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Introduction to Data Mining

Mining Data Streams-3
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Generalization: Moments

m Suppose a stream has elements chosen
from a set A of N values

m Let m; be the number of times value i occurs in the
stream

m The k' moment is ZieA(mi)k

m E.g,forastream(x,vy,X,V, 2 22 X, 2),
a0 The 2" momentis 32+ 22 +42=29
0 (x appears 3 times, y appears 2 times, z appears 4 times)
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Special Cases

ZieA(mi)k

m 0'"moment = number of distinct elements
0 The problem considered in the last lecture

m 15! moment = count of the numbers of elements
= length of the stream

o Easy to compute

m 2"9 moment = surprise number S =
a measure of how uneven the distribution is
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== Example: Surprise Number

m Stream of length 100
m 11 distinct values

m [tem counts: 10,9,9,9,9,9,9,9,9, 9,9 Surprise
$=910

m [temcounts:90,1,1,1,1,1,1,1,1,1,1 Surprise
$=8,110
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Problem Definition

m Q: Given a stream, how can we estimate k-th
moments efficiently, with small memory space?

s A: AMS method
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AMS Method

m AMS method works for all moments
m Gives an unbiased estimate
m We first concentrate on the 2" moment S

m We pick and keep track of many variables X:
0 For each variable X we store X.el and X.val

m X.el corresponds to the item i
m  X.val corresponds to the count of item i

o Note this requires a count in main memory,
so number of Xs is limited

m Our goal is to compute S = Ziml2
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One Random Variable (X)

m How to set X.val and X.el?

o Assume stream has length n (we relax this later)

a Pick some random time t (t<n) to start,
so that any time is equally likely

a If the stream has item i at time t, we set X.el =i

2 Then we maintain count ¢ (X.val = c¢) of the number of is
in the stream starting from the chosen time t
Then the estimate of the 2" moment (}; m?) is:
S=f(X) =n2-c-1)
= Note, we will keep track of multiple Xs, (X, X,,... X;)
and our final estimate will be § = %Z]’-‘;l f(X;)
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= Expectation Analysis
Count: 1 2 3 m,
— —0—0—0—0—0—0 - —
Stream: a a b b b a b a

= 2" momentis S = Y, m?
m C,.. number of times item at time t appears
from time t onwards (¢c,=m,, c,-m -1, c;=m,)

1
] E[f(X)] — ; ?=1 n(ZCt — 1) mi.%talcountof

item i in the stream
(we are assuming

— Zi (1 +34+54 .-+ Zmi —_ 1) stream has length n)

/ \ \ }e t when

Time t when Time t when

Group times . i the firsti is
: thp I the last i is t_h_e penultimate B

y the value seen (c,=1) | IS seen (¢=2) seen (C=m)
seen t
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Expectation Analysis

count: 1 2 3 o’
Streaem: a a b b b a b a
« E[f(0] = Zin (1+3 45+ +2m — 1)
o Little side calculation: (1 +34+54+-4+2m; — 1) =
YNi@2i-1)=2 mi(n;iﬂ) —m; =m;

« Then E[f(X)] =~ ¥; n (n,)?

« So, E[f(X)] = (m)? = §
m We have the second moment (in expectation)!

U Kang



S

g

“ Higher-Order Moments

—
e

(| ==

I
E 2 1'}

l S (2wl
9,
s

2N

m For estimating kt" moment we essentially use the
same algorithm but change the estimate:

a For k=2 we used n (2-c - 1)
o Fork=3 weuse:n(3:c2—3c+1) (where c=X.val)

s Why?
0 For k=2: Rememberwehad (1 +3+5+ -+ 2m; — 1)
and we showed terms 2c-1 (for c=1,...,m) sum to m?
n o m? =3 2 =Y (c -1 =31(2c - 1)
m So:2c—1=c*—-(c—-1)*
0 For k=3:¢3-(c-1)3=3c2-3c+1
= Generally: Estimate = n (c* — (c — 1)%)
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Combining Samples

m |In practice:
0 Compute f(X) = n(2c- 1) for
as many variables X as you can fit in memory
0 Average them

m Problem: Streams never end

0 We assumed there was a number n,
the number of positions in the stream

0 But real streams go on forever, son is
a variable — the number of inputs seen so far
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Streams Never End: Fixups

(1) f(X)=n (2c-1) has n as a factor —
keep n separately; just hold the count cin X

(2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:

Objective: Each starting time t is selected with
probability k/n

Solution: (fixed-size sampling = reservoir sampling!)
m Choose the first k elements for k variables

s When the nth element arrives (n > k), choose it with
probability k/n

m |f you choose it, throw one of the previously stored variables
X out, with equal probability
U Kang
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Counting Itemsets

m New Problem: Given a stream, how can we find
recent frequent items (= which appear more
than s times in the window) efficiently?
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Counting Itemsets

m New Problem: Given a stream, which items
appear more than s times in the window?

