
U Kang

Introduction to Data Mining

Mining Data Streams-1

U Kang
Seoul National University

U Kang

Outline

Overview

Sampling From Data Stream

Queries Over Sliding Window

U Kang

Data Streams

 In many data mining situations, we do not know
the entire data set in advance

 Stream Management is important when the
input rate is controlled externally:

 Google queries

 Twitter or Facebook status updates

 We can think of the data as infinite and
non-stationary (the distribution changes
over time)

U Kang

The Stream Model

 Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
 We call elements of the stream tuples

 The system cannot store the entire stream
accessibly
 The data do not fit in memory

 Storing and accessing disks are slow

 Q: How do you make critical calculations about the
stream using a limited amount of (secondary)
memory?

U Kang

General Stream Processing Model

Processor

Limited

Working

Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0

time

Streams Entering.

Each stream is

composed of

elements/tuples

Ad-Hoc

Queries

Output

Archival

Storage

Standing

Queries

U Kang

Problems on Data Streams

 Types of queries one wants on answer on
a data stream:

 Sampling data from a stream

 Construct a random sample

 Queries over sliding windows

 Number of items of type x in the last k elements
of the stream

U Kang

Problems on Data Streams

 Types of queries one wants on answer on
a data stream:

 Filtering a data stream

 Select elements with property x from the stream

 Counting distinct elements

 Number of distinct elements in the last k elements
of the stream

 Estimating moments

 Estimate avg./std. dev. of last k elements

 Finding frequent elements

U Kang

Applications (1)

 Mining query streams

 Google wants to know what queries are more frequent
today than yesterday

 Mining click streams

 Yahoo wants to know which of its pages are getting an
unusual number of hits in the past hour

 Mining social network news feeds

 E.g., look for trending topics on Twitter, Facebook

U Kang

Applications (2)

 Sensor Networks
 Many sensors feeding into a central controller

 Humidity, temperature, water leak, …

 Telephone call records
 Data feed into customer bills as well as settlements

between telephone companies

 IP packets monitored at a switch
 Gather information for optimal routing

 Detect denial-of-service attacks

U Kang

Outline

Overview

Sampling From Data Stream

Queries Over Sliding Window

U Kang

Sampling from a Data Stream

 Since we can not store the entire stream,
one obvious approach is to store a sample

 Two different problems:

 (1) Sample a fixed proportion of elements
in the stream (say 1 in 10)

 (2) Maintain a random sample of fixed size
over a potentially infinite stream

 At any “time” k we would like a random sample
of s elements

 What is the property of the sample we want to maintain?
For all time steps k, each of k elements seen so far has
equal prob. of being sampled

As the stream grows the sample
also gets bigger

U Kang

Sampling a Fixed Proportion

 Problem 1: Sampling fixed proportion

 Scenario: Search engine query stream
 Stream of tuples: (user, query, time)

 Answer questions such as: How often did a user run the
same query in a single day
 = How often did a user run the same query at least twice?

 Have space to store 1/10th of query stream

 Naïve solution:
 Generate a random integer in [0..9] for each query

 Store the query if the integer is 0, otherwise discard

U Kang

Problem with Naïve Approach

 Simple question: What fraction of queries by an
average search engine user are duplicates?
 Suppose each user issues x queries once and d queries twice

(total of x+2d queries)
 Correct answer: d/(x+d)

 Proposed solution: We keep 10% of the queries
 Sample will contain x/10 of the singleton queries and

d*19/100 of the duplicate queries at least once

 But only d/100 pairs of duplicates

 d/100 = 1/10 ∙ 1/10 ∙ d

 Of d “duplicates” 18d/100 appear exactly once
 18d/100 = ((1/10 ∙ 9/10)+(9/10 ∙ 1/10)) ∙ d

 So the sample-based answer is
𝑑

100
𝑥

10
+

𝑑

100
+
18𝑑

100

=
𝒅

𝟏𝟎𝒙+𝟏𝟗𝒅

U Kang

Solution: Sample Users

Solution:

 Pick 1/10th of users and take all their
searches in the sample

 Use a hash function that hashes the
user name or user id uniformly into 10 buckets

U Kang

Generalized Solution

 Stream of tuples with keys:

 Key is some subset of each tuple’s components

 e.g., tuple is (user, search, time); key is user

 Choice of key depends on application

 To get a sample of a/b fraction of the stream:

