
71

Enumerating Trillion Subgraphs On Distributed Systems

HA-MYUNG PARK, KAIST

FRANCESCO SILVESTRI, University of Padova

RASMUS PAGH, IT University of Copenhagen

CHIN-WAN CHUNG, Chongqing University of Technology and KAIST

SUNG-HYON MYAENG, KAIST

U KANG, Seoul National University

How can we find patterns from an enormous graph with billions of vertices and edges? The subgraph enu-

meration, which is to find patterns from a graph, is an important task for graph data analysis with many

applications, including analyzing the social network evolution, measuring the significance of motifs in bi-

ological networks, observing the dynamics of Internet, and so on. Especially, the triangle enumeration, a

special case of the subgraph enumeration, where the pattern is a triangle, has many applications such as

identifying suspicious users in social networks, detecting web spams, and finding communities. However,

recent networks are so large that most of the previous algorithms fail to process them. Recently, several

MapReduce algorithms have been proposed to address such large networks; however, they suffer from the

massive shuffled data resulting in a very long processing time.

In this article, we propose scalable methods for enumerating trillion subgraphs on distributed systems.

We first propose PTE (Pre-partitioned Triangle Enumeration), a new distributed algorithm for enumerating

triangles in enormous graphs by resolving the structural inefficiency of the previous MapReduce algorithms.

PTE enumerates trillions of triangles in a billion scale graph by decreasing three factors: the amount of

shuffled data, total work, and network read. We also propose PSE (Pre-partitioned Subgraph Enumeration), a

generalized version of PTE for enumerating subgraphs that match an arbitrary query graph. Experimental

results show that PTE provides 79 times faster performance than recent distributed algorithms on real-world

graphs, and succeeds in enumerating more than 3 trillion triangles on the ClueWeb12 graph with 6.3 billion

vertices and 72 billion edges. Furthermore, PSE successfully enumerates 265 trillion clique subgraphs with 4

vertices from a subdomain hyperlink network, showing 47 times faster performance than the state of the art

distributed subgraph enumeration algorithm.

CCS Concepts: • Information systems → Data mining; • Theory of computation → Parallel

algorithms; Distributed algorithms; MapReduce algorithms; Graph algorithms analysis;

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by

the Korea government(MSIT) (No. R0190-15-2012, High Performance Big Data Analytics Platform Performance Acceler-

ation Technologies Development). The ICT at Seoul National University provides research facilities for this study. The

Institute of Engineering Research at Seoul National University provided research facilities for this work. Chin-Wan Chung

was supported in part by 2018 Seed Money Project of Chongqing Liangjiang KAIST International Program, Chongqing

University of Technology, and in part by Chongqing Research Program of Basic Research and Frontier Technology

(No. cstc2017jcyjAX0089). Francesco Silvestri was partially supported by project SID2017 of the University of Padova.

Ha-Myung Park is currently affiliated with Seoul National University since March 2018.

Authors’ addresses: H.-M. Park, C.-W. Chung, and S.-H. Myaeng; emails: {hamyung.park, chung_cw, myaeng}@kaist.ac.kr;

F. Silvestri; email: silvestri@dei.unipd.it; R. Pagh; email: pagh@itu.dk; U. Kang (corresponding author); email: ukang@snu.

ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1556-4681/2018/10-ART71 $15.00

https://doi.org/10.1145/3237191

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

mailto:permissions@acm.org
https://doi.org/10.1145/3237191

71:2 H.-M. Park et al.

Additional Key Words and Phrases: Triangle enumeration, subgraph enumeration, big data, graph algorithm,

scalable algorithm, distributed algorithm, network analysis

ACM Reference format:

Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U Kang. 2018.

Enumerating Trillion Subgraphs On Distributed Systems. ACM Trans. Knowl. Discov. Data 12, 6, Article 71

(October 2018), 30 pages.

https://doi.org/10.1145/3237191

1 INTRODUCTION

How can we find patterns from an enormous graph with billions of vertices and edges? The prob-

lem of subgraph enumeration is to discover every subgraph that match a given query graph from

a large graph one by one. Subgraph enumeration is a very important task for graph data analy-

sis with many applications, including analyzing the social network evolution [19], measuring the

significance of motifs in biological networks [14], and observing the dynamics of Internet [13].

If the query graph is a triangle, which is a graph of three vertices connected to each other, we

call the problem triangle enumeration. Triangle enumeration itself has abundant applications of

anomaly detection such as detecting suspicious accounts like advertisers or fake users in social

networks [21, 47], uncovering hidden thematic layers on the web [10], discovering roles [6], de-

tecting web spams [4], finding communities [5, 39], and so on. A challenge in subgraph enumera-

tion is handling big real-world networks, such as social networks and WWW, which have millions

or billions of vertices and edges. For example, Facebook and Twitter have 1.86 billion1 and 313

million active users,2 respectively, and there exist at least 1 trillion unique URLs are on the web.3

Even recently proposed algorithms, however, fail to enumerate subgraphs from such large

graphs. The algorithms have been proposed in different ways: I/O efficient algorithms [16, 27,

30], distributed memory algorithms [2, 12, 42], and MapReduce algorithms [1, 7, 28, 33, 35, 38,

44, 45]. These algorithms have a limited scalability. The I/O efficient algorithms use only a sin-

gle machine, and thus they cannot process a graph exceeding the external memory space of the

machine. The distributed memory algorithms use multiple machines but cannot process a graph

whose intermediate data exceed the capacity of distributed-memory. The state of the art MapRe-

duce algorithm [35] for triangle enumeration, named CTTP, significantly increases the size of a

processable dataset; CTTP reduces the amount of intermediate data in a MapReduce round by di-

viding the entire task into several sub-tasks and processing them in separate MapReduce rounds.

Even CTTP, however, takes a very long time to process an enormous graph because, in every

round, it reads the entire dataset and shuffles a lot of edges. Indeed, shuffling a large amount of

data in a short time interval causes network congestion and heavy I/O to disks, which decrease the

scalability and the fault tolerance, and prolong the running time significantly. Thus, it is desirable

to shrink the amount of shuffled data.

In this article, we propose scalable methods for enumerating trillion subgraphs on distributed

systems. We first propose PTE (Pre-partitioned Triangle Enumeration), a new distributed algorithm

for enumerating triangles in an enormous graph by resolving the structural inefficiency of the

previous MapReduce algorithms. PTE uses the same vertex coloring technique as CTTP (or

TTP [33]) to divide the entire task into sub-tasks, but avoids the massive intermediate data

problem by pre-partitioning the graph in advance. After that we propose PSE (Pre-partitioned

1http://newsroom.fb.com/company-info.
2https://about.twitter.com/company.
3http://googleblog.blogspot.kr/2008/07/we-knew-web-was-big.html.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

https://doi.org/10.1145/3237191
http://newsroom.fb.com/company-info
https://about.twitter.com/company
http://googleblog.blogspot.kr/2008/07/we-knew-web-was-big.html

Enumerating Trillion Subgraphs On Distributed Systems 71:3

Subgraph Enumeration), a generalized version of PTE for enumerating subgraphs that match an

arbitrary query graph. We show that PTE and PSE successfully enumerate trillions of subgraphs

including triangles in a billion scale graph by decreasing three factors: the amount of shuffled data,

total work, and network read. The main contributions of this article are summarized as follows:

—We propose PTE, a new distributed algorithm for enumerating triangles in an enormous

graph, which is designed to minimize the amount of shuffled data, total work, and network

read.

—We propose PSE, a generalized version of PTE for enumerating subgraphs that match an

arbitrary query graph. PSE inherits the advantages of PTE mentioned above.

—We prove the efficiency of the proposed algorithms: PTE operates in O (|E |) shuffled data,

O (|E |3/2/
√
M) network read, and O (|E |3/2) total work, the worst case optimal, where |E |

is the number of edges of a graph and M is the available memory size of a machine.

PSE requires O (|E |) shuffled data and O (|E |(|Vq |
√
|E |/M − 1) |Vq |−2) network read when

P ≤ ∑ |Vq |
k=1

(|Vq |
√
|E |/M

k

)
, where |Vq | is the number of vertices in a query graph and P is the

number of processors. Otherwise, PSE requires O (P |E |) network read.

—Our algorithms are experimentally evaluated using large real-world networks. The results

demonstrate that PTE outperforms the best previous distributed algorithms by up to 79

times (see Figure 9). Moreover, PTE successfully enumerates more than 3 trillion triangles

in the ClueWeb12 graph containing 6.3 billion vertices and 72 billion edges. Previous algo-

rithms, such as GraphLab, GraphX, CTTP, and TwinTwig fail to process the graph because

of massive intermediate data. Furthermore, PSE successfully enumerates 265 trillions of

clique subgraphs with 4 vertices from a subdomain hyperlink network, showing 47 times

faster performance than the state of the art distributed subgraph enumeration algorithm.

The codes and datasets used in this article are provided in http://datalab.snu.ac.kr/pse. This

article is an extension of the original conference paper [31] and generalizes the triangle enu-

meration algorithm proposed in the conference paper for subgraph enumeration. The remaining

part of the article is organized as follows. In Section 2, we review previous studies related to the

triangle and subgraph enumeration. In Section 3, we formally define the problem and introduce

important concepts and notations used in this article. We introduce the details of our algorithms

in Section 4. The experimental results are given in Section 5. Finally, we make conclusions in

Section 6. The symbols frequently used in this article are summarized in Table 1.

2 RELATED WORK

In this section, we discuss related works. We first describe several triangle enumeration algorithms

to handle large graphs, including recent MapReduce algorithms related to our work. We also out-

line the MapReduce model and emphasize the importance of shrinking the amount of shuffled data

in improving the performance. After that, we describe VF2 [8], the state-of-the-art in-memory al-

gorithm for subgraph enumeration, which PSE uses as a module. Then, we introduce distributed

algorithms for subgraph enumeration.

2.1 I/O Efficient Triangle Algorithms

Recently, several triangle enumeration algorithms have been proposed in I/O efficient ways to

handle graphs that do not fit into the main memory [16, 27, 30]. Hu et al. [16] propose Massive

Graph Triangulation (MGT), which buffers a certain number of edges in the memory and finds

all triangles containing one of these edges by traversing every vertex. Pagh and Silvestri [30]

propose a cache oblivious algorithm which colors the vertices of a graph hierarchically so that it

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

http://datalab.snu.ac.kr/pse

71:4 H.-M. Park et al.

Table 1. Table of Symbols

Symbol Definition

G = (V ,E) Simple graph with the set V of vertices and the set E of edges.

u,v,n Vertices.

i, j,k Vertex colors.

(u,v) Edge between u and v where u ≺ v .

(u,v,n) Triangle with vertices u, v , and n where u ≺ v ≺ n.

(i, j,k), (i, j) Subproblems.

d (u) Degree (number of neighbors) of u.

id (u) Vertex number of u, a unique identifier.

≺ Total order on V . u ≺ v means u precedes v .

ρ Number of vertex colors.

ξ Coloring function: V → {0, . . . , ρ − 1}. ξ (u) is the color of vertex u.

Ei j Set of edges (u,v) where (ξ (u), ξ (v)) = (i, j) or (j, i).
E�i j Set of edges (u,v) where (ξ (u), ξ (v)) = (i, j).

M Available memory size of a machine.

P Number of processors in a distributed system.

does not need to know the cache structure of a system. Kim et al. [27] present OPT which is a

parallel external-memory algorithm exploiting the features of a solid-state drive. DUALSIM [26]

is the state-of-the-art parallel external-memory algorithm for enumerating subgraphs that match

an arbitrary query graph; DUALSIM is generalized from OPT.

