (exponentially decaying
windows)

U Kang

Questions?