 Hash each tuple’s key uniformly into b buckets

 Pick the tuple if its hash value is at most a

E.g., How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

As the stream grows, the sample is of
fixed size

U Kang

Maintaining a fixed-size sample

 Problem 2: Fixed-size sample

 Suppose we need to maintain a random
sample S of size exactly s tuples

 E.g., main memory size constraint

 Why? Don’t know length of stream in advance

 Suppose at time n we have seen n items

 Each item is in the sample S with equal prob. s/n
How to think about the problem: say s = 2

Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

U Kang

 Algorithm (a.k.a. Reservoir Sampling)

 Store all the first s elements of the stream to S

 Suppose we have seen n-1 elements, and now
the nth element arrives (n > s)

 With probability s/n, keep the nth element, else discard it

 If we picked the nth element, then it replaces one of the
s elements in the sample S, picked uniformly at random

 Claim: This algorithm maintains a sample S
with the desired property:
 After n elements, the sample contains each element seen so far with

probability s/n

Solution: Fixed Size Sample
Very Clever!

U Kang

Proof: By Induction

 We prove this by induction:
 Assume that after n elements, the sample contains each

element seen so far with probability s/n

 We need to show that after seeing the n+1 th element
the sample maintains the property
 Sample contains each element seen so far with probability

s/(n+1)

 Base case:
 After we see n=s elements the sample S has the desired

property
 Each out of n=s elements is in the sample with probability s/s = 1

U Kang

Proof: By Induction

 Inductive hypothesis: After n elements, the sample
S contains each element seen so far with prob. s/n

 Now n+1 th element arrives

 Inductive step: For elements already in S,
probability that the algorithm keeps it in S is:

 So, at time n, tuples in S were there with prob. s/n

 Time nn+1, tuple stayed in S with prob. n/(n+1)

 So prob. tuple is in S at time n+1 =
𝒔

𝒏
⋅

𝒏

𝒏+𝟏
=

𝒔

𝒏+𝟏

1

1

11
1










 






















n

n

s

s

n

s

n

s

Element n+1 discarded Element n+1

not discarded

Element in the

sample not picked

U Kang

Discussion

 Claim: At any time t, all the elements are given an
equal probability s/t to be included in the samples

 Is the above claim true for the item that belongs to
the samples at time n, and survived at time n+1?
Yes (previous slide)

 Is the above claim true for the (n+1)th item?

 The (n+1)th item may be discarded or included

U Kang

Outline

Overview

Sampling From Data Stream

Queries Over Sliding Window

U Kang

Sliding Windows

 A useful model of stream processing is that queries
are about a window of length N –
the N most recent elements received

 Interesting case: N is so large that the data cannot
be stored in memory, or even on disk
 Or, there are so many streams that windows for all cannot

be stored

 Amazon example:
 For every product X we keep 0/1 stream of whether that

product was sold in the n-th transaction

 We want to answer queries, how many times have we sold
X in the last k sales

U Kang

Sliding Window: 1 Stream

 Sliding window on a single stream:

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

U Kang

Counting Bits (1)

 Problem:

 Given a stream of 0s and 1s

 Be prepared to answer queries of the form
How many 1s are in the last k bits? where k≤ N

 Obvious solution:
Store the most recent N bits

 When new bit comes in, discard the N+1st bit

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

Suppose N=6

U Kang

Counting Bits (2)

 You can not get an exact answer without storing
the entire window

 Real Problem:
What if we cannot afford to store N bits?

 E.g., we’re processing 1 billion streams and
N = 1 billion

 But we are happy with an approximate answer

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

U Kang

An attempt: Simple solution

 Q: How many 1s are in the last N bits?

 A simple solution that does not really solve our
problem: Uniformity assumption

 Maintain 2 counters:

 S: number of 1s from the beginning of the stream

 Z: number of 0s from the beginning of the stream

 How many 1s are in the last N bits? 𝑵 ∙
𝑺

𝑺+𝒁

 But, what if stream is non-uniform?

 What if distribution changes over time?