These algorithms, however, cannot process a graph exceeding the external memory space of a

single machine. Moreover, these algorithms cannot output all triangles if a graph has too many

triangles; for example, the ClueWeb12 graph has 3 trillion triangles requiring 70 Terabytes of stor-

age, and the SubDomain graph has 266 trillion clique subgraphs of 4 vertices (see Section 5). We

note that single machine algorithms are collaborators of our algorithms rather than competitors;

a single machine algorithm is used as a module of PTE and PSE.

2.2 Distributed-Memory Triangle Algorithms

The triangle enumeration problem has been recently targeted in the distributed-memory model

which assumes a multi-processor system where each processor has its own memory. We call a pro-

cessor with a memory a machine. Arifuzzaman et al. [2] propose a distributed-memory algorithm

based on Message Passing Interface (MPI). The algorithm divides a graph into overlapping sub-

graphs and finds triangles in each subgraph in parallel. GraphLab-PowerGraph (or GraphLab) [12],

which is an MPI-based distributed graph computation framework, provides an implementation for

triangle enumeration. GraphLab copies each vertex and its outgoing edges γ times on average to

multiple machines where γ is determined by the characteristic of the input graph and the number

of machines. Since γ |E | data are replicated in total, GraphLab fails when γ |E |/P ≥ M , where P is

the number of processors and M is the available memory size of a machine. GraphX, a graph com-

putation library for Spark, also provides an implementation of the same algorithm as in GraphLab;

thus it has the same limitation in scalability. PDTL (Parallel and distributed triangle listing) [11], a

parallel and distributed extension of MGT, shows the impressive speed but has limited scalability:

(1) every machine must hold a copy of the entire graph, (2) a part of PDTL runs on a single ma-

chine, which can be a performance bottleneck, and (3) it stores entire triangles in a single machine.

In summary, all the previous distributed memory algorithms are limited in handling large graphs.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:5

2.3 MapReduce

MapReduce [9] is a programming model supporting parallel and distributed computation to pro-

cess large data. MapReduce is highly scalable and easy to use, and thus has been used for vari-

ous important graph mining and data mining tasks, such as radius calculation [24, 25, 34], graph

queries [23], triangle counting [21, 33, 35], visualization [20], connected components [32], and ten-

sor decomposition [17, 18, 22, 36, 40, 43]. A MapReduce round transforms an input set of key-value

pairs to an output set of key-value pairs by three steps: it first transforms each pair of the input to

a set of new pairs by a user-defined function (map step), groups the pairs by keys so that all values

with the same key are aggregated together (shuffle step), and processes the aggregated pairs for

each key using another user-defined function to output a new result set of key-value pairs (reduce

step).

The amount of shuffled data significantly affects the performance of a MapReduce task because

shuffling includes heavy tasks of writing, sorting, and reading the data [15]. In detail, each map

worker buffers the pairs from the map step in memory (collect). The buffered pairs are partitioned

into R regions and written to local disks periodically, where R is the number of reduce workers

(spill). Each reduce worker remotely reads the buffered data from the local disks of the map workers

via a network (shuffle). When a reduce worker has read all the pairs for its partition, it sorts the

pairs by keys so that all values with the same key are grouped together (merge and sort). Because

of such heavy I/O and network traffic, a large amount of shuffled data decreases the performance

significantly. Thus, it is desirable to shrink the amount of shuffled data as much as possible.

2.4 MapReduce Triangle Algorithms

Several triangle computation algorithms have been designed in MapReduce. We review the algo-

rithms in terms of the amount of shuffled data. The first MapReduce algorithm, which is proposed

by Cohen [7], is a variant of node-iterator [41], a well-known sequential algorithm. It shuffles

O (|E |3/2) length-2 paths (also known as wedges) in a graph. Suri and Vassilvitskii [45] reduce the

amount of shuffled data toO (|E |3/2/
√
M) by proposing a graph partitioning based algorithm Graph

Partition (GP). Considering types of triangles, Park and Chung [33] improve GP by a constant fac-

tor in their algorithm, Triangle Type Partition (TTP). That is, TTP also shuffles O (|E |3/2/
√
M) data

during the process. Aforementioned algorithms cause an out-of-space error when the size of shuf-

fled data is larger than the total available space. Park et al. [35] avoid the out-of-space error by

introducing a multi-round algorithm, namely Colored TTP (CTTP). CTTP limits the shuffled data

size of a round, and thus significantly increases the size of processable data. However, CTTP still

shuffles the same amount of data as TTP does, that is, O (|E |3/2/
√
M). Note that our proposed al-

gorithm in this article shrinks the amount of shuffled data to O (|E |), improving the performance

significantly.

The MapReduce algorithms above can be implemented on general distributed systems, using

a distributed join algorithm like the one proposed in [3]. Even on general distributed systems,

however, they still suffer from the massive shuffled data problem. They join huge amount of data

as they shuffle in MapReduce, and the join operation is as expensive as shuffling.

2.5 VF2: A Single Machine Subgraph Enumeration Algorithm

VF2 is an in-memory subgraph enumeration algorithm. VF2 matches query vertices to the vertices

of a data graph in a matching sequence. While the matching sequence in VF2 can be arbitrary, our

proposed subgraph enumeration algorithm PSE (Section 4.5) uses a topologically sorted sequence

of query vertices’ partial order that is determined by a process called symmetry breaking [14], to

remove duplicate outputs and improve the performance. In the data graph, the neighbors of already

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:6 H.-M. Park et al.

Fig. 1. An example of PSE’s matching process for a square query graph based on VF2 and symmetry breaking.

matched vertices are candidates for matching the next query vertex. VF2’s feasibility rules truncate

some candidates that have no chance to match the query in the future. Figure 1 shows an example

of VF2’s matching process. The query is a square graph with matching sequence a → b → c → d .

The data graph has five vertices labeled with numbers from 1 to 5. The vertices are in a total order

according to the numbers. VF2 first matches the first query vertex a to any vertex; in this example,

a is matched to vertex 1 and the matched vertex is marked red. The neighbors (vertices 2 and 4)

of vertex 1 become candidates, which are orange-colored. The next query vertex b is matched to

one of the candidates; in this example, we match vertex 2 first. Then, the neighbors (vertices 3

and 5) of vertex 2 are added as candidates. After that, query vertex c is matched to vertex 4. We

note that the query vertex c is not matched to candidates 3 and 5 by a feasibility rule that states

c and a are connected. By matching query vertex d to query vertex 5, VF2 finds a subgraph that

matches the query graph. If the current state has no more candidates to match, VF2 then goes back

to the previous state and visits another candidate. This process continues until all search states are

visited. Symmetry breaking prevents duplicate output; after matching query vertices a and b to

vertices 1 and 4, respectively, symmetry breaking stops matching c to 2 due to the partial order

b < c; the vertex matched to c must be later than the vertex matched to b in the total order of

vertices. As a result, subgraph (1, 4, 2, 5), a duplicate of (1, 2, 4, 5), is not output.

PSE, the proposed subgraph enumeration algorithm, uses VF2 as a module to enumerate sub-

graphs in each subproblem. ESCAPE [37] is another single machine algorithm; however, the al-

gorithm aims to count all subgraphs with five vertices rather than enumerating subgraphs with a

specific graph pattern, and thus does not solve the exact problem that PSE solves.

2.6 Distributed Subgraph Enumeration Algorithms

Several subgraph enumeration algorithms have been proposed based on join techniques. Given

a query graph q, they decompose it into a set {q1, . . . ,qk } of sub-queries. They find the matches

{G (q1), . . . ,G (qk)} of the sub-queries from a data graph G and join them to get the matches G (q)
of the original query q. The performance highly depends on which sub-queries the query is de-

composed into. Two basic sub-queries are an edge and a star, which is a tree graph of depth 1. We

call the methods using the basic sub-queries EdgeJoin [38] and StarJoin [44], respectively. Both

methods, however, have problems when they process very large data graphs. EdgeJoin requires

a lot of iterative join operations as many times as |Eq | − 1, where |Eq | is the number of edges in

the query graph q; as a join operation requires one MapReduce round, EdgeJoin performs a lot of

MapReduce rounds. On the other hand, StarJoin generates massive intermediate results for high

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:7

order stars. For example, if a sub-query qi is a star with |Eqi
| edges and a data graph has a high

degree vertex with k incident edges, StarJoin generates at least
(

k
|Eqi
|

)
matches as an intermedi-

ate result. MultiwayJoin [1] makes up for the weak point of EdgeJoin; this method performs all

join operations using only a single MapReduce round. MultiwayJoin can be efficient when the

size of a query graph is small (e.g., a triangle), but this method generates a tremendous amount

of intermediate data during the shuffle step if a query graph has many nodes. The state of the art

distributed algorithm for subgraph enumeration is TwinTwigJoin [28]. This algorithm is a special

type of StarJoin where the maximum number of edges in a star (sub-query) is limited to 2. By lim-

iting the number of edges, TwinTwigJoin reduces the amount of intermediate data from StarJoin,

and requires fewer join operations than EdgeJoin does.

3 PRELIMINARIES

In this section, we define the problem that we are going to solve, introducing several terms and

notations formally. We also describe two previously introduced major algorithms for distributed

triangle enumeration, which are closely related to both PTE and PSE.

3.1 Problem Definition

A simple graph is an undirected graph that contains no duplicate edges or loops, where a loop is

an edge both of whose endpoints are the same vertex. A triangle is a set of three vertices fully

connected to each other. We define the problem of triangle enumeration as follows:

Definition 3.1 (Triangle Enumeration). Given a simple graph G = (V ,E), the problem of triangle

enumeration is to discover every triangle in G.

Now we define subgraph enumeration, for which triangle enumeration is a special case with a

triangle as the query graph.

Definition 3.2 (Graph Isomorphism). Two graph G1 = (V1,E1) and G2 = (V2,E2) are isomorphic,

if and only if |V1 | = |V2 |, |E1 | = |E2 |, and there exists a mapping function ζ : V1 → V2 such that

(ζ (u), ζ (v)) ∈ E2 for every (u,v) ∈ E1.

Definition 3.3 (Subgraph Enumeration). Given a simple graph G = (V ,E) and a query graph q =
(Vq ,Eq), the problem of subgraph enumer ation is to discover every subgraph s of G such that s is

isomorphic to the query graph q.

For simplicity, we call a subgraph isomorphic to a given query graph q a match. Note that we

do not require an algorithm to retain or emit each triangle or subgraph into any memory system,

but to call a local function enum(·) with the triangle or the subgraph as the parameter. In other

words, an algorithm does not have to keep all subgraphs in the memory at once, which can cause

an out-of-space error.

On a vertex set V , we define a total order to uniquely express an edge or a triangle.

Definition 3.4 (Total Order on V). The order of two vertices u and v is determined as follows:

• u ≺ v if d (u) < d (v) or (d (u) = d (v) and id (u) < id (v)),

where d (u) is the degree, and id (u) is the unique identifier of a vertex u.

We denote by (u,v) an edge between two vertices u and v , and by (u,v,n) a triangle consisting

of three vertices u, v , and n. Unless otherwise noted, the vertices in an edge (u,v) have the order

of u ≺ v , and we presume it has a direction, from u to v , even though the graph is undirected.

Similarly, the vertices in a triangle (u,v,n) also has the order of u ≺ v ≺ n, and we give each edge

a name to simplify the description as follows (see Figure 2):

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:8 H.-M. Park et al.

Fig. 2. A triangle with directions by the total order on the three vertices.

