
U Kang

Introduction to Data Mining

Mining Data Streams-2

U Kang
Seoul National University

U Kang

In This Lecture

 More algorithms for streams:

 (1) Filtering a data stream: Bloom filters

 Select elements with property x from stream

 (2) Counting distinct elements: Flajolet-Martin

 Number of distinct elements in the last k elements
of the stream

U Kang

Outline

Filtering Data Stream

Counting Distinct Elements

U Kang

Motivating Applications

 Example: Email spam filtering

 We know 1 billion “good” email addresses

 If an email comes from one of these, it is NOT spam

 Publish-subscribe systems

 You are collecting lots of messages (news articles)

 People express interest in certain sets of keywords

 Determine whether each message matches user’s
interest

U Kang

Filtering Data Streams

 Each element of data stream is a tuple

 Given a list of keys S

 Determine which tuples of stream are in S

 Obvious solution: Hash table

 But suppose we do not have enough memory to store
all of S in a hash table

 E.g., we might be processing millions of filters on the same
stream

U Kang

First Cut Solution (1)

 Given a set of keys S that we want to filter

 Create a bit array B of n bits, initially all 0s

 Choose a hash function h with range [0,n)

 Hash each member of s S to one of
n buckets, and set that bit to 1, i.e., B[h(s)]=1

 Hash each element a of the stream and output
only those that hash to bit that was set to 1

 Output a if B[h(a)] == 1

U Kang

First Cut Solution (2)

 Creates false positives but no false negatives

 If the item is in S we surely output it, if not we may still
output it

Item

0010001011000

Output the item since it may be in S.

Item hashes to a bucket that at least

one of the items in S hashed to.

Hash

func

h

Drop the item.

It hashes to a bucket set

to 0 so it is surely not in S.

Bit array B

U Kang

First Cut Solution (3)

 |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

 If the email address is in S, then it surely hashes to a
bucket that has the bit set to 1,
so it always gets through (no false negatives)

 Approximately 1/8 of the bits are set to 1, so about
1/8th of the addresses not in S get through to the
output (false positives)
 Actually, less than 1/8th, because more than one address

might hash to the same bit

U Kang

Analysis: Throwing Darts (1)

 More accurate analysis for the number of false
positives

 Consider: If we throw m darts into n equally
likely targets, what is the probability that
a target gets at least one dart?

 In our case:

 Targets = bits/buckets

 Darts = hash values of items

U Kang

Analysis: Throwing Darts (2)

 We have m darts, n targets

 What is the probability that a target gets at least
one dart?

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n(/ n)

Equivalent
Equals 1/e
as n ∞

1 – e–m/n

U Kang

Analysis: Throwing Darts (3)

 Fraction of 1s in the array B =
= probability of false positive = 1 – e-m/n

 Example: 109 darts, 8∙109 targets

 Fraction of 1s in B = 1 – e-1/8 = 0.1175

 Compare with our earlier estimate: 1/8 = 0.125

U Kang

Bloom Filter

 Consider: |S| = m, |B| = n

 Use k independent hash functions h1 ,…, hk

 Initialization:

 Set B to all 0s

 Hash each element s S using each hash function hi, set
B[hi(s)] = 1 (for each i = 1,.., k)

 Run-time:

 When a stream element with key x arrives

 If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S

 That is, x hashes to a bucket set to 1 for every hash function hi(x)

 Otherwise discard the element x

(note: we have a

single array B!)

U Kang

Bloom Filter -- Analysis

 What fraction of the bit vector B are 1s?

 Throwing k∙m darts at n targets

 So fraction of 1s is (1 – e-km/n)

 But we have k independent hash functions
and we only let the element x through if all k hash
element x to a bucket of value 1

 So, false positive probability = (1 – e-km/n)k

U Kang

Bloom Filter – Analysis (2)

 m = 1 billion, n = 8 billion
 k = 1: (1 – e-1/8) = 0.1175

 k = 2: (1 – e-1/4)2 = 0.0493

 What happens as we
keep increasing k?