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

Past Future

U Kang

DGIM Method

 DGIM solution that does not assume uniformity

 We store 𝑶(log𝟐𝑵) bits per stream

 Solution gives approximate answer,
never off by more than 50%

 Error factor can be reduced to any fraction > 0, with
more complicated algorithm and proportionally more
stored bits

[Datar, Gionis, Indyk, Motwani]

U Kang

DGIM method

 Main Idea: summarize blocks with specific
number of 1s, where the block sizes (number of
1s) increase exponentially

1001010110001011010101010101011010101010101110101010111010100010110010

N

[Datar, Gionis, Indyk, Motwani]

U Kang

DGIM: Timestamps

 Each bit in the stream has a timestamp, starting
1, 2, …

 Record timestamps modulo N (the window size),
so we can represent any relevant timestamp in
𝑶(𝒍𝒐𝒈𝟐𝑵) bits

U Kang

DGIM: Buckets

 A bucket in the DGIM method is a record
consisting of:

 (A) The timestamp of its end [O(log N) bits]

 (B) The number of 1s between its beginning and end
[O(log log N) bits]

 Proof: see below

 Constraint on buckets:
Number of 1s must be a power of 2

 That explains the O(log log N) in (B) above
1001010110001011010101010101011010101010101110101010111010100010110010

N

U Kang

 Either one or two buckets with the same power-
of-2 number of 1s

 Buckets do not overlap in timestamps

 Buckets are sorted by size

 Earlier buckets are not smaller than later buckets

 Buckets disappear when their
end-time is > N time units in the past

Representing a Stream by Buckets

U Kang

Example: Bucketized Stream

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Three properties of buckets that are maintained:
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

U Kang

Storage Requirement

 The total number of buckets is O(log N). (why?)

 Each bucket requires O(log N) bits

 (A) The timestamp of its end [O(log N) bits]

 (B) The number of 1s between its beginning and end
[O(log log N) bits]

 Thus, the total storage requirement is

O(log N) * O(log N) = O(log2 N)

U Kang

Updating Buckets (1)

 When a new bit comes in, drop the last (oldest)
bucket if its end-time is prior to N time units
before the current time

 2 cases: Current bit is 0 or 1

 If the current bit is 0:
no other changes are needed

U Kang

Updating Buckets (2)

 If the current bit is 1:

 (1) Create a new bucket of size 1, for just this bit

 End timestamp = current time

 (2) If there are now three buckets of size 1, combine
the oldest two into a bucket of size 2

 (3) If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4

 (4) And so on …

U Kang

Example: Updating Buckets

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging

U Kang

How to Query?

 To estimate the number of 1s in the most
recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

 Remember: We do not know how many 1s
of the last bucket are still within the wanted
window

U Kang

Example: Bucketized Stream

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

1001010110001011010101010101011010101010101110101010111010100010110010

U Kang

Error Bound: Proof

 Why is error 50%? Let’s prove it!
 Suppose the last bucket has size 2r

 Then by assuming 2r-1 (i.e., half) of its 1s are still
within the window, we make an error of at most
2r-1

 Since there is at least one bucket of each of the
sizes less than 2r, the true sum is at least
1 + 2 + 4 + .. + 2r-1 = 2r -1

 Thus, error is at most 50%

111111110000000011101010101011010101010101110101010111010100010110010

N

At least 16 1s

U Kang

Further Reducing the Error

 Instead of maintaining 1 or 2 of each size bucket,
we allow either x-1 or x buckets (x > 2)

 Except for the largest size buckets; we can have any
number between 1 and x of those

 Error is at most O(1/x)

 By picking x appropriately, we can tradeoff
between number of bits we store and the error

 Increasing x => more memory space, less error

U Kang

Extensions

 Can we use the same trick to answer queries
How many 1’s in the last k? where k < N?

 A: Find earliest bucket B that overlaps with k.
Number of 1s is the sum of sizes of more recent
buckets + ½ size of B

 Can we handle the case where the stream is not
bits, but integers, and we want the sum of the
last k elements?

1001010110001011010101010101011010101010101110101010111010100010110010

k

U Kang

Extensions

 Stream of positive integers

 We want the sum of the last k elements

 Amazon: Avg. price of last k sales

 Solution:

 If you know all integers have at most m bits

 Treat m bits of each integer as a separate stream

 Use DGIM to count 1s in each integer

 The sum is = σ𝑖=0
𝑚−1 𝑐𝑖2

𝑖

ci …estimated count for i-th bit

U Kang

What You Need to Know

 Sampling a fixed proportion of a stream

 Sample size grows as the stream grows

 Sampling a fixed-size sample

 Reservoir sampling

 Counting the number of 1s in the last N elements

 Exponentially increasing windows

 Extensions:

 Number of 1s in any last k (k < N) elements

 Sums of integers in the last N elements

U Kang

Questions?