Definition 3.5. For a triangle (u,v,n), where the vertices are in the order of u ≺ v ≺ n, we call

(u,v) pivot edge, (u,n) port edge, and (v,n) starboard edge.4

3.2 Triangle Enumeration in TTP and CTTP

Park and Chung [33] propose a MapReduce algorithm, named TTP, for enumerating triangles. We

introduce TTP briefly because of its relevance to our work, and we show that it shuffles a huge

amount of data, O (|E |3/2/
√
M).

TTP divides the entire problem into subproblems and solves them independently using multiple

machines. To divide the problem, TTP first colors each vertex with one of ρ = O (
√
|E |/M) colors

randomly by a hash function ξ : V → {0, . . . , ρ − 1}. Let Ei j with i, j ∈ {0, . . . , ρ − 1} and i ≤ j be

the set {(u,v) ∈ E | i = min(ξ (u), ξ (v)) and j = max(ξ (u), ξ (v))}. A triangle is classified as type-1

if all the vertices in the triangle have the same color, type-2 if there are exactly two vertices with

the same color, and type-3 if no vertices have the same color. TTP divides the entire problem into(
ρ
2

)
+

(
ρ
3

)
subproblems of two types:

(i, j) subproblem, with i, j ∈ {0, . . . , ρ − 1} and i < j, is to enumerate triangles in an edge-

induced subgraph on E ′i j = Ei j ∪ Eii ∪ Ej j , together with any vertices that are their end-

points. It finds every triangle of type-1 and type-2, where the vertices are colored with i

and j. There are
(

ρ
2

)
subproblems of this type.

(i, j,k) subproblem, with i, j,k ∈ {0, . . . , ρ − 1} and i < j < k , is to enumerate triangles in an

edge-induced subgraph on E ′
i jk
= Ei j ∪ Eik ∪ Ejk . It finds every triangle of type-3, where

the vertices are colored with i , j, and k . There are
(

ρ
3

)
subproblems of this type.

Each map task of TTP gets an edge e ∈ E and emits key-value pairs 〈(i, j); e〉 and 〈(i, j,k); e〉
for every E ′i j and E ′

i jk
containing e , respectively. Thus, each reduce task gets a pair 〈(i, j);E ′i j 〉 or

〈(i, j,k);E ′
i jk
〉, and finds all triangles in the edge-induced subgraph. For each edge, a map task emits

ρ − 1 key-value pairs (Lemma 2 in [33]); that is,O (|E |ρ) = O (|E |3/2/
√
M) pairs are shuffled in total.

TTP fails to process a graph when the shuffled data size is larger than the total available space.

CTTP [35] avoids the failure by dividing the tasks into multiple rounds and limiting the shuffled

data size of a round. However, CTTP still shuffles exactly the same pairs as TTP; hence CTTP also

suffers from the massive shuffled data resulting in a very long running time.

4 PROPOSED METHOD

In this section, we propose scalable methods for enumerating trillion subgraphs on distributed

systems. Before considering arbitrary query graphs, we first focus on triangles, the simplest non-

trivial subgraphs, to simplify the problem. After that we extend the proposed method to handle

general subgraphs as well. There are several challenges in designing an efficient and scalable dis-

tributed algorithm for triangle enumeration.

4Port and starboard are nautical terms for left and right, respectively.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:9

ALGORITHM 1: Graph Partitioning

/* ψ is a meaningless dummy key */

Map : input 〈ψ ; (u,v) ∈ E〉
1 emit 〈(ξ (u), ξ (v)); (u,v)〉

Reduce : input 〈(i, j);E�i j 〉
2 emit E�i j to a distributed storage

(1) Minimize shuffled data. Massive data are shuffled for dividing the problem into subprob-

lems by the previous algorithms. How can we minimize the amount of shuffled data?

(2) Minimize redundant computation. The previous algorithms contain several kinds of redun-

dant operations (details in Section 4.2). How can we remove the redundancy?

(3) Minimize network read. In previous algorithms, each subproblem reads necessary sets of

edges via network, and the amount of network read is determined by the number of vertex

colors. How can we decrease the number of vertex colors to minimize network read?

We have the following main ideas to address the above challenges, which are described in detail

in later subsections.

(1) Separating graph partitioning from dividing the problem decreases the amount of shuffled

data to O (|E |) from O (|E |3/2/
√
M) of the previous MapReduce algorithms (Section 4.1).

(2) Considering the color-direction of edges removes redundant operations and minimizes com-

putations (Section 4.2).

(3) Carefully scheduling triangle computations in subproblems reduces the amount of network

read by decreasing the number of vertex colors (Section 4.3).

In the following, we first describe PTEBASE , which exploits pre-partitioning to decrease the

shuffled data (Section 4.1). Then, we describe PTECD to explain how to minimize redundant com-

putation in PTEBASE (Section 4.2). After that, we propose our desired method PTESC reducing

the amount of network read in PTECD (Section 4.3), and provide theoretical analysis of the meth-

ods (Section 4.4). We then describe how to generalize PTE for enumerating subgraphs that match

an arbitrary query graph by proposing PSE (Section 4.5). Implementation issues are discussed in

the end (Section 4.6). Note that although we describe our methods using MapReduce primitives

for simplicity, the methods are general enough to be implemented in any distributed framework

(discussions in Section 4.6 and experimental comparisons in Section 5.2.4).

4.1 PTEBAS E : Pre-partitioned Triangle Enumeration

In this section, we propose PTEBASE , which rectifies the massive shuffled data problem of previous

MapReduce algorithms. The main idea is partitioning an input graph into sets of edges before gen-

erating subgraphs, and storing the sets in a distributed storage like Hadoop Distributed File System

(HDFS) of Hadoop, or Resilient Distributed Dataset (RDD) of Spark. We observe that the subprob-

lems of TTP require each set Ei j of edges as a unit. It implies that if each edge set Ei j is directly

accessible from a distributed storage, we do not need to shuffle the edges as TTP does. Conse-

quently, we partition the input graph into ρ +
(

ρ
2

)
=

ρ (ρ+1)
2 sets of edges according to the vertex

colors in each edge; ρ and
(

ρ
2

)
are for Ei j when i = j and i < j, respectively. Each edge (u,v) ∈ Ei j

keeps the order u ≺ v . Each vertex is colored by a coloring function ξ which is randomly chosen

from a pairwise independent family of functions [46]. The pairwise independence of ξ guarantees

that edges are evenly distributed. PTEBASE sets ρ to �
√

6|E |/M
 to fit the three edge sets for an

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:10 H.-M. Park et al.

ALGORITHM 2: Triangle Enumeration (PTEBASE)

/* ψ is a meaningless dummy key */

Map : input 〈ψ ;problem = (i, j) or (i, j,k)〉
1 initialize E ′

2 if problem is of type (i, j) then
/* Ei j = E�i j ∪ E�ji, and Eii = E�ii */

3 read Ei j , Eii , Ej j

4 E ′ ← Ei j ∪ Eii ∪ Ej j

5 else if problem is of type (i, j,k) then
/* Ei j = E�i j ∪ E�ji, Eik = E�

ik
∪ E�

ki
, and Ejk = E�

jk
∪ E�

k j
*/

6 read Ei j , Eik , Ejk

7 E ′ ← Ei j ∪ Eik ∪ Ejk

8 enumerateTriangles(E ′)

/* enumerate triangles in the edge-induced subgraph on E */

9 Function enumerateTriangles(E)
10 foreach (u,v) ∈ E do

11 foreach n ∈ {nu |(u,nu) ∈ E} ∩ {nv |(v,nv) ∈ E} do

12 if ξ (u) = ξ (v) = ξ (n) then

13 if (ξ (u) = i and i + 1 ≡ j mod ρ) or (ξ (u) = j and j + 1 ≡ i mod ρ) then

14 enum((u,v,n))

15 else

16 enum((u,v,n))

(i, j,k) subproblem into the memory of size M in a processor: the expected size of an edge set is

2|E |/ρ2, and the sum 6|E |/ρ2 of the size of the three edge sets should be less than or equal to the

memory size M .

After the graph partitioning, PTEBASE reads edge sets and finds triangles in each subproblem. In

each (i, j) subproblem, it reads Ei j , Eii , and Ej j , and enumerates triangles in the union of the edge

sets. In each (i, j,k) subproblem, similarly, it reads Ei j , Eik , and Ejk , and enumerates triangles in

the union of the edge sets. The edge sets are read from a distributed storage via a network, and the

total amount of network read is O (|E |ρ) (see Section 3.2). Note that the network read is different

from the data shuffle; the data shuffle is a much heavier task since it requires data collecting and

writing in senders, data transfer via a network, and data merging and sorting in receivers (see

Section 2.3). However, the network read contains data transfer via a network only.

PTEBASE is described in Algorithms 1 and 2. The graph partitioning is done by a pair of map

and reduce steps (Algorithm 1). In the map step, PTEBASE transforms each edge (u,v) into a

pair 〈(ξ (u), ξ (v)); (u,v)〉 (line 1). The edges of the pairs are aggregated by the keys; and for

each key (i, j), a reduce task receives E�i j and emits it to a separate file in a distributed storage

(line 2), where E�i j is {(u,v) ∈ E |(ξ (u), ξ (v)) = (i, j)}. Note that E�i j ∪ E�ji = Ei j . Thanks to the pre-

partitioned edge sets, the triangle enumeration is done by a single map step (see Algorithm 2).

Each map task reads edge sets needed to solve a subproblem (i, j) or (i, j,k) (lines 3 and 6), makes

the union of the edge sets (lines 4 and 7), and enumerates triangles with a sequential algorithm

enumerateTriangles (line 8). Although any sequential algorithm for triangle enumeration can

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:11

Fig. 3. (a) An example of finding type-3 triangles containing an edge (u,v) ∈ Ei j in an (i, j,k) subproblem.

PTEBASE finds the triangle (u,v,b) by intersectingu’s neighbor set {v,a,b} andv’s neighbor set {n,b}. How-

ever, it is unnecessary to consider the edges in Ei j since the other two edges of a type-3 triangle containing

(u,v) must be in Eik and Ejk , respectively. (b) enumerateTrianglesCD(E�i j, E�
ik
, E�

jk
) in PTECD finds

every triangle whose pivot edge, port edge, and starboard edge have the same color-directions as those of

E�i j , E
�
ik

, and E�
jk

, respectively. The arrows denote the color-directions.

be used for enumerateTriangles, we use CompactForward [29], one of the best sequential al-

gorithms, with a modification (lines 9–16); while the original CompactForward algorithm sorts

the neighbors of each vertices by degree, we skip this sorting procedure because the edges are

already ordered by the degrees of their vertices. Given a set E ′ of edges, enumerateTriangles
runs in O (|E ′ |3/2) total work, the same as that of CompactForward. Note that we propose a spe-

cialized algorithm to reduce the total work in Section 4.2. Note also that although every type-1

triangle appears ρ − 1 times, PTEBASE emits the triangle only once: for each type-1 triangle of

color i , PTEBASE emits the triangle if and only if i + 1 ≡ j mod ρ given a subproblem (i, j) or (j, i)
(lines 12–14). Anyway, PTEBASE still computes a type-1 triangle multiple times redundantly. We

completely eliminate the redundant computation in Section 4.2.

