
U Kang

Introduction to Data Mining

Mining Data Streams-1

U Kang
Seoul National University

U Kang

Outline

Overview

Sampling From Data Stream

Queries Over Sliding Window

U Kang

Data Streams

 In many data mining situations, we do not know
the entire data set in advance

 Stream Management is important when the
input rate is controlled externally:

 Google queries

 Twitter or Facebook status updates

 We can think of the data as infinite and
non-stationary (the distribution changes
over time)

U Kang

The Stream Model

 Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
 We call elements of the stream tuples

 The system cannot store the entire stream
accessibly
 The data do not fit in memory

 Storing and accessing disks are slow

 Q: How do you make critical calculations about the
stream using a limited amount of (secondary)
memory?

U Kang

General Stream Processing Model

Processor

Limited

Working

Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0

time

Streams Entering.

Each stream is

composed of

elements/tuples

Ad-Hoc

Queries

Output

Archival

Storage

Standing

Queries

U Kang

Problems on Data Streams

 Types of queries one wants on answer on
a data stream:

 Sampling data from a stream

 Construct a random sample

 Queries over sliding windows

 Number of items of type x in the last k elements
of the stream

U Kang

Problems on Data Streams

 Types of queries one wants on answer on
a data stream:

 Filtering a data stream

 Select elements with property x from the stream

 Counting distinct elements

 Number of distinct elements in the last k elements
of the stream

 Estimating moments

 Estimate avg./std. dev. of last k elements

 Finding frequent elements

U Kang

Applications (1)

 Mining query streams

 Google wants to know what queries are more frequent
today than yesterday

 Mining click streams

 Yahoo wants to know which of its pages are getting an
unusual number of hits in the past hour

 Mining social network news feeds

 E.g., look for trending topics on Twitter, Facebook

U Kang

Applications (2)

 Sensor Networks
 Many sensors feeding into a central controller

 Humidity, temperature, water leak, …

 Telephone call records
 Data feed into customer bills as well as settlements

between telephone companies

 IP packets monitored at a switch
 Gather information for optimal routing

 Detect denial-of-service attacks

U Kang

Outline

Overview

Sampling From Data Stream

Queries Over Sliding Window

U Kang

Sampling from a Data Stream

 Since we can not store the entire stream,
one obvious approach is to store a sample

 Two different problems:

 (1) Sample a fixed proportion of elements
in the stream (say 1 in 10)

 (2) Maintain a random sample of fixed size
over a potentially infinite stream

 At any “time” k we would like a random sample
of s elements

 What is the property of the sample we want to maintain?
For all time steps k, each of k elements seen so far has
equal prob. of being sampled

As the stream grows the sample
also gets bigger

U Kang

Sampling a Fixed Proportion

 Problem 1: Sampling fixed proportion

 Scenario: Search engine query stream
 Stream of tuples: (user, query, time)

 Answer questions such as: How often did a user run the
same query in a single day
 = How often did a user run the same query at least twice?

 Have space to store 1/10th of query stream

 Naïve solution:
 Generate a random integer in [0..9] for each query

 Store the query if the integer is 0, otherwise discard

U Kang

Problem with Naïve Approach

 Simple question: What fraction of queries by an
average search engine user are duplicates?
 Suppose each user issues x queries once and d queries twice

(total of x+2d queries)
 Correct answer: d/(x+d)

 Proposed solution: We keep 10% of the queries
 Sample will contain x/10 of the singleton queries and

d*19/100 of the duplicate queries at least once

 But only d/100 pairs of duplicates

 d/100 = 1/10 ∙ 1/10 ∙ d

 Of d “duplicates” 18d/100 appear exactly once
 18d/100 = ((1/10 ∙ 9/10)+(9/10 ∙ 1/10)) ∙ d

 So the sample-based answer is
𝑑

100
𝑥

10
+

𝑑

100
+
18𝑑

100

=
𝒅

𝟏𝟎𝒙+𝟏𝟗𝒅

U Kang

Solution: Sample Users

Solution:

 Pick 1/10th of users and take all their
searches in the sample

 Use a hash function that hashes the
user name or user id uniformly into 10 buckets

U Kang

Generalized Solution

 Stream of tuples with keys:

 Key is some subset of each tuple’s components

 e.g., tuple is (user, search, time); key is user

 Choice of key depends on application

 To get a sample of a/b fraction of the stream:

 Hash each tuple’s key uniformly into b buckets

 Pick the tuple if its hash value is at most a

E.g., How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

As the stream grows, the sample is of
fixed size

U Kang

Maintaining a fixed-size sample

 Problem 2: Fixed-size sample

 Suppose we need to maintain a random
sample S of size exactly s tuples

 E.g., main memory size constraint

 Why? Don’t know length of stream in advance

 Suppose at time n we have seen n items

 Each item is in the sample S with equal prob. s/n
How to think about the problem: say s = 2

Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

U Kang

 Algorithm (a.k.a. Reservoir Sampling)

 Store all the first s elements of the stream to S

 Suppose we have seen n-1 elements, and now
the nth element arrives (n > s)

 With probability s/n, keep the nth element, else discard it

 If we picked the nth element, then it replaces one of the
s elements in the sample S, picked uniformly at random

 Claim: This algorithm maintains a sample S
with the desired property:
 After n elements, the sample contains each element seen so far with

probability s/n

Solution: Fixed Size Sample
Very Clever!

U Kang

Proof: By Induction

 We prove this by induction:
 Assume that after n elements, the sample contains each

element seen so far with probability s/n

 We need to show that after seeing the n+1 th element
the sample maintains the property
 Sample contains each element seen so far with probability

s/(n+1)

 Base case:
 After we see n=s elements the sample S has the desired

property
 Each out of n=s elements is in the sample with probability s/s = 1

U Kang

Proof: By Induction

 Inductive hypothesis: After n elements, the sample
S contains each element seen so far with prob. s/n

 Now n+1 th element arrives

 Inductive step: For elements already in S,
probability that the algorithm keeps it in S is:

 So, at time n, tuples in S were there with prob. s/n

 Time nn+1, tuple stayed in S with prob. n/(n+1)

 So prob. tuple is in S at time n+1 =
𝒔

𝒏
⋅

𝒏

𝒏+𝟏
=

𝒔

𝒏+𝟏

1

1

11
1

n

n

s

s

n

s

n

s

Element n+1 discarded Element n+1

not discarded

Element in the

sample not picked

U Kang

Discussion

 Claim: At any time t, all the elements are given an
equal probability s/t to be included in the samples

 Is the above claim true for the item that belongs to
the samples at time n, and survived at time n+1?
Yes (previous slide)

 Is the above claim true for the (n+1)th item?

 The (n+1)th item may be discarded or included

U Kang

Outline

Overview

Sampling From Data Stream

Queries Over Sliding Window

U Kang

Sliding Windows

 A useful model of stream processing is that queries
are about a window of length N –
the N most recent elements received

 Interesting case: N is so large that the data cannot
be stored in memory, or even on disk
 Or, there are so many streams that windows for all cannot

be stored

 Amazon example:
 For every product X we keep 0/1 stream of whether that

product was sold in the n-th transaction

 We want to answer queries, how many times have we sold
X in the last k sales

U Kang

Sliding Window: 1 Stream

 Sliding window on a single stream:

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

N = 6

U Kang

Counting Bits (1)

 Problem:

 Given a stream of 0s and 1s

 Be prepared to answer queries of the form
How many 1s are in the last k bits? where k≤ N

 Obvious solution:
Store the most recent N bits

 When new bit comes in, discard the N+1st bit

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

Suppose N=6

U Kang

Counting Bits (2)

 You can not get an exact answer without storing
the entire window

 Real Problem:
What if we cannot afford to store N bits?

 E.g., we’re processing 1 billion streams and
N = 1 billion

 But we are happy with an approximate answer

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past Future

U Kang

An attempt: Simple solution

 Q: How many 1s are in the last N bits?

 A simple solution that does not really solve our
problem: Uniformity assumption

 Maintain 2 counters:

 S: number of 1s from the beginning of the stream

 Z: number of 0s from the beginning of the stream

 How many 1s are in the last N bits? 𝑵 ∙
𝑺

𝑺+𝒁

 But, what if stream is non-uniform?

 What if distribution changes over time?