 “Optimal” value of k: n/m ln(2)
 In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

 Error at k = 6: (1 – e-6/8)6 = 0.0216

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of hash functions, k

F
a
ls

e
 p

o
s
it

iv
e
 p

ro
b

.

U Kang

Bloom Filter: Wrap-up

 Bloom filters guarantee no false negatives, and
use limited memory

 Great for pre-processing before more expensive checks

 Suitable for hardware implementation

 Hash function computations can be parallelized

 Is it better to have 1 big B or k small Bs?

 They are the same: (1 – e-km/n)k vs. (1 – e-m/(n/k))k

 But keeping 1 big B is simpler

U Kang

Outline

Filtering Data Stream

Counting Distinct Elements

U Kang

Motivating Applications

 How many different words are found among the
Web pages being crawled at a site?

 Unusually low or high numbers could indicate artificial
pages (spam?)

 How many different Web pages does each
customer request in a week?

 How many distinct products have we sold in the
last week?

U Kang

Counting Distinct Elements

 Problem:

 Data stream consists of a universe of elements chosen
from a set of size N

 Maintain a count of the number of distinct elements
seen so far

 Obvious approach:
Maintain the set of elements seen so far

 That is, keep a hash table of all the distinct elements
seen so far

U Kang

Using Small Storage

 Real problem: What if we do not have space
to maintain the set of elements seen so far?

 Estimate the count in an unbiased way

 Accept that the count may have a little error, but
limit the probability that the error is large

U Kang

Flajolet-Martin Approach

 Hash each item x to a bit, using exponential
distribution

 ½ map to bit 0, ¼ map to bit 1, …

 Let R be the position of the least ‘0’ bit

 [Flajolet, Martin] : the number of distinct items is
2R/φ, where φ is a constant

U Kang

Intuition

 Hash each item x to a bit, using exponential
distribution: ½ map to bit 0, ¼ map to bit 1, …

 Intuition

 The 0th bit is accessed with prob. 1/2

 The 1st bit is accessed with prob. 1/4

 … The kth bit is accessed with prob. O(1/2k)

 Thus, if the kth bit is set, then we know that an
event with prob. O(1/2k) happened

 => We inserted distinct items O(2k) times

U Kang

Improving Accuracy

 Hash each item x to a bit, using exponential
distribution: ½ map to bit 0, ¼ map to bit 1, …

 Map each item to k different bitstrings, and we
compute the average least ‘0’ bit position b: # of
items = 2b/φ
=> decrease the variance

 The final estimate: 2b / (0.77351 * bias)
 b : average least zero bit in the bitmask

 bias : 1+.31/k for k different mappings

U Kang

Random Hash Function

 Hash each item x to a bit, using exponential distribution
 ½ map to bit 0, ¼ map to bit 1, …

 How can we get this function?
 Typically, a hash function maps an item to a random bucket

 Answer: use linear hash functions. Pick random (ai,, bi)
and then the hash function is:
 lhashi(x) = ai * x + bi

 This gives uniform distribution over the bits

 To make this exponential, define
 hashi(x) = least zero bit index in lhashi(x) (in binary format)

U Kang

Storage Requirement

 Flajolet-Martin:

 Let R be the position of the least ‘0’ bit

 The number of distinct items is 2R/φ, where φ is a
constant

 How much storage do we need?

 R bits are required to count a set with 2R/φ = O(2R)
distinct items.

 Thus, given a set with N distinct items, we need only
O(log N) bits

U Kang

What You Need to Know

 Filtering a data stream

 Select elements with property x from stream

 Bloom filters enable ‘quick and dirty’ membership test:
no false negatives but small false positives

 Counting distinct elements

 Number of distinct elements in the last k elements
of the stream

 Flajolet-Martin: use only O(log N) bits to count O(N)
items

U Kang

Questions?