4.2 PTEC D : Reducing the Total Work

PTECD improves on PTEBASE to minimize the amount of computations by exploiting color-

direction. We first give an example (Figure 3(a)) to show that the function enumerateTriangles in

Algorithm 2 performs redundant operations. Let us consider finding type-3 triangles containing

an edge (u,v) ∈ Ei j in an (i, j,k) subproblem. enumerateTriangles finds such triangles by inter-

secting the two outgoing neighbor sets ofu andv . In Figure 3(a), the neighbor sets are {v,a,b} and

{n,b}, and we find the triangle (u,v,b). However, it is unnecessary to consider edges in Ei j (that

is, (u,v), (u,a), (v,n)) since the other two edges of a type-3 triangle containing (u,v) must be in

Eik and Ejk , respectively. The redundant operations can be removed by intersecting u’s neighbors

only in Eik and v’s neighbors only in Ejk instead of looking at all the neighbors of u and v . In the

figure, the two neighbor sets are both {b}; and we find the same triangle (u,v,b). PTECD removes

the redundant operations by adopting a new function enumerateTrianglesCD (lines 11–14 in Al-

gorithm 3). We define the color-direction of an edge (u,v) to be from ξ (u) to ξ (v); and we also

define the color-direction of E�i j to be from i to j. Then, enumerateTrianglesCD(E�i j , E
�
ik

, E�
jk

) finds

every triangle whose pivot edge, port edge, and starboard edge have the same color-directions as

those of E�i j , E
�
ik

, and E�
jk

, respectively (see Figure 3(b)). Note that the algorithm does not look at

any edges in Ei j for the intersection in the example of Figure 3(a) by separating the input edge

sets.

Redundant operations of another type appear in (i, j) subproblems. PTEBASE outputs a type-1

triangle exactly once but still computes it multiple times: type-1 triangles with a color i appears

ρ − 1 times in (i, j) or (j, i) subproblems for j ∈ {0, . . . , ρ − 1} \ {i}. PTECD resolves the duplicate

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:12 H.-M. Park et al.

ALGORITHM 3: Triangle Enumeration (PTECD)

/* ψ is a meaningless dummy key */

Map : input 〈ψ ;problem = (i, j) or (i, j,k)〉
1 if problem is of type (i, j) then

2 read E�i j , E
�
ji , E

�
ii , E

�
j j

/* enumerate Type-1 triangles */

3 if i + 1 = j then

4 enumerateTrianglesCD(E�ii , E
�
ii , E

�
ii)

5 else if j = ρ − 1 and i = 0 then

6 enumerateTrianglesCD(E�j j , E
�
j j , E

�
j j)

/* enumerate Type-2 triangles */

7 foreach (x ,y, z) ∈ {(i, i, j), (i, j, i), (j, i, i), (i, j, j), (j, i, j), (j, j, i)} do

8 enumerateTrianglesCD(E�xy , E�xz , E�yz)

9 else if problem is of type (i, j,k) then

10 enumerateType3Triangles((i, j,k))

/* enumerate every triangle (u,v,n) such that ξ (u) = i, ξ (v) = j and ξ (n) = k */

11 Function enumerateTrianglesCD(E�i j , E
�
ik

, E�
jk
)

12 foreach (u,v) ∈ E�i j do

13 foreach n ∈ {nu |(u,nu) ∈ E�
ik
} ∩ {nv |(v,nv) ∈ E�

jk
} do

14 enum((u,v,n))

15 Function enumerateType3Triangles(i, j, k)
16 read E�i j , E

�
ik

, E�ji , E
�
jk

, E�
ki

, E�
k j

17 foreach (x ,y, z) ∈ {(i, j,k), (i,k, j), (j, i,k), (j,k, i), (k, i, j), (k, j, i)} do

18 enumerateTrianglesCD(E�xy , E�xz , E�yz)

computation by performing enumerateTrianglesCD(E�ii , E
�
ii , E

�
ii) exactly once for each vertex

color i , thereby making every type-1 triangle appears only once.

Algorithm 3 shows PTECD using the new function enumerateTrianglesCD. To find type-3 tri-

angles in each (i, j,k) subproblem, PTECD calls the function enumerateTrianglesCD 6 times for all

possible color-directions (lines 10, 15–18) (see Figure 4(a)). To find type-2 triangles in each (i, j) sub-

problem, similarly, PTECD calls enumerateTrianglesCD 6 times (lines 7–8) (see Figure 4(b)). For

type-1 triangles whose vertices have a color i , PTECD performs enumerateTrianglesCD(E�ii , E
�
ii ,

E�ii) only if i + 1 ≡ j mod ρ given a subproblem (i, j) or (j, i) so that enumerateTrianglesCD(E�ii ,

E�ii , E
�
ii) operates exactly once (lines 3–6). As a result, the algorithm emits every triangle exactly

once.

Removing the two types of redundant operations, PTECD decreases the number of operations

for intersecting neighbor sets by more than 2 − 2
ρ

times from PTEBASE in expectation. As we will

see in Section 5.2.1, PTECD decreases the operations by up to 6.83× than PTEBASE on real-world

graphs.

Theorem 4.1. PTECD decreases the number of operations for intersecting neighbor sets by more

than 2 − 2
ρ

times compared to PTEBASE in expectation.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:13

Fig. 4. The color-directions of a triangle according to its type. The function enumerateTrianglesCD is called

for each color-direction; that is, PTECD calls it 6 times for type-3 triangles and type-2 triangles, respectively.

Proof. To intersect the sets of neighbors of u and v in an edge (u,v) such that ξ (u) = i ,
ξ (v) = j and i � j, the function enumerateTriangles in PTEBASE performs d�i j (u) + d�

ik
(u) +

d�ji (v) + d�
jk

(v) operations while enumerateTrianglesCD in PTECD performs d�
ik

(u) + d�
jk

(v) op-

erations for each color k ∈ {0, . . . , ρ − 1} \ {i, j} where d�i j (u) is the number of u’s neighbors in E�i j .

Thus, PTEBASE performs (ρ − 2) × (d�
ξ (u)ξ (v)

(u) + d�
ξ (v)ξ (u)

(v)) additional operations compared to

PTECD for each (u,v) ∈ Eout where Eout is the set of edges (u,v) ∈ E such that ξ (u) � ξ (v); that is,

(ρ − 2) ×
∑

(u,v)∈Eout

(
d�ξ (u)ξ (v) (u) + d�ξ (v)ξ (u) (v) +O (1)

)
(1)

We put O (1) because an operation is necessary for checking the existence of the neigh-

bors but d�
ξ (u)ξ (v)

(u) + d�
ξ (v)ξ (u)

(v) can be smaller than 1. Given an edge (u,v) such that

ξ (u) = ξ (v) = i , PTEBASE performs d�ii (u) + d�i j (u) + d�ii (v) + d�i j (v) operations for each color

j ∈ {0, . . . , ρ − 1} \ {i}; meanwhile, PTECD performs d�i j (u) + d�i j (v) operations for each color

j ∈ {0, . . . , ρ − 1}. Thus, PTEBASE performs (ρ − 2) × (d�
ξ (u)ξ (v)

(u) + d�
ξ (v)ξ (u)

(v)) more operations

than PTECD for each (u,v) ∈ Ein where Ein is E \ Eout; that is,

(ρ − 2) ×
∑

(u,v)∈E in

(
d�ξ (u)ξ (v) (u) + d�ξ (v)ξ (u) (v) +O (1)

)
(2)

We addO (1) by the same reason as in Equation (1). Then, the total number of additional operations

performed by PTEBASE , compared to PTECD , is the sum of (1) and (2):

(ρ − 2) ×
∑

(u,v)∈E

(
d�ξ (u)ξ (v) (u) + d�ξ (v)ξ (u) (v) +O (1)

)
(3)

The expected value of d�
ξ (u)ξ (v)

(u) is d�(u)/ρ where d�(u) is the number of neighbors v of u such

that u ≺ v , since the coloring function ξ is randomly chosen from a pairwise independent family

of functions. Thus, (3) becomes as follows:

(ρ − 2)

ρ
×

∑
(u,v)∈E

(
d�(u) + d�(v) +O (ρ)

)
(4)

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:14 H.-M. Park et al.

Fig. 5. The schedule of data loading for an (i, j,k) subproblem. PTESC enumerates triangles in columns one

by one from left to right. Each check-mark (�) shows the relations between edge sets and triangle types.

Each shaded area denotes when the edge set is in the memory, when we restrict to read an edge set only

once in a subproblem.

Meanwhile, the number of operations by PTECD is
∑

(u,v)∈E

(
d�(u) + d�(v) +O (ρ)

)
as we will

see in Theorem 4.5. Thus, PTECD reduces the number of operations by 2 − 2
ρ

times from PTEBASE

in expectation. �

4.3 PTESC : Reducing the Network Read

PTESC further improves on PTECD to reduce the amount of network read by scheduling calls of

the function enumerateTrianglesCD. Reading each E�i j in ρ − 1 subproblems, PTECD (as well as

PTEBASE) reads O (|E |ρ) data via a network in total. For example, E�01 is read in every (0, 1,k)
subproblem for 2 ≤ k < ρ, and the (0, 1) subproblem. It implies that the amount of network read

depends on ρ, the number of vertex colors. PTEBASE and PTECD set ρ to �
√

6|E |/M
 as mentioned

in Section 4.1. In PTESC , we reduce it to �
√

5|E |/M
 by setting the sequence of triangle computation

as in Figure 5 that represents the schedule of data loading for an (i, j,k) subproblem. We denote

by Δi jk the set of triangles enumerated by enumerateTrianglesCD(E�i j ,E
�
ik
,E�

jk
). PTECD handles

the triangle sets one by one from left to right in the figure. The check-marks (�) show the relations

between edge sets and triangle sets. For example, E�i j , E
�
ik

, and E�
jk

should be retained in the memory

together to enumerate Δi jk . When we restrict to read an edge set only once in a subproblem, the

shaded areas in Figure 5 represent when the edge sets are in the memory. For example, E�i j is read

before Δi jk , and is released after Δki j . Then, we can easily see that the maximum number of edge

sets retained in the memory together is 5, and it leads to setting ρ to �
√

5|E |/M
. The procedure

of type-3 triangle enumeration with the scheduling method is described in Algorithm 4, which

replaces the function enumerateType3Triangles in Algorithm 3. Note that the number 5 of edge

sets loaded in the memory at a time is optimal as shown in the following theorem.

Theorem 4.2. Given an (i, j,k) subproblem, the maximum number of edge sets retained in the

memory at a time cannot be smaller than 5, if each edge set can be read only once.

Proof. Suppose that there is a schedule to make the maximum number of edge sets retained

in the memory at a time less than 5. We first read 4 edge sets in the memory. Then, (1) any edge

set in the memory cannot be released until all triangles containing an edge in the set have been

enumerated, and (2) we cannot read another edge set until we release one in the memory. Thus, for

at least one edge set in the memory, it should be able to process all triangles containing an edge in

the edge set without reading an additional edge set. However, it is impossible because enumerating

all triangles containing an edge in an edge set requires 5 edge sets but we have only 4 edge sets.

Thus, there is no schedule to make the maximum number of edge sets retained in the memory at

a time less than 5. �

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:15

ALGORITHM 4: Type-3 Triangle Enumeration in PTESC

1 Function enumerateType3Triangles(i, j, k)
2 read E�i j , E

�
ik

, E�ji , E
�
jk

, E�
k j

3 foreach (x ,y, z) ∈ {(i, j,k), (i,k, j), (j, i,k)} do

4 enumerateTrianglesCD(E�xy , E�xz , E�yz)

5 release E�
ik

6 read E�
ki

7 foreach (x ,y, z) ∈ {(j,k, i), (k, i, j), (k, j, i)} do

8 enumerateTrianglesCD(E�xy , E�xz , E�yz)

For example, the triangles in Δi jk , Δik j , and Δki j , which are related to an edge set E�i j , require

E�i j , E
�
ik

, E�
jk

, E�
k j

, and E�
ki

.

