

#### **Introduction to Data Mining**

#### **Mining Data Streams-3**

#### U Kang Seoul National University

U Kang





## Estimating Moments Counting Frequent Items



#### **Generalization: Moments**

- Suppose a stream has elements chosen from a set A of N values
- Let m<sub>i</sub> be the number of times value i occurs in the stream
- The  $k^{\text{th}}$  moment is  $\sum_{i \in A} (m_i)^k$
- E.g., for a stream (x, y, x, y, z, z, z, x, z),
   The 2<sup>nd</sup> moment is 3<sup>2</sup> + 2<sup>2</sup> + 4<sup>2</sup> = 29
   (x appears 3 times, y appears 2 times, z appears 4 times)



#### **Special Cases**

 $\sum_{i \in A} (m_i)^k$ 

- Othmoment = number of distinct elements
  - The problem considered in the last lecture

#### 1<sup>st</sup> moment = count of the numbers of elements

- = length of the stream
- Easy to compute
- 2<sup>nd</sup> moment = surprise number S =

a measure of how uneven the distribution is



## **Example: Surprise Number**

- Stream of length 100
- 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 Surprise
  5 = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 Surprise
  S = 8,110



## **Problem Definition**

- Q: Given a stream, how can we estimate k-th moments efficiently, with small memory space?
- A: AMS method



#### **AMS Method**

- AMS method works for all moments
- Gives an unbiased estimate
- We first concentrate on the 2<sup>nd</sup> moment *S*
- We pick and keep track of many variables X:
  - For each variable X we store X.el and X.val
    - X.el corresponds to the item i
    - X.val corresponds to the count of item i
  - Note this requires a count in main memory, so number of *X*s is limited
- Our goal is to compute  $S = \sum_i m_i^2$



## **One Random Variable (X)**

#### How to set X.val and X.el?

- □ Assume stream has length *n* (we relax this later)
- Pick some random time *t* (*t<n*) to start, so that any time is equally likely
- If the stream has item *i at* time *t*, *we set X.el = i*
- Then we maintain count *c* (*X.val* = *c*) of the number of *is* in the stream starting from the chosen time *t*
- Then the estimate of the 2<sup>nd</sup> moment ( $\sum_i m_i^2$ ) is:  $S = f(X) = n (2 \cdot c - 1)$ 
  - Note, we will keep track of multiple Xs,  $(X_1, X_2, ..., X_k)$ and our final estimate will be  $S = \frac{1}{k} \sum_{j=1}^{k} f(X_j)$



#### **Expectation Analysis**



#### • 2<sup>nd</sup> moment is $S = \sum_i m_i^2$

*c<sub>t</sub>* ... number of times item at time *t* appears from time *t* onwards (*c<sub>1</sub>=m<sub>a</sub>*, *c<sub>2</sub>=m<sub>a</sub>-1*, *c<sub>3</sub>=m<sub>b</sub>*)

• 
$$E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$$
  
 $= \sum_i (1 + 3 + 5 + \dots + 2m_i - 1)$   
Group times  
by the value  
seen  $(c_t=1)$   
Time t when  
the last i is  
seen  $(c_t=2)$   
Time t when  
the seen  $(c_t=m_i)$   
Time t when  
the penultimate  
is seen  $(c_t=m_i)$ 



#### **Expectation Analysis**



- So,  $E[f(X)] = \sum_{i} (m_i)^2 = S$
- We have the second moment (in expectation)!



## **Higher-Order Moments**

- For estimating k<sup>th</sup> moment we essentially use the same algorithm but change the estimate:
  - □ For **k=2** we used *n* (2·c − 1)
  - □ For **k=3** we use: *n* (3·c<sup>2</sup> 3c + 1) (where c=X.val)

#### Why?

- □ For k=2: Remember we had  $(1 + 3 + 5 + \dots + 2m_i 1)$ and we showed terms **2c-1** (for c=1,...,m) sum to  $m^2$ 
  - $m^2 = \sum_{c=1}^m c^2 \sum_{c=1}^m (c-1)^2 = \sum_{c=1}^m (2c-1)$
  - So:  $2c 1 = c^2 (c 1)^2$
- **For k=3:**  $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate =  $n (c^k (c 1)^k)$



## **Combining Samples**

#### In practice:

 Compute f(X) = n(2 c - 1) for as many variables X as you can fit in memory

Average them

#### Problem: Streams never end

- We assumed there was a number *n*,
   the number of positions in the stream
- But real streams go on forever, so *n* is a variable – the number of inputs seen so far



#### **Streams Never End: Fixups**

- (1) f(X)= n (2c-1) has n as a factor –
   keep n separately; just hold the count c in X
- (2) Suppose we can only store k counts.
   We must throw some X out as time goes on:
  - Objective: Each starting time t is selected with probability k/n
  - Solution: (fixed-size sampling = reservoir sampling!)
    - Choose the first *k* elements for *k* variables
    - When the n<sup>th</sup> element arrives (n > k), choose it with probability k/n
    - If you choose it, throw one of the previously stored variables
       X out, with equal probability





- Estimating Moments
- ➡ □ Counting Frequent Items



## **Counting Itemsets**

New Problem: Given a stream, how can we find recent frequent items (= which appear more than s times in the window) efficiently?