m Possible solution: Think of the stream of baskets
as one binary stream per item
o 1 =item present; 0 = not present

o Use DGIM to estimate counts of 1s for all items
6 10
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Extensions

= In principle, you could count frequent pairs or
even larger sets the same way

o One stream per itemset

a E.g., for a basket {i, j, k}, assume 7 independent
streams: (i) (j) (k) (i, j) (i, k) (j, k) (i, j, k)

m Drawback:
o Number of itemsets is way too big
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&) Exponentially Decaying Windows

m Exponentially decaying windows: A heuristic for
selecting likely frequent item(sets)

o What are “currently” most popular movies?
m Instead of computing the raw count in last N elements
m Compute a smooth aggregation over the whole stream

m If streamis a,, @,,... and we are taking the sum of
the stream, take the answer at time t to be: =
t t—i
Zi=1 a;(1-rc)
m Cis aconstant, presumably tiny, like 10 or 10-°

s When new a,,, arrives:
Multiply current sum by (1-c) and add a,,,

U Kang



Example: Counting Items

m If each a;is an “item” we can compute the
characteristic function of each possible
item x as an Exponentially Decaying Window
0 Thatis: Y, 8;- (1 —¢)t?
where 6,=1 if a;=x, and 0 otherwise

o Imagine that for each item x we have a binary stream (1
if x appears, 0 if x does not appear)

0 New item x arrives:

= Multiply all counts by (1-c) Note: Assume we are
m Add +1 to count for element x interested in

= Remove all items whose weights < s items with weights = s

m Call this sum the “weight” of item x

U Kang



T

R

o
N
2
’{0;,

J
A
"—\)xéx - -
” Example: Counting Items
Time: 1 2 3 4 5 6 7
—0—0—0—0—000— 00—
Stream: X 'y X zZ X zZ X
Zai-(l—c)t‘i Assume ¢ = 0.2,
- Keep items with weights > 1/2
m (T1) x:

m (T2)x: 08*1y1

m (T3)x:0.8%0.8+1,y:0.8*1

m (T4)x:0.8%1.64,y:0.8%0.8,z=1

m (T5)x:1.312+1, y: 0.8*0.64=0.512, z: 0.8*1
m (T6)x:0.8%2.312,y:0.8*0.512,2z:0.8*0.8 +1

o Removey

m (T7)x:0.8%1.8496+1, z: 0.8*1.64
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=" Sliding vs. Decaying Windows

1/c
m Important property: Sum over all weights

Y (1—-c)ltis1/[1-(1-c)]=1/c
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Example: Counting Items

m What are “currently” most popular movies?

m Suppose we want to find movies of weight > %5

0 Important property: Sum over all weights Y,,(1 — ¢)t is
1/[1-(1-¢)] = 1/c

m Thus:

o There cannot be more than 2/c movies with
weight > %

m So, 2/cis a limit on the number of
movies being counted at any time (if we remove
movies whose weight <= )
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Extension to Iltemsets

m Assume at each time we are given an itemset
D E‘g'l {il jl k}l {kl X}I {ilj}

m Count (some) itemsets in an E.D.W.
2 What are currently “hot” itemsets?

2o Problem: Too many itemsets to keep counts of
all of them in memory

U Kang
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Extension to Iltemsets

m Count (some) itemsets in an E.D.W.
2 What are currently “hot” itemsets?

o Problem: Too many itemsets to keep counts of
all of them in memory

m When a basket B comes in:
a2 Multiply all counts by (1-c)
0 For uncounted items in B, create new count

o Add 1 to count of any item in B and to any itemset
contained in B that is already being counted

20 Remove items and itemsets whose counts < ¥

a Initiate new counts (next slide)
U Kang



k

¢

LTI

)
-

l =,
3
<«

RIES

X

144
E"" .

PSS
Elfs
Foe

2N

Initiation of New Counts

m Start a count for an itemset S & B if every proper
subset of S had a count prior to arrival of basket B

0 Intuitively: If all subsets of S are being counted this

means they are “frequent/hot” and thus S has a
potential to be “hot”

m Example:

a Start counting S={j, j} iff both i and j were counted prior
to seeing B

a Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} were all
counted prior to seeing B
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Summary — Stream Mining

m Important tools for stream mining

d

o 0O 0O O

Sampling from Data Stream (Reservoir Sampling)

Querying Over Sliding Windows (DGIM method for
counting the number of 1s or sums in the window)

Filtering a Data Stream (Bloom Filter)
Counting Distinct Elements (Flajolet-Martin)
Estimating Moments (AMS method; surprise number)

Counting Frequent Itemsets (exponentially decaying
windows)
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Questions?