4.4 Analysis

In this section, we analyze the proposed algorithm in terms of the amount of shuffled data, network

read, and total work. We first prove the claimed amount of shuffled data generated by the graph

partitioning in Algorithm 1.

Theorem 4.3. The amount of shuffled data for partitioning a graph is O (|E |), where |E | is the

number of edges in the graph.

Proof. The pairs emitted from the map operation is exactly the data to be shuffled. For each

edge, a map task emits one pair; accordingly, the amount of shuffled data is the number |E | of edges

in the graph. �

We emphasize that while the previous MapReduce algorithms shuffle O (|E |3/2/
√
M) data, we

reduce it to be O (|E |). Instead of data shuffle requiring heavy disk I/O, network read, and massive

intermediate data, we only require the same amount of network read, bounded by O (|E |3/2/
√
M).

Theorem 4.4. PTE requires O (|E |3/2/
√
M) network read.

Proof. We first show that every E�i j for (i, j) ∈ {0, . . . , ρ − 1}2 are read ρ − 1 times. It is clear

that E�i j such that i = j is read ρ − 1 times in (i,k) or (k, i) subproblems for k ∈ {0, . . . , ρ − 1} \ {i}.
We now consider E�i j for i � j. Without loss of generality, we assume i < j. Then, E�i j is read ρ − 2

times in (i, j,k) or (i,k, j) or (k, i, j) subproblems where k ∈ {0, . . . , ρ − 1} \ {i, j}, and once in an

(i, j) subproblem; ρ − 1 times in total. The total amount of data read by PTE is as follows:

(ρ − 1)

ρ−1∑
i=0

ρ−1∑
j=0

|E�i j | = |E |(ρ − 1) = |E | ��
√

5|E |
M
− 1�� = O

(
|E |3/2

√
M

)
,

where |E�i j | is the number of edges in E�i j . �

Finally, we prove the claimed total work of the proposed algorithm.

Theorem 4.5. PTE requires O (|E |3/2) total work.

Proof. Intersecting two sets requires comparisons as many times as the number

of elements in the two sets. Accordingly, the number of operations performed by

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:16 H.-M. Park et al.

enumerateTrianglesCD(E�i j ,E
�
ik
,E�

jk
) is∑

(u,v)∈E�
i j

(
d�ik (u) + d�jk (v) +O (1)

)
,

where d�
ik

(u) is the number of u’s neighbors in E�
ik

. We put O (1) since d�
ik

(u) + d�
jk

(v) can be

smaller than 1. PTESC (as well as PTECD) calls enumerateTrianglesCD for every possible triple

(i, j,k) ∈ {0, . . . , ρ − 1}3; thus the total number of operations is as follows:

ρ−1∑
i=0

ρ−1∑
j=0

ρ−1∑
k=0

∑
(u,v)∈E�

i j

(
d�ik (u) + d�jk (v) +O (1)

)

=
∑

(u,v)∈E

(
d�(u) + d�(v) +O (ρ)

)

= O (|E |ρ) +
∑

(u,v)∈E

(
d�(u) + d�(v)

)
.

The left term O (|E |ρ) is O (|E |3/2/
√
M) for checking all edges in each subproblem, which occurs

also in PTEBASE . The right summation is the number of operations for intersecting neighbors, and

it isO (|E |3/2) when the vertices are ordered by Definition 3.4 because the maximum value of d�(u)
for every u ∈ V is 2

√
|E | as proved in [41]. �

Note that it is the worst case optimal and the same as one of the best sequential algorithms [29].

4.5 Generalization for Enumerating Arbitrary Graph Patterns

This section proposes PSE, a distributed algorithm that enumerates all subgraphs that match an

arbitrary query graph, as well as a triangle, by generalizing PTE.

As in a triangle enumeration problem, if vertices are labeled with colors, a subgraph enumeration

problem can be divided into subproblems that are independent of each other. PSE first partitions

the graph into ρ +
(

ρ
2

)
edge sets like PTE, where ρ is the number of vertex colors; each edge set

is Ei j for (i, j) ∈ {0, . . . , ρ − 1}2 such that i ≤ j. We describe how to set the value ρ soon. Given

a query graph q with |Vq | vertices, the subgraph enumeration problem is divided into
∑ |Vq |

k=1

(
ρ

k

)
subproblems; each subproblem (τ1, . . . ,τk) is to enumerate every subgraph whose vertices have

exactly the colors in {τ1, . . . ,τk } where τ1 < · · · < τk . For example, when |Vq | = 3 and ρ = 4, the

subproblems are (0), (1), (2), (3), (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (0, 1, 2), (0, 1, 3), (0, 2, 3), and

(1, 2, 3). Once all the subproblems are solved, we can enumerate all subgraphs that match the query

graph, without duplicates. A subgraph that matches the query graph appears in one and only one

subproblem related to the color set that contains only the vertex colors of the subgraph. In other

words, the correctness of the algorithm follows since each subgraph with a color set {τ1, . . . ,τk }
is emitted only in the subproblem (τ1, . . . ,τk). We explicitly note the correctness in the following

theorem.

Theorem 4.6. PSE enumerates exactly one instance of each subgraph that matches a query graph

if there exists a method that correctly solves a given subproblem (τ1, . . . ,τk) for any k ∈ {1, . . . , |Vq |}.

The ρ value is determined so that all the edge sets of a subproblem fit into the main memory of a

processor, and the parallelism is maximized. A subproblem (τ1, . . . ,τk) requires an edge set Ei j for

each color pair (i, j) ∈ {τ1, . . . ,τk }2 such that i ≤ j, and thus the number of required edge sets for

the subproblem is k +
(
k
2

)
, where k is for the case that the two colors are the same and

(
k
2

)
is for

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:17

the other cases. The k +
(

k
2

)
edge sets should fit into the memory of size M in a processor, that is,

k × |E |
ρ2
+

(
k

2

)
× 2|E |

ρ2
=
k2 |E |
ρ2
≤
|Vq |2 |E |

ρ2
≤ M,

as the expected size of an edge set Ei j is |E |/ρ2 if i = j and 2|E |/ρ2 if i � j. Accordingly, ρ should

be larger than |Vq |
√
|E |/M . At the same time, ρ should be determined so that the parallelism is

maximized. Otherwise, if the number of subproblems is less than the number P of processors,

some processors are not used while others are busy. Therefore, ρ should be set to satisfy the

following expression:

P ≤
|Vq |∑
k=1

(
ρ

k

)
.

When ρ ′ is the minimum integer value satisfying this expression, the number ρ of vertex colors

is determined to be larger than both |Vq |
√
|E |/M and ρ ′. At the same time, we should choose ρ as

small as possible to minimize the amount of network read as we will discuss in Theorem 4.7. That is,

ρ =
⌈
max(|Vq |

√
|E |/M, ρ ′)

⌉
. (5)

Reducing the Network Read. For a subproblem (τ1, . . . ,τk), if k = |Vq |, no match from the sub-

problem contains intra-edge, whose two end vertices have the same color; this is because each

vertex within the match has a distinct color and the data graphG is a simple graph without a self-

loop. Using this feature, PSE reduces the amount of network read by reading Ei j only if i � j when

it solves a subproblem with k = |Vq |. That is, in this case, PSE requires
(|Vq |

2

)
edge sets instead of

|Vq | +
(|Vq |

2

)
edge sets where each edge set is Ei j for (i, j) ∈ {τ1, . . . ,τk }2 such that i < j.

An edge set Ei j is required by every subproblem whose color set contains both i and j. PSE

reduces the amount of network read by solving subproblems sharing the same edge sets on the

same processor as much as possible. We say that a subproblem A dominates another subproblem

B if the edge sets required by A are sufficient to solve B. We note that every subproblem with

k < |Vq | − 1 colors is dominated by one or more subproblems with |Vq | − 1 colors. Accordingly,

PSE groups the subproblems with k ≤ |Vq | − 1 colors into
(

ρ
|Vq |−1

)
groups, and processes subprob-

lems in the same group on the same processor. Meanwhile, each subproblem with k = |Vq | colors

forms a separate group with only this subproblem. When ρ = 4 and |Vq | = 3, the problem is di-

vided into
(

ρ
|Vq |−1

)
+

(
ρ
|Vq |

)
subproblem groups, and one possible example is as follows: {(0, 1), (0)},

{(0, 2), (2)}, {(0, 3), (3)}, {(1, 2), (1)}, {(1, 3)}, {(2, 3)}, {(0, 1, 2)}, {(0, 1, 3)}, {(0, 2, 3)}, and {(1, 2, 3)}.
The subproblems can be grouped in several ways. In this example, subproblem (0) is grouped with

subproblem (0, 1), but may also be grouped with (0, 2) or (0, 3). It is important to evenly distribute

subproblems to groups for the parallelism. We describe how PSE groups the subproblems after the

following theorem on the total amount of network read occurred by PSE.

Theorem 4.7. PSE requires at most
(

ρ−1
|Vq |−2

)
× |E | network read.

Proof. An edge set Ei j can be classified into two cases: i = j and i � j. We first consider an edge

set Eii whose two colors are the same. We remind that the edge set Eii is not necessary for the

subproblems with |Vq | colors as mentioned already. In other words, no subproblem group with |Vq |
colors requires the edge set Eii . The edge set Eii is required by subproblem groups with |Vq | − 1

colors including the color i; there are
(

ρ−1
|Vq |−2

)
such groups. Thus, every edge set Eii is read by

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:18 H.-M. Park et al.

(
ρ−1
|Vq |−2

)
subproblem groups, incurring the following amount of network read:

ρ−1∑
i=0

|Eii | ×
(
ρ − 1

|Vq | − 2

)
. (6)

We now consider an edge set Ei j such that i � j. Every subproblem group having the colors

i and j together requires the edge set Ei j . There are
(

ρ−2
|Vq |−2

)
such groups with |Vq | colors and(

ρ−2
|Vq |−3

)
groups with |Vq | − 1 colors. Thus, every edge Ei j with i � j is read by

(
ρ−2
|Vq |−2

)
+

(
ρ−2
|Vq |−3

)
subproblem groups, and the sum is

(
ρ−1
|Vq |−2

)
according to the Pascal’s rule.

ρ−2∑
i=0

ρ−1∑
j=i+1

|Ei j | ×
(
ρ − 1

|Vq | − 2

)
. (7)

As shown in Equations (6) and (7), an edge set Ei j is always required by
(

ρ−1
Vq−2

)
subproblem

groups regardless of whether i = j or i � j. The union of all edge sets is exactly the original edge

set E. Thus, the amount of network read is

(6) + (7) =

(
ρ − 1

|Vq | − 2

)
× |E |,

and the theorem follows. �

By applying Equation (5) to Theorem 4.7, the amount of network read becomes

O (|E |(|Vq |
√
|E |/M − 1) |Vq |−2) if P ≤ ∑ |Vq |

k=1

(|Vq |
√
|E |/M

k

)
, i.e., ρ = |Vq |

√
|E |/M . If P >∑ |Vq |

k=1

(|Vq |
√
|E |/M

k

)
, i.e., ρ = ρ ′, PSE requires O (P |E |) network read as

(
ρ′−1
|Vq |−2

)
≤ ∑ |Vq |

k=1

(
ρ′

k

)
= O (P).

Ensuring the Parallelism. It is crucial to evenly distribute subproblems to groups for the paral-

lelism. However, because each subproblem can belong to different restricted groups, it is easy to

distribute unevenly if we are not careful. PSE ensures that all the groups have a similar number

of subproblems. To accomplish this goal, PSE assigns the subproblems to the groups as follows.