## **Counting Itemsets**

- New Problem: Given a stream, which items appear more than s times in the window?
- Possible solution: Think of the stream of baskets as one binary stream per item
  - **1** = item present; **0** = not present
  - Use DGIM to estimate counts of 1s for all items





#### Extensions

- In principle, you could count frequent pairs or even larger sets the same way
  - One stream per itemset
  - E.g., for a basket {i, j, k}, assume 7 independent streams: (i) (j) (k) (i, j) (i, k) (j, k) (i, j, k)

Drawback:

Number of itemsets is way too big



- Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)
  - What are "currently" most popular movies?
    - Instead of computing the raw count in last N elements
    - Compute a smooth aggregation over the whole stream
- If stream is  $a_1, a_2, \dots$  and we are taking the sum of the stream, take the answer at time t to be: =  $\sum_{i=1}^{t} a_i (1-c)^{t-i}$

c is a constant, presumably tiny, like 10<sup>-6</sup> or 10<sup>-9</sup>

#### When new a<sub>t+1</sub> arrives: Multiply current sum by (1-c) and add a<sub>t+1</sub>



## **Example: Counting Items**

- If each *a<sub>i</sub>* is an "item" we can compute the characteristic function of each possible item *x* as an Exponentially Decaying Window
  - That is:  $\sum_{i=1}^{t} \delta_i \cdot (1-c)^{t-i}$ where  $\delta_i = 1$  if  $a_i = x$ , and 0 otherwise
  - Imagine that for each item *x* we have a binary stream (1 if *x* appears, 0 if *x* does not appear)
  - New item x arrives:
    - Multiply all counts by (1-c)
    - Add +1 to count for element x
    - Remove all items whose weights < s</p>

#### Call this sum the "weight" of item x

Note: Assume we are interested in items with weights  $\geq$  s



## **Example: Counting Items**



$$\sum_{i=1}^t \delta_i \cdot (1-c)^{t-i}$$

Assume c = 0.2, Keep items with weights  $\geq 1/2$ 

- (T2) x: 0.8\*1, y: 1
- (T3) x: 0.8\*0.8 + 1, y: 0.8\*1
- (T4) x: 0.8\*1.64, y: 0.8\*0.8, z = 1
- (T5) x: 1.312+1, y: 0.8\*0.64=0.512, z: 0.8\*1
- (T6) x: 0.8\*2.312, y: 0.8\*0.512, z:0.8\*0.8 + 1

Remove y

(T7) x: 0.8\*1.8496+1, z: 0.8\*1.64



# **Sliding vs. Decaying Windows** 1/c

■ Important property: Sum over all weights  $\sum_t (1-c)^t$  is 1/[1-(1-c)] = 1/c



## **Example: Counting Items**

- What are "currently" most popular movies?
- Suppose we want to find movies of weight > ½
  - □ Important property: Sum over all weights  $\sum_t (1-c)^t$  is 1/[1-(1-c)] = 1/c

#### Thus:

- There cannot be more than 2/c movies with weight > ½
- So, 2/c is a limit on the number of movies being counted at any time (if we remove movies whose weight <= ½)</p>



#### **Extension to Itemsets**

- Assume at each time we are given an itemset
   E.g., {i, j, k}, {k, x}, {i,j}
- Count (some) itemsets in an E.D.W.
  - What are currently "hot" itemsets?
  - Problem: Too many itemsets to keep counts of all of them in memory



#### **Extension to Itemsets**

- Count (some) itemsets in an E.D.W.
  - What are currently "hot" itemsets?
  - Problem: Too many itemsets to keep counts of all of them in memory
- When a basket B comes in:
  - Multiply all counts by (1-c)
  - □ For uncounted items in **B**, create new count
  - Add 1 to count of any item in B and to any itemset contained in B that is already being counted
  - Remove items and itemsets whose counts < ½</p>
  - Initiate new counts (next slide)



## **Initiation of New Counts**

- Start a count for an itemset S Government B if every proper subset of S had a count prior to arrival of basket B
  - Intuitively: If all subsets of S are being counted this means they are "frequent/hot" and thus S has a potential to be "hot"

#### Example:

- Start counting S={i, j} iff both i and j were counted prior to seeing B
- Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} were all counted prior to seeing B



## Summary – Stream Mining

- Important tools for stream mining
  - Sampling from Data Stream (Reservoir Sampling)
  - Querying Over Sliding Windows (DGIM method for counting the number of 1s or sums in the window)
  - Filtering a Data Stream (Bloom Filter)
  - Counting Distinct Elements (Flajolet-Martin)
  - Estimating Moments (AMS method; surprise number)
  - Counting Frequent Itemsets (exponentially decaying windows)



## **Questions?**

U Kang