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Abstract—How can we accurately predict item ratings by
users using multiple coupled data? Nowadays huge amount of
sparse information is available, and in many cases auxiliary
data associated with rating data are also present. Training
a model to predict missing ratings is equivalent to finding
a complex relationship between each user and each item.
Existing methods assumed this relationship as a fixed linear
function, however this causes the predictions to be biased to
the mean of ratings causing information loss. Therefore it is
crucial to design a flexible model that reveals hidden, non-linear
relationships between users and items.

In this paper, we propose NN-CMF, a neural network
based method that predicts missing values of rating matrix by
learning a non-linear function and latent matrices exploiting
both rating matrix and auxiliary data. While conventional
matrix factorization methods predict missing values through
the inner product of latent vectors, NN-CMF learns a general
non-linear function for latent vectors and therefore provides
more accurate prediction. Experiments show that NN-CMF
outperforms the conventional coupled matrix factorization
methods by up to 5.4%. Our method is especially superior
in improving accuracy on sparser datasets, making it more
useful for real world applications.

Keywords-matrix factorization; neural networks; recom-
mender system;

I. INTRODUCTION

How can we accurately predict item ratings by users
using multiple coupled data? In the real world, we have
huge amounts of sparse data such as item rating data, social
network, item characteristics data, etc. The item rating data
have many of its entries missing. Predicting these missing
values is equivalent to predicting the rating a user will give to
an item the user has never seen before. When better items are
recommended by better predictions, buyers can more easily
purchase goods they prefer. Likewise, from the sellers’ point
of view, their revenue will increase by increased sales. By
using the rating data as a starting point, utilizing other related
information will help to make more accurate predictions.
Therefore, effectively using the abundant amount of given
information to predict item ratings has been received as an
important task in the data mining community [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18].

Discovering the relationship between user and item is
difficult: there are numerous hidden and unknown aspects
that affect user preference. Matrix Factorization (MF) [1],

[2] is a traditional method that assumes the relationship
between user and item as a fixed linear function. Given a
ratings matrix X , MF derives two latent matrices A and B
that represent user and item features, respectively. It applies
the inner product on these latent matrices that results in
the predicted ratings matrix X̂ [19], [20], [21], [22], [23].
However using a linear function induces the predictions to
be skewed to the mean of ratings. Simply using a linear
function cannot catch each user’s preference for each item,
which is not fully utilizing given information [24], [25],
[26], [27]. MF also uses only sparse observed ratings matrix
which makes it difficult to predict item ratings of users
accurately [28]. Coupled Matrix Factorization (CMF) [3], [4]
solves sparsity of the ratings data by using another auxiliary
data Y to subsidize the rating prediction, as explained
in detail in Section II. This auxiliary data can be social
networks, such as whether a user trusts another user, or
movie-genre information, etc. Given X and Y , Coupled
Matrix Factorization (CMF) learns three latent matrices A,
B, and G that represent user, item and some other (trustee,
genre) features, respectively. As MF, CMF also models the
inner product of A and B as X̂ and inner product of B and
G as Ŷ , which entails the problem of using a linear function
causing information loss. Also, the predicted values of CMF
tend to be clustered around the mean value as shown in
Table V. Therefore it is crucial to design a flexible model
that reveals hidden non-linear relationships between users
and items, and decreases error by avoiding clustered output
values around the mean.

In this paper, we propose NN-CMF, a neural network
based method that predicts missing values of rating matrix
by learning a non-linear function and latent matrices exploit-
ing both rating matrix and auxiliary data. While conventional
matrix factorization methods predict missing values through
the inner product of latent matrices, NN-CMF replaces the
inner product (linear function) to a multilayered feedforward
neural network model (non-linear function). To build the
structure of coupled neural network we combine two neural
networks that each train for rating and auxiliary data with
an integrated loss function. We further optimize our method
to prevent predictions from converging to the mean, and to
control the impact of auxiliary data to balance its importance
compared to the rating data. NN-CMF predicts missing
values of the ratings matrix more accurately through non-
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Figure 1: NN-CMF outperforms its naive versions (NN-CMF-µ and NN-CMF-B) and standard CMF, providing the minimum
error.

linear mappings from factors. As shown in Figure 1, NN-
CMF shows the best performance outperforming CMF and
naive versions of NN-CMF.

The contributions of NN-CMF are as follows:

• Algorithm. We propose NN-CMF, a method to predict
missing values in coupled data using neural network.
Our method learns a non-linear function and latent
matrices, and provides more accurate prediction.

• Performance. NN-CMF surpasses the accuracy of con-
ventional coupled matrix factorization up to 5.4% and
on average 3.4%. NN-CMF’s predicted value distri-
bution is closer to the real rating data distribution.
Furthermore, NN-CMF show linear scalability with
regard to number of ratings.

• Overcoming Data Sparsity. NN-CMF works even
better in improving the performance on sparser datasets.
NN-CMF improves the performance of CMF on sparser
datasets on average by 4.2% while on denser datasets
by 2.6%. In addition, as we randomly remove data
points in an arbitrary dataset and thereby increase spar-
sity, RMSE of NN-CMF increases linearly while that of
CMF increases exponentially, making the performance
gap even larger.

The code of our method and datasets used in the paper are
available at http://datalab.snu.ac.kr/nncmf. The rest of the
paper is organized as follows. We explain preliminaries in
Section II. In Section III we describe NN-CMF; we present
experiment results in Section IV. After describing related
works in Section V, we conclude in Section VI. Table I lists
the symbols used in this paper.