PSE first assigns a subproblem with |Vq | − 1 or |Vq | colors to each group. Each remaining subprob-

lem is assigned to a dominating group; if a subproblem in a group A dominates a subproblem B,

we say that the group A dominates the subproblem B. For example, group {(0, 1), (0)} dominates

subproblems (0), (1), and (0, 1). We note that subproblems with |Vq | colors do not dominate any

other subproblems, and thus no subproblem is assigned to a group with |Vq | colors. All groups are

initially marked as not full.

(1) Among groups that are not full, PSE selects a min-group, which is a group with the least

number of subproblems. If there are two or more min-groups, PSE selects one randomly.

If the selected group dominates no remaining subproblem, we mark the group full and do

(1) again.

(2) Among unassigned subproblems dominated by the selected group, PSE selects one domi-

nated by the least number of min-groups. If two or more subproblems are in the tie, PSE

randomly selects one of them.

(3) PSE assigns the selected subproblem to the selected group and repeats (1) and (2) until all

the subproblems are assigned.

We consider an example with |Vq | = 3 and ρ = 4. Let us assume that there are six groups

{(0, 1), (0)}, {(0, 2)}, {(0, 3)}, {(1, 2)}, {(1, 3), (3)}, and {(2, 3)}, and two remaining subproblems (1)

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:19

and (2); the groups with |Vq | colors are omitted. The min-groups are {(0, 2)}, {(0, 3)}, {(1, 2)}, and

{(2, 3)}. PSE selects one min-group randomly, and we assume that group {(1, 2)} is selected in this

example. PSE then selects subproblem (1) as it is dominated by only one min-group {(1, 2)} while

subproblem (2) is dominated by three min-groups {(0, 2)}, {(1, 2)}, and {(2, 3)}. Since PSE assigned

subproblem (1) to group {(1, 2)}, the subproblem (2) can be assigned to group {(0, 2)} or {(2, 3)};
the maximum number of subproblems in a group is then 2. If PSE assigned subproblem (2) to group

{(1, 2)}, however, subproblem (1) must be assigned to one of the groups {(0, 1), (0)}, {(1, 2), (2)},
and {(1, 3), (3)}; the group with subproblem (1) must have three subproblems. In other words, the

subproblems are unevenly distributed.

Solving Subproblems. One advantage of PSE is that it can use any single-machine algorithm for

the subgraph enumeration, which has been studied in depth for a long time, to solve each sub-

problem. If we adopt a single-machine algorithm carelessly, however, some matches may be enu-

merated multiple times. For example, let us assume that we are solving a subproblem (τ1, . . . ,τk)
where k < |Vq |. We read the edge sets required by the subproblem and find matches using a single-

machine algorithm from the edge induced subgraph built from the edge sets. Then, we get all the

subgraph matches having color set {τ1, . . . ,τk }. The problem is that the single machine algorithm

also finds matches whose color set is a subset of {τ1, . . . ,τk }, and thus some matches are enumer-

ated multiple times. One easy way to workaround this problem is adding a filtering process that

checks whether each match has exactly the same colors as the subproblem; if a match does not

have any of the colors in the subproblem, the match is not enumerated. This method eliminates

duplicate outputs but still performs much redundant computation.

PSE uses the dominance between subproblems to reduce redundant computation; if a subprob-

lem A dominates a subproblem B, a single machine algorithm for the subproblem A also computes

all matches of the subproblem B. We note that, in a group, every subproblem is dominated by the

subproblem with the largest number of colors in the group. In order to solve all subproblems in

a group, PSE executes a single-machine algorithm only once on the edge-sets for the subproblem

with the largest number of colors in the group. PSE filters matches that are not of the group’s

subproblems to prevent duplicate output.

The pseudo-code of PSE is listed in Algorithm 5. PSE consists of a single map function. The

input parameters of the map function are a subproblem group д and the query graph q. Let Cд be

the set of the subproblems’ color sets (line 2), and c be the union of the color sets inCд (line 3). PSE

reads several edge sets for solving the subproblems from a distributed storage (lines 5–12); PSE

reads every edge set Ei j such that (i, j) ∈ c2 and i ≤ j, but if the number |c | of colors in c equals the

number |Vq | of vertices in the query graph, PSE does not read edge sets that consist of only a single

vertex color. Then, from the union E ′ of the edge sets, PSE finds all subgraphs that match the query

graph q (line 13). Among the subgraphs found, PSE enumerates only the subgraphs whose color

set is inCд , for correctness (lines 14–17). Note that, since this filtering is performed as a pipelined

task in distributed systems, the set S of subgraphs does not remain in the memory all at once.

4.6 Implementation

In this section, we discuss practical implementation issues of PTE and PSE. We focus on the most

famous distributed computing frameworks, Hadoop and Spark. Note that PTE and PSE can be

implemented for any distributed framework that supports map and reduce functionalities.

PTE on Hadoop. We describe how to implement PTE on Hadoop which is the de facto standard of

the MapReduce framework. The graph partitioning method (Algorithm 1) of PTE is implemented

as a single MapReduce round. The result of the graph partitioning method has a custom output

format that stores each edge set as a separate file in HDFS; and thus each edge set is accessible

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:20 H.-M. Park et al.

ALGORITHM 5: Subgraph Enumeration (PSE)

/* ψ is a meaningless dummy key */

/* д is a subproblem group */

/* q is the query graph */

Map : input 〈ψ ;д〉, q = (Vq ,Eq)

1 initialize E ′

2 Cд ← {cp = color set of p | p ∈ д}
3 c ← ⋃

cp ∈Cд
cp

4 Let |c | be the number of colors in c

5 if |c | = |Vq | then

6 foreach (i, j) ∈ c2 such that i < j do

7 read Ei j

8 E ′ ← E ′ ∪ Ei j

9 else

10 foreach (i, j) ∈ c2 such that i ≤ j do

11 read Ei j

12 E ′ ← E ′ ∪ Ei j

13 S ← enumerateSubgraphs(E ′, q)

14 foreach s ∈ S do

15 Let cs be the color set of s

16 if cs ∈ Cд then

17 enum(s)

by the path of the file. Each edge set E�i j is stored in an adjacency list format where the source

vertex color is i and the destination vertex color is j so that for a vertex u of the color i , we can

directly access its neighbors v such that u ≺ v . The triangle enumeration method (Algorithms 2

or 3) of PTE is implemented as a single map step where each map task processes an (i, j) or (i, j,k)
subproblem. For this purpose, we generate a text file where each line is (i, j) or (i, j,k), and make

each map task read a line and solve the subproblem.

PSE on Hadoop. From an algorithmic point of view, the graph partitioning of PSE is identical

to that of PTE. However, we implement the graph partitioning of PSE slightly differently to im-

prove the performance. While we only need to access succeeding (�) neighbors of each vertex to

enumerate triangles using PTE, we should access preceding (≺) neighbors as well as succeeding

neighbors to enumerate subgraphs that match an arbitrary query graph. This is due to the re-

quirement of VF2, the single machine algorithm used in PSE, which visits all neighbors of each

vertex. Therefore, creating adjacency lists to directly access all neighbors of each vertex improves

the performance. In the map function of the graph partitioning of PTE (Algorithm 1), each edge

is emitted only once with its color, i.e., 〈(ξ (u), ξ (v)); (u,v)〉. For PSE, we emit each edge one more

time in the opposite direction, i.e., 〈(ξ (v), ξ (u)); (v,u)〉, so that each vertex can access both suc-

ceeding and preceding neighbors. Each reduce function with key (i, j) receives edge set Ei j if i ≤ j
or Eji if i > j, and stores it in the format of a directed adjacency list Ai j or Aji , respectively, where

all j-color neighbors of each i-color vertex are directly accessible in Ai j . The subgraph enumer-

ation method (Algorithm 5) is implemented as a single map step where each map task processes

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:21

Table 2. A Summary of Datasets

Dataset (Abbreviation) Vertices Edges

Skitter (SK)5 1.7M 11M

Youtube (YT)6 3.2M 12M

LiveJournal (LJ)5 4.8M 43M

Orkut (OK)5 3.1M 117M

Twitter (TWT)7 42M 1.2B

Friendster (FS)5 66M 1.8B

SubDomain (SD)8 101M 1.9B

YahooWeb (YW)9 1.4B 6.4B

ClueWeb09 (CW09)10 4.8B 7.9B

ClueWeb12 (CW12)11 6.3B 72B

a subproblem group. For this purpose, we generate a seed file that contains a list of subproblem

groups. Each map task reads and solves a subproblem group.

PTE and PSE on Spark. We describe how to implement PTE and PSE on Spark, which is another

popular distributed computing framework. The reduce operation of the graph partitioning method

(Algorithm 1) is replaced by a pair of partitionBy and foreachPartition operations of general RDD.

The partitionBy operation uses a custom partitioner that partitions edges according to their vertex

colors. For each partition, the foreachPartition operation stores an edge set as an adjacency list into

HDFS. We generate a new RDD, where each element is a pair of a key of a subproblem group and

the list of the subproblems. The new RDD is specially partitioned so that each partition is in charge

of a subproblem group.

5 EXPERIMENTS

In this section, we experimentally evaluate our algorithms and compare them to recent single

machine and distributed algorithms. We aim to answer the following questions.

Q1 How much do the three methods of PTE contribute to the performance improvement?

(Section 5.2.1)

Q2 What is the performance of PSE? (Section 5.2.2)

Q3 What about the machine scalability of PTE and PSE? (Section 5.2.3)

Q4 How does the performance of PTE and PSE change depending on the underlying distributed

framework (MapReduce or Spark)? (Section 5.2.4)

5.1 Setup

5.1.1 Datasets. We use real-world datasets to evaluate the proposed algorithms. The datasets

are summarized in Table 2. Skitter is an Internet topology graph. Youtube, LiveJournal, Orkut, Twit-

ter, and Friendster are friendship networks of online social services of the same names, respectively.

5http://snap.stanford.edu.
6http://konect.uni-koblenz.de.
7http://an.kaist.ac.kr/traces/WWW2010.html.
8http://webdatacommons.org/hyperlinkgraph.
9http://webscope.sandbox.yahoo.com.
10http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=Web+Graph.
11http://www.lemurproject.org/clueweb12/webgraph.php.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

http://snap.stanford.edu
http://konect.uni-koblenz.de
http://an.kaist.ac.kr/traces/www2010.html
http://webdatacommons.org/hyperlinkgraph
http://webscope.sandbox.yahoo.com
http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=Web+Graph
http://www.lemurproject.org/clueweb12/webgraph.php

71:22 H.-M. Park et al.

Fig. 6. Query graphs.

Table 3. The Number of Subgraphs that Match Each Query in Each Dataset

Dataset tri clq4 sqr-dgn sqr clq5

SK 28769868 148834439 20522838735 62769198018 1183885507

YT 12323043 29933904 3547559854 9915671458 72636705

LJ 285730264 9933532019 76354588342 51520572777 467429836174

OK 627584181 3221946137 67098889426 127533170575 15766607860

TWT 34824916864 6622234180319 – – –

FS 4173724142 8963503263 185191258870 465803364346 21710817218

SD 417761664336 265912212739162 – – –

YW 85782928684 5364285380859 – – –

CW09 31013037486 – – – –

CW12 3058034046618 – – – –

A dash mark (–) means that the number is not known.

