

Introduction to Data Mining

Preliminaries

U Kang Seoul National University

U Kang

In This Lecture

Learn basic tools for data mining

- Text analysis
- Searching
- Storage
- Approximation
- Power law

These tools will help you better analyze data

Outline

🔷 🛛 Preliminaries

Importance of Words in Documents
Hash Functions
Index
Secondary Storage
Base of Natural Log
Power Law

Importance of Words in Documents

- How important is a word to a document?
 - E.g., "ball", "bat", "pitch", "run" in a document related to baseball
- Application: Search Engine
 - Given a query word "Seoul", how to rank 173 million documents containing it

Importance of Words in Documents

- How important is a word to a document?
 - E.g., "ball", "bat", "pitch", "run" in a document related to baseball

The most famous measure is TF.IDF

- Main idea 1 (TF) : a word is important to a document if the word occurs frequently
 - What about words like "a", "the", ...?
- Main idea 2 (IDF) : a word is important to a document if it occurs *only in the document*

Importance of Words in Documents

Term Frequency (TF)

• Let f_{ij} be the frequency of term i in document j

$$\Box TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Inverse Document Frequency (IDF)

Suppose term i appears in n_i of N documents

$$\square IDF_i = log_2(\frac{N}{n_i})$$

• TF.IDF score of term i in doc. j = $TF_{ij} \times IDF_i$

Hash Functions

Hash function

- Takes a key as an input, and outputs a bucket number in the range of 0 ~ B-1 (B: total # of buckets)
- □ E.g. h(x) = x mod 19
- Why do we need it?
 - Typically, hash function is used for quickly finding an item of interest (=indexing, to be explained soon)

Hash Functions

Good hash function?

- A function which sends approximately equal numbers of hash-keys to each of the B buckets
- E.g.) modular hash function h(x) = x mod k
- □ Assume x = 2, 4, 6, 8, 10, 12,
- What if k = 10?
- What if k = 11?

Hash Functions

Good hash function?

- A function which sends approximately equal numbers of hash-keys to each of the B buckets
- E.g.) modular hash function h(x) = x mod k
- □ Assume x = 2, 4, 6, 8, 10, 12,
- What if k = 10?
- What if k = 11?

It's best to choose a prime number for k

Index

Problem

- Assume we are given a file of (name, address, phone) triples
- Given a phone number, how can we find out the name and address of the person quickly, without scanning all the contents of the file?

Answer: index

Index

Index

- A data structure that makes it efficient to retrieve objects given the value of one or more elements of the objects
- Several ways to build an index
 - Hash table, B-tree, ...

Index

Index

Example of an index based on hash-table

Figure 1.2: A hash table used as an index; phone numbers are hashed to buckets, and the entire record is placed in the bucket whose number is the hash value of the phone

Secondary Storage

Memory vs. Disk

Price, Speed, Capacity

Disk

- Organized into blocks (=minimum units that OS uses to move data between main memory and disk)
- Typical block size ~ 4 Kbytes
- Time to access and read a block: ~ 10 milliseconds
- Sequential access is much faster (~ 10⁵ times) than random access

Base of Natural Logarithms

• e = 2.7182818... =
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x$$

 Using the above fact, we can obtain useful approximations

$$\Box (1+a)^{b} = (1+a)^{\frac{1}{a}ab} \sim e^{ab}$$

• Similarly, $\lim_{x \to \infty} (1 - \frac{1}{x})^x = e^{-1}$

$$\Box (1-a)^{b} = (1-a)^{\frac{1}{a}ab} \sim e^{-ab}$$

These approximations work well when a is small

Base of Natural Logarithms

- Assume that students have 70.0 average score in an exam. What would be the distribution of scores?
 - You would answer this with Normal distribution

Average # of friends in Facebook at 2014 is ~300. What would be the distribution of # of friends?

Gaussian

Power law

 Linear relationship between the logarithms of two variables

Figure 1.3: A power law with a slope of -2

U Kang

What about in linear scale?

Figure 1.3: A power law with a slope of -2

Power law distribution (Log-Log scale)

Power law distribution (Linear scale) Gaussian distribution (Linear scale)

- In general, x and y are in a power law relationship if log y is linear to log x
 - (log y) = b + a (log x)

 $\Leftrightarrow y = e^b x^a = c x^a$

Figure 1.3: A power law with a slope of -2

U Kang

- Why is power-law important?
 - It helps better understand the characteristic of real world data
 - "Matthew Effect": the rich gets richer
 - E.g.) If a person is popular in a social network, she/he will get more popular in the future

Why is power-law important?

Why do governments like to report average?

U Kang

Examples of Power Laws

- Node Degrees in the Web Graph
- Sales of Products
- Sizes of Web sites
- Population of cities

[Mark Newman] Power laws, Pareto distributions and Zipf's Law, 2005

Examples of Power Laws

- Zipf's Law: $y = cx^{-1/2}$
 - Word frequencies in text

[Mark Newman] Power laws, Pareto distributions and Zipf's Law, 2005

What You Need to Know

- How to measure the importance of words in documents
 - TF/IDF
- Hash functions: definition, and how to design a good hash function
- Index: search data quickly
- Memory vs. disk in terms of price, speed, and capacity
- Approximations
- Power law: powerful tool to understand data

Questions?