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0
N

Past Future

U Kang

DGIM Method

 DGIM solution that does not assume uniformity

 We store 𝑶(log𝟐𝑵) bits per stream

 Solution gives approximate answer,
never off by more than 50%

 Error factor can be reduced to any fraction > 0, with
more complicated algorithm and proportionally more
stored bits

[Datar, Gionis, Indyk, Motwani]

U Kang

DGIM method

 Main Idea: summarize blocks with specific
number of 1s, where the block sizes (number of
1s) increase exponentially

1001010110001011010101010101011010101010101110101010111010100010110010

N

[Datar, Gionis, Indyk, Motwani]

U Kang

DGIM: Timestamps

 Each bit in the stream has a timestamp, starting
1, 2, …

 Record timestamps modulo N (the window size),
so we can represent any relevant timestamp in
𝑶(𝒍𝒐𝒈𝟐𝑵) bits

U Kang

DGIM: Buckets

 A bucket in the DGIM method is a record
consisting of:

 (A) The timestamp of its end [O(log N) bits]

 (B) The number of 1s between its beginning and end
[O(log log N) bits]

 Proof: see below

 Constraint on buckets:
Number of 1s must be a power of 2

 That explains the O(log log N) in (B) above
1001010110001011010101010101011010101010101110101010111010100010110010

N

U Kang

 Either one or two buckets with the same power-
of-2 number of 1s

 Buckets do not overlap in timestamps

 Buckets are sorted by size

 Earlier buckets are not smaller than later buckets

 Buckets disappear when their
end-time is > N time units in the past

Representing a Stream by Buckets

U Kang

Example: Bucketized Stream

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

1001010110001011010101010101011010101010101110101010111010100010110010

Three properties of buckets that are maintained:
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

U Kang

Storage Requirement

 The total number of buckets is O(log N). (why?)

 Each bucket requires O(log N) bits

 (A) The timestamp of its end [O(log N) bits]

 (B) The number of 1s between its beginning and end
[O(log log N) bits]

 Thus, the total storage requirement is

O(log N) * O(log N) = O(log2 N)

U Kang

Updating Buckets (1)

 When a new bit comes in, drop the last (oldest)
bucket if its end-time is prior to N time units
before the current time

 2 cases: Current bit is 0 or 1

 If the current bit is 0:
no other changes are needed

U Kang

Updating Buckets (2)

 If the current bit is 1:

 (1) Create a new bucket of size 1, for just this bit

 End timestamp = current time

 (2) If there are now three buckets of size 1, combine
the oldest two into a bucket of size 2

 (3) If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4

 (4) And so on …

U Kang

Example: Updating Buckets

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging

U Kang

How to Query?

 To estimate the number of 1s in the most
recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

 Remember: We do not know how many 1s
of the last bucket are still within the wanted
window

U Kang

Example: Bucketized Stream

N

1 of

size 2

2 of

size 4

2 of

size 8

At least 1 of

size 16. Partially

beyond window.

2 of

size 1

1001010110001011010101010101011010101010101110101010111010100010110010

U Kang

Error Bound: Proof

 Why is error 50%? Let’s prove it!
 Suppose the last bucket has size 2r

 Then by assuming 2r-1 (i.e., half) of its 1s are still
within the window, we make an error of at most
2r-1

 Since there is at least one bucket of each of the
sizes less than 2r, the true sum is at least
1 + 2 + 4 + .. + 2r-1 = 2r -1

 Thus, error is at most 50%

111111110000000011101010101011010101010101110101010111010100010110010

N

At least 16 1s

U Kang

Further Reducing the Error

 Instead of maintaining 1 or 2 of each size bucket,
we allow either x-1 or x buckets (x > 2)

 Except for the largest size buckets; we can have any
number between 1 and x of those

 Error is at most O(1/x)

 By picking x appropriately, we can tradeoff
between number of bits we store and the error

 Increasing x => more memory space, less error

U Kang

Extensions

 Can we use the same trick to answer queries
How many 1’s in the last k? where k < N?

 A: Find earliest bucket B that overlaps with k.
Number of 1s is the sum of sizes of more recent
buckets + ½ size of B

 Can we handle the case where the stream is not
bits, but integers, and we want the sum of the
last k elements?

1001010110001011010101010101011010101010101110101010111010100010110010

k

U Kang

Extensions

 Stream of positive integers

 We want the sum of the last k elements

 Amazon: Avg. price of last k sales

 Solution:

 If you know all integers have at most m bits

 Treat m bits of each integer as a separate stream

 Use DGIM to count 1s in each integer

 The sum is = σ𝑖=0
𝑚−1 𝑐𝑖2

𝑖

ci …estimated count for i-th bit

U Kang

What You Need to Know

 Sampling a fixed proportion of a stream

 Sample size grows as the stream grows

 Sampling a fixed-size sample

 Reservoir sampling

 Counting the number of 1s in the last N elements

 Exponentially increasing windows

 Extensions:

 Number of 1s in any last k (k < N) elements

 Sums of integers in the last N elements

U Kang

Questions?