SubDomain is a hyperlink network among domains where an edge exists if there is at least one hy-

perlink between two subdomains. YahooWeb, ClueWeb09, and ClueWeb12 are page level hyperlink

networks on the Web. Each dataset is preprocessed to be a simple graph. We reorder the vertices

in each edge (u,v) to be u ≺ v using an algorithm in [7]. These tasks are done in O (E).

5.1.2 Query Graphs. The five query graphs in Figure 6 are used in the experiments. The query

graphs are a triangle, a square, a square with a diagonal edge, and two cliques with four and five

vertices, respectively. We name the query graphs as tri, sqr, sqr-dgn, clq4, and clq5, respectively.

The number of subgraphs matching each query graph in each dataset is listed in Table 3. A dash

mark (–) means that the number is not known.

5.1.3 Experimental Environment. We implement PTE and PSE on Hadoop (open source version

of MapReduce) and Spark. Results described in Sections 5.2.1, 5.2.2, and 5.2.3 are from Hadoop

implementations; we also describe the Spark results in Section 5.2.4. We compare PTEs and PSE

to previous triangle and subgraph enumeration algorithms: CTTP [35], MGT [16], TwinTwig [28],

and the triangle counting implementations on GraphLab and GraphX. CTTP is the state of the

art MapReduce algorithm. MGT is an I/O efficient external memory algorithm. GraphX is a graph

processing API on Spark, a distributed computing framework. GraphLab is another distributed

graph processing framework using MPI. TwinTwig is the state of the art MapReduce algorithm for

subgraph enumeration. PSE is compared only to TwinTwig because other systems above do not

support enumeration of graph patterns other than a triangle. The algorithms are summarized in

Table 4.

In order to solve subproblems in each machine, PSE uses the VF2 [8] algorithm with a

filtering process described in Section 4.5. We note that the performance of PSE can be further

improved by using a recent single-machine subgraph enumeration algorithm like DUALSIM [26],

which supports only Windows and thus cannot easily be used together with Spark and Hadoop

environments.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:23

Table 4. A Summary of Algorithms

Problem Triangle enumeration Subgraph enumeration

Algorithm PTE CTTP MGT GraphLab GraphX PSE TwinTwig

Property Proposed MapReduce
External
memory

Distributed
memory

Distributed
memory Proposed MapReduce

Table 5. Cluster Specification

Hardware Software

Machines 20 Hadoop v2.7.3

CPU Intel Xeon E5-2620v3 Spark v1.5.2

(hexa-core at 2.4GHz) GraphLab-PowerGraph v2.2

RAM 32GB MPICH v3.2

Fig. 7. The shuffled data size of PTE, PSE, TwinTwig (TT), and CTTP (a) on ClueWeb12 with various numbers

of edges, and (b) on real-world graphs. PTE shuffles up to 70 times fewer data than CTTP does on ClueWeb12;

the gap grows when the data size increases. On real-world graphs, PTE shuffles up to 68 times fewer data

than CTTP on ClueWeb09 does.

All experiments were conducted on a cluster with 20 machines where each machine is equipped

with an Intel Xeon E5-2620v3 CPU (hexa-core at 2.4GHz) and 32GB RAM. The cluster runs on

Hadoop v2.7.3, and consists of 20 worker nodes, one of which serves as a driver node also. The

memory size for each worker (a mapper or a reducer) is set to 7GB. Spark v1.5.2 is also installed

at the cluster and runs on Hadoop YARN. We operate GraphLab PowerGraph v2.2 on MPICh v3.2

at the same cluster servers. The cluster specification is summarized in Table 5.

5.2 Experimental Results

In this section, we present experimental results to answer the questions listed at the beginning of

Section 5.

5.2.1 Effect of PTE’s Three Ideas.

Effect of Pre-partitioning. We compare PTE and PSE to TwinTwig and CTTP in terms of the

amount of shuffled data for triangle enumeration to show the effect of pre-partitioning (Sec-

tion 4.1). Figure 7(a) shows the results on ClueWeb12 with various numbers of edges. It shows

that PTE and PSE shuffle far fewer data than CTTP or TwinTwig, and the difference gets larger as

the data size increases; as the number of edges varies from 0.28 billion to 36 billion, the difference

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:24 H.-M. Park et al.

Table 6. The Number of Operations by PTECD and

PTEBASE on Various Graphs

Dataset PTEBASE PTECD
PT EBAS E

PT EC D

CW12/256 1.5 × 108 2.1 × 107 6.85

CW12/128 6.2 × 108 1.0 × 108 6.22

CW12/64 2.7 × 109 4.6 × 108 5.83

CW12/32 1.2 × 1010 2.2 × 109 5.10

CW12/16 4.9 × 1010 1.1 × 1010 4.44

CW12/8 2.1 × 1011 5.4 × 1010 3.90

CW12/4 8.9 × 1011 2.6 × 1011 3.47

CW12/2 3.7 × 1012 1.2 × 1012 3.18

CW12 1.6 × 1013 4.9 × 1012 3.14

TWT 1.1 × 1012 5.4 × 1011 2.03

SD 8.3 × 1012 4.0 × 1012 2.06

YW 7.4 × 1011 2.9 × 1011 2.55

CW09 2.7 × 1011 6.9 × 1010 3.94

PT EC D decreases the number of operations by up to 6.85×
from PT EBAS E .

between PTE and CTTP increases from 20× to 70×. The slopes for PTE, PSE, TT, and CTTP are

1.00, 1.00, 1,32, and 1.47, respectively. They reflect the claimed complexity of shuffled data size,

O (|E |) of PTE and O (|E |1.5/
√
M) of CTTP. PSE shuffles twice as much data as PTE does as the

map function of PSE emits every edge twice as described in Section 5.1.3. TwinTwig fails to pro-

cess graphs with more than 4.5 billion edges because of an out of memory error. Figure 7(b)

shows the results on real-world graphs; PTE shuffles far fewer data by up to 68× than CTTP

does.

Effect of Color-direction. To show the effect of color-direction (Section 4.2), we count the number

of all operations in intersecting two neighbor sets (line 13 in Algorithm 3) in Table 6. PTECD

reduces the number of comparisons by up to 6.85× from PTEBASE by the color-direction.

Effect of Scheduling Computation. We also show the effect of scheduling calls of the function

enumerateTrianglesCD (Section 4.3) by comparing the amount of data read via a network by

PTECD and PTESC in Table 7. As expected, for every dataset, the ratio (PT EC D

PT ESC
) is about 1.10 ≈√

6/5.

Running Time Comparison. We now compare the running time of PTEs, PSE, and competitors

(CTTP, MGT, GraphLab, GraphX, TwinTwig (TT)) in Figure 8. PTESC shows the best performance

and PTECD follows it very closely. GraphX does not appear because it fails even with the smallest

dataset with 280 million edges because of out-of-memory error. CTTP fails to run within 2 days

when edges are more than 9 billion. GraphLab, MGT, and TwinTwig also fail when the number of

edges is larger than 600 million, 1.2 billion, and 5 billion, respectively, because of out-of-memory

or out-of-range error. The out-of-range error occurs when a vertex id exceeds the range of 32-

bit integer limit. Note that, even when MGT can treat vertex ids exceeding the integer range, the

performance of MGT would worsen as the graph size increases since MGT performs massive I/O

(O (|E |2/M)) when the input data size is large. The slope 1.48 of the PTEs reflects that the total

work of them is O (|E |3/2) as proved in Theorem 4.5.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:25

Table 7. The Amount of Data Read via a

Network on Various Graphs

Dataset PTECD PTESC
PT EC D

PT ESC

CW12/256 13.1GB 13.1GB 1.00

CW12/128 24.8GB 24.8GB 1.00

CW12/64 46.6GB 46.6GB 1.00

CW12/32 89.9GB 89.9GB 1.00

CW12/16 222TB 197GB 1.13

CW12/8 679TB 576GB 1.18

CW12/4 1.9TB 1.7TB 1.12

CW12/2 5.4TB 4.9TB 1.10

CW12 15.6TB 14.2TB 1.10

TWT 39.5GB 39.5GB 1.00

SD 61.0GB 61.0GB 1.00

YW 303GB 298GB 1.09

CW09 798GB 704GB 1.13

The ratio (
PT EC D
PT ESC

) is about 1.10 ≈
√

6/5 for all

datasets, as expected. When the dataset is small,

PT ESC and PT EC D require the same amount of

network read, i.e., the ratio is 1, since they use the

same number of vertex colors.

Fig. 8. The running time on ClueWeb12 with various numbers of edges. o.o.m.: out-of-memory. PTESC shows

the best data scalability; only PTEs and PSE succeed in processing the subgraphs containing more than

9 billion edges. The pre-partitioning (CTTP vs. PTEBASE) significantly reduces the running time while the

effect of the scheduling function (PTECD vs. PTESC) is relatively insignificant.

Figure 9 shows the running time of various algorithms on real world datasets. PTESC shows

the best performances outperforming CTTP and MGT by up to 79 times and 8 times, respectively.

Only the proposed algorithms succeed in processing ClueWeb12 with 6.3 billion vertices and 72

billion edges while all other algorithms fail to process the graph.

5.2.2 Varying Queries. For each query in Figure 6, we compare the running time of PSE and

TwinTwig, the state of the art MapReduce algorithm for subgraph enumeration; the results are

shown in Figure 10. Four graphs are used: Skitter (SK), Youtube (YT), LiveJournal (LJ), and Orkut

(OK). Other graphs with many vertices and edges are not displayed here because TwinTwig failed

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:26 H.-M. Park et al.

Fig. 9. The running time of proposed methods (PTESC , PTECD , PTEBASE , and PSE) and competitors (CTTP,

MGT, GraphLab, and TwinTwig (TT)) on real-world datasets (log scale). GraphX is not shown since it failed

to process any of the datasets. Missing methods for some datasets mean they failed to run on the datasets.

PTESC shows the best performances outperforming CTTP and MGT by up to 79 times and 8 times, re-

spectively. Only the proposed algorithms succeed in processing the ClueWeb12 graph containing 6.3 billion

vertices and 72 billion edges.

Fig. 10. The running time of PSE and TwinTwig (TT) for 4 queries: sqr, sqr-dgn, clq4, and clq5. Four graphs

are used: Skitter (SK), Youtube (YT), LiveJournal (LJ), and Orkut. PSE shows better performance than TT for

all queries, up to 47 times. TT failed to enumerate sqr-dgn pattern in YT, LJ and OK datasets, and clq5 in LJ

dataset because of out-of-memory error.

to process them. In all cases, PSE overwhelms TwinTwig; PSE shows about 47 times faster per-

formance when enumerating the query graph clq5 in the data graph LJ. The performance gap of

the two algorithms is relatively insignificant for the query graph sqr compared to the other query

graphs. Note that the pruning technique of the single machine algorithm used in PSE is relatively

not effective for the query sqr, compared to other queries. The single machine algorithm exploits

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:27

Fig. 11. The running time of PSE on various datasets. The running time tends to be proportional to the

number of found subgraphs.

Fig. 12. Machine scalability of PTEs, PSE, CTTP, and TwinTwig (TT) for (a) triangle enumeration on

YahooWeb (YW) and (b) subgraph enumeration with clq4 graph pattern on LiveJournal (LJ). In (a), GraphLab,

GraphX, and TT are excluded because they failed to process YW. PTEs and PSE show strong scalability with

exponents −0.86 and −0.92 in triangle enumeration and subgraph enumeration, respectively.

the partial order of a query graph to prune computations. It indicates that the more partial orders

of a query graph are, the more the single machine algorithm prunes computations. However, the

query sqr has relatively fewer partial orders than other queries do; thus, PSE using the single ma-

chine algorithm takes more time when the query is sqr, compared to other queries. Meanwhile,

enumerating sqr is easier than in other query graphs for TwinTwig since TwinTwig caches 2-

length paths of the input graph as intermediate data and finds subgraphs matching the desired

query while sqr subgraphs can be found by joining 2-length paths only once. Nevertheless, PSE

shows better performance than TwinTwig even for the query sqr because TwinTwig generates a

large amount of intermediate data as much as the number of 2-length paths in an input graph

while PSE generates intermediate data only as much as the number of edges in the input graph.

Figure 11 shows the running time of PSE on various datasets. The number of found subgraphs

in each graph is listed in Table 3. All the queries in Figure 6 are used. The result shows that the

running time tends to be proportional to the number of found subgraphs.

5.2.3 Machine Scalability. We evaluate the machine scalability of PTEs and PSE by measuring

the running time of them and competitors varying the number of machines from 5 to 20. Figure 12

shows the running time of PTEs, PSE, CTTP, and TwinTwig (TT) for triangle enumeration on

YahooWeb (YW), and subgraph enumeration with the clq4 graph query on LiveJournal (LJ). Note

that GraphX, GraphLab, and TT are omitted in Figure 12(a) because they fail to process YW on

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

71:28 H.-M. Park et al.

Fig. 13. The running time of PTESC and PSE on Hadoop and Spark. The running times do not differ signifi-

cantly depending on underlying systems.

our cluster. Every version of PTEs and PSE shows strong scalability: the slopes −0.86 of the PTEs

and −0.92 of PSE are very close to the ideal value −1. It means that the running time decreases

20.86 = 1.82 and 20.92 = 1.89 times, respectively, as the number of machines is doubled.

5.2.4 PTE and PSE on Spark. We implement PTESC and PSE on Spark as well as on Hadoop

to show that PTE and PSE are general enough to be implemented in any distributed system sup-

porting the map and reduce functionality. We compare the running time of implementations on

Hadoop and Spark in Figure 13. The result indicates that Spark implementations do not show a

better performance than Hadoop implementations even though Spark implementations are able

to use a distributed memory as well as disks. This is because the RDD for the pre-partitioned edge

sets cannot remain in distributed memory; Spark drives the RDD from distributed memory to dis-

tributed disks to free up memory for PTE and PSE to solve subproblems. PTE and PSE require a

large amount of memory to solve subproblems, and thus, they consume memory as much as possi-

ble. In other words, PTE and PSE for Spark hardly exploit the distributed memory, like the Hadoop

versions.

6 CONCLUSION

In this article, we propose PTE, a scalable distributed algorithm for enumerating triangles in very

large graphs, and generalize PTE to PSE for enumerating subgraphs that match an arbitrary query

graph. We carefully design PTE and PSE so that they minimize the amount of shuffled data, to-

tal work, and network read. PTE and PSE show the best performances in real-world data: they

outperform the state-of-the-art scalable distributed algorithms by up to 79 times and 47 times, re-

spectively. PTE is the only algorithm that successfully enumerates more than 3 trillion triangles in

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

Enumerating Trillion Subgraphs On Distributed Systems 71:29

ClueWeb12 graph with 72 billion edges while all other algorithms including GraphLab, GraphX,

MGT, and CTTP fail. Moreover, PSE succeeds in enumerating 265 trillion clique graph with 4 ver-

tices in a subdomain hyperlink network with 1.9 billion edges while the state of the art distributed

subgraph enumeration algorithm TwinTwig fails on the data.

REFERENCES

[1] Foto N. Afrati, Dimitris Fotakis, and Jeffrey D. Ullman. 2013. Enumerating subgraph instances using map-reduce. In

ICDE. 62–73.

[2] Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe. 2013. PATRIC: A parallel algorithm for counting triangles

in massive networks. In CIKM.

[3] Claude Barthels, Gustavo Alonso, Torsten Hoefler, Timo Schneider, and Ingo Müller. 2017. Distributed join algorithms

on thousands of cores. PVLDB 10, 5 (2017), 517–528.

[4] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010. Efficient algorithms for large-scale local

triangle counting.TKDD 4, 3 (2010), 13:1–13:28.

[5] Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and Cynthia A. Phillips. 2011. Tolerating the commu-

nity detection resolution limit with edge weighting. Phys. Rev. E 83, 5 (2011), 056119.

[6] Bin-Hui Chou and Einoshin Suzuki. 2010. Discovering community-oriented roles of nodes in a social network. In

DaWaK. 52–64.

[7] Jonathan Cohen. 2009. Graph twiddling in a mapreduce world. CiSE 11, 4 (2009), 29–41.

[8] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)graph isomorphism algorithm for

matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26, 10 (2004), 1367–1372.

[9] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified data processing on large clusters. In OSDI. 137–150.

[10] Jean-Pierre Eckmann and Elisha Moses. 2002. Curvature of co-links uncovers hidden thematic layers in the world

wide web. PNAS 99, 9 (2002), 5825–5829.

[11] Ilias Giechaskiel, George Panagopoulos, and Eiko Yoneki. 2015. PDTL: Parallel and distributed triangle listing for

massive graphs. In ICPP.

[12] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed

graph-parallel computation on natural graphs. In OSDI. 17–30.

[13] Enrico Gregori, Luciano Lenzini, and Simone Mainardi. 2013. Parallel k-clique community detection on large-scale

networks. IEEE Trans. Parallel Distrib. Syst. 24, 8 (2013), 1651–1660.

[14] Joshua A. Grochow and Manolis Kellis. 2007. Network motif discovery using subgraph enumeration and symmetry-

breaking. In RECOMB. 92–106.

[15] Herodotos Herodotou. 2011. Hadoop performance models. Technical Report CS-2011-05. Duke University. http://

www.cs.duke.edu/starfish/files/hadoop-models.pdf.

[16] Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. 2013. Massive graph triangulation. In SIGMOD. 325–336.

[17] ByungSoo Jeon, Inah Jeon, Lee Sael, and U. Kang. 2016. SCouT: Scalable coupled matrix-tensor factorization – algo-

rithm and discoveries. In ICDE.

[18] Inah Jeon, Evangelos E. Papalexakis, Christos Faloutsos, Lee Sael, and U. Kang. 2016. Mining billion-scale tensors:

Algorithms and discoveries. VLDB J. 25, 4 (2016), 519–544.

[19] Sanjay Ram Kairam, Dan J. Wang, and Jure Leskovec. 2012. The life and death of online groups: Predicting group

growth and longevity. In WSDM. 673–682.

[20] U. Kang, Jay-Yoon Lee, Danai Koutra, and Christos Faloutsos. 2014. Net-ray: Visualizing and mining billion-scale

graphs. In PAKDD.

[21] U. Kang, Brendan Meeder, Evangelos E. Papalexakis, and Christos Faloutsos. 2014. HEigen: Spectral analysis for

billion-scale graphs.TKDE (2014), 350–362.

[22] U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012. GigaTensor: Scaling tensor analysis

up by 100 times – algorithms and discoveries. In KDD. 316–324.

[23] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos. 2012. GBASE: An efficient analysis

platform for large graphs. VLDB J. 21, 5 (2012), 637–650.

[24] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. 2011. PEGASUS: Mining peta-scale graphs. Knowl. Inf.

Syst. 27, 2 (2011), 303–325.

[25] U. Kang, Charalampos E. Tsourakakis, and Faloutsos Faloutsos. 2009. PEGASUS: A peta-scale graph mining system

– implementation and observations. ICDM (2009).

[26] Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick, Wook-Shin Han, Jeong-Hoon Lee, Seongyun Ko, and Moath

H. A. Jarrah. 2016. DUALSIM: Parallel subgraph enumeration in a massive graph on a single machine. In SIGMOD.

1231–1245.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

http://www.cs.duke.edu/starfish/files/hadoop-models.pdf
http://www.cs.duke.edu/starfish/files/hadoop-models.pdf

71:30 H.-M. Park et al.

[27] Jinha Kim, Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, and Hwanjo Yu. 2014. OPT: A new framework for over-

lapped and parallel triangulation in large-scale graphs. In SIGMOD. 637–648.

[28] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. 2015. Scalable subgraph enumeration in mapreduce. PVLDB 8,

10 (2015), 974–985.

[29] Matthieu Latapy. 2008. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor. Com-

put. Sci. (2008), 458–473.

[30] Rasmus Pagh and Francesco Silvestri. 2014. The input/output complexity of triangle enumeration. In PODS. 224–233.

[31] Ha-Myung Park, Sung-Hyon Myaeng, and U. Kang. 2016. PTE: Enumerating trillion triangles on distributed systems.

In KDD. 1115–1124.

[32] Ha-Myung Park, Namyong Park, Sung-Hyon Myaeng, and U. Kang. 2016. Partition aware connected component

computation in distributed systems. In ICDM 2016, December 12-15, Barcelona, Spain. 420–429.

[33] Ha-Myung Park and Chin-Wan Chung. 2013. An efficient mapreduce algorithm for counting triangles in a very large

graph. In CIKM. 539–548.

[34] Ha-Myung Park, Chiwan Park, and U. Kang. 2018. PegasusN: A scalable and versatile graph mining system. In AAAI.

[35] Ha-Myung Park, Francesco Silvestri, U. Kang, and Rasmus Pagh. 2014. MapReduce triangle enumeration with guar-

antees. In CIKM. 1739–1748.

[36] Namyong Park, ByungSoo Jeon, Jungwoo Lee, and U. Kang. 2016. BIGtensor: Mining billion-scale tensor made easy.

In CIKM, Indianapolis, IN, USA, October 24–28. 2457–2460.

[37] Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. 2017. ESCAPE: Efficiently counting all 5-vertex subgraphs. In

WWW. 1431–1440.

[38] Todd Plantenga. 2013. Inexact subgraph isomorphism in MapReduce. J. Parallel Distrib. Comput. 73, 2 (2013), 164–175.

[39] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and Domenico Parisi. 2004. Defining and

identifying communities in networks. PNAS 101, 9 (2004), 2658–2663.

[40] Lee Sael, Inah Jeon, and U. Kang. 2015. Scalable tensor mining. Big Data Research 2, 2 (2015), 82–86. DOI:http://dx.

doi.org/10.1016/j.bdr.2015.01.004 Visions on Big Data.

[41] Thomas Schank. 2007. Algorithmic Aspects of Triangle-Based Network Analysis. Ph.D. thesis. University Karlsruhe.

[42] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu. 2014. Parallel subgraph listing in a large-scale

graph. In SIGMOD. 625–636.

[43] Kijung Shin, Lee Sael, and U. Kang. 2017. Fully scalable methods for distributed tensor factorization. IEEE Trans.

Knowl. Data Eng. 29, 1 (2017), 100–113.

[44] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012. Efficient subgraph matching on billion

node graphs. PVLDB 5, 9 (2012), 788–799.

[45] Siddharth Suri and Sergei Vassilvitskii. 2011. Counting triangles and the curse of the last reducer. In WWW. 607–614.

[46] Mark N. Wegman and Larry Carter. 1981. New hash functions and their use in authentication and set equality. J.

Comput. Syst. Sci. 22, 3 (1981), 265–279.

[47] Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Y. Zhao, and Yafei Dai. 2014. Uncovering social network

sybils in the wild. TKDD 8, 1 (2014), 2:1–2:29.

Received June 2017; revised February 2018; accepted July 2018

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 71. Publication date: October 2018.

http://dx.doi.org/10.1016/j.bdr.2015.01.004
http://dx.doi.org/10.1016/j.bdr.2015.01.004