II. PRELIMINARY: COUPLED MATRIX FACTORIZATION

A traditional collaborative filtering method Matrix Fac-
torization (MF) decomposes a single matrix into two latent
vectors and minimizes the loss function which is based on
the inner product of the two latent matrices. Since MF
suffers from data sparsity problem [29], Coupled Matrix
Factorization (CMF) which uses additional data has been
proposed. Coupled Matrix Factorization (CMF) uses auxil-
iary information in addition to user-item matrix and shows
better performance than MF especially when the user-item
matrix is sparse.

Definition 1 (Coupled Matrix Factorization)
Assuming the auxiliary dataset used is item coupled,

given a rating matrix X ∈ R|U |×|I| and an auxiliary
matrix Y ∈ R|I|×|C|, the rank d decomposition of these
two primitive matrices yields three latent matrices, A ∈
Rd×|U |, B ∈ Rd×|I| and G ∈ Rd×|C|. U, I , and C indicate
set of users, items, and auxiliary entity, respectively. B is
shared for the predicted matrices X̂ and Ŷ as in Equation
1:

X̂ui = Aᵀ
uBi, Ŷic = Bᵀ

i Gc (1)

where Au, Bi, and Gc are uth column of A, ith column
of B, and cth column of G, respectively. A,B, and G
are learned to minimize an integrated loss function. The

http://datalab.snu.ac.kr/nncmf


Table I: Table of symbols.

Symbol Definition

U, I, C set of users, items, and auxiliary entity (genre, trustee)
X X ∈ R|U|×|I| item rating matrix

Xui rating user u gave to item i

Y Y ∈ R|I|×|C| item coupled auxiliary matrix or
Y ∈ R|U|×|C| user coupled auxiliary matrix

Yic information of item i for auxiliary information c
(when Y is item coupled)

Yuc information of user u for auxiliary information c
(when Y is user coupled)

ΩX set of indices of observable entries in X
ΩY set of indices of observable entries in Y

fx, fy feedforward network for X and Y each
A, B, G feature matrix of user, item, and auxiliary information

Au, Bi, Gc feature vector for each user, item, and auxiliary information
A′, B′, G′ bias matrix of user, item, and auxiliary information
A′u, B′i, G

′
c bias vector for each user, item, and auxiliary information
d dimension of feature vectors
d′ dimension of bias vectors
l learning rate
λ regularization parameter
α parameter controlling the influence of auxiliary

information
µ average of item ratings of training set Xtrain of X
◦ elementwise multiplication
L loss function

σ(x) sigmoid function 1/(1 + exp(-x))
| | cardinality

objective function of CMF is as follows:

L =
1

2

∑
(u,i)∈ΩX

(X̂ui −Xui)
2 +

1

2

∑
(i,c)∈ΩY

(Ŷic − Yic)2

+
λ

2
(‖A|‖2F + ‖B|‖2F + ‖G|‖2F ), (2)

where ΩX and ΩY are sets of indices of observable entries in
X and Y , respectively. λ is a regularization term to prevent
overfitting. The prediction error e is defined as follows:

eui = X̂ui −Xui = Aᵀ
uBi −Xui

eic = Ŷic − Yic = Bᵀ
i Gc − Yic

The update procedures for latent vectors are as follows:

Au ← Au − l
∂L

∂Au
,

∂L

∂Au
=

∑
(u,i)∈ΩX

(euiBi) + λAu

Bi ← Bi − l
∂L

∂Bi
,

∂L

∂Bi
=

∑
(u,i)∈ΩX

(euiAu) +
∑

(i,c)∈ΩY

(eicGc) + λBi

Gc ← Gc − l
∂L

∂Gc
,

∂L

∂Gc
=

∑
(i,c)∈ΩY

(eicBi) + λGc

where l is a learning rate.

Figure 2: Neural network structure of NN-CMF for item
coupled dataset. Elementwise multiplication of feature vec-
tors (Au, Bi, and Gc) are concatenated with bias vectors
(A′u, B

′
i, and G′c) as input. Each hidden layer is activated

by sigmoid function while the last layer is linear. Detailed
explanation is in Section III-A.

The coupled data type can be either user or item. The
CIMF [4] uses movie-genre matrix as auxiliary information,
and is more accurate than the baseline PMF [19] which
uses only user-movie matrix. SoRec [3] uses social network
as auxiliary information and improves the performance by
9.98% on average in terms of accuracy over the baseline
PMF. In particular, it shows better performance for users
with fewer item ratings, which means that CMF can get
better results for sparse data. Therefore, it is crucial to utilize
additional information because data is getting bigger and
sparser nowadays.

III. PROPOSED METHOD

Using neural network in coupled matrix factorization
allows us to learn a general non-linear function for the
factorized matrices, unlike the conventional method which
was constrained to inner product.

We create two networks that train for rating and auxiliary
data each. NN-CMF combines the networks by a unified
learning process, using an integrated loss function. We
explain our base method in Section III-A. We optimize our
method by learning only residuals from the mean value of
the rating data. This prevents predictions from converging to
the mean, which we explain in detail in Section III-B. We
further optimize our method by multiplying a constant to the
auxiliary information loss (lossY of Equation 6) to reflect
the importance of the additional information compared to the
ratings information, which we elaborate in Section III-C.

A. NN-CMF-B

NN-CMF-B is the starting point of our method. We first
explain the structure of our model and how our model is



formulated. Then we describe the motivation regarding how
we build the structure of a coupled neural network.

We will assume that the auxiliary matrix Y is an item
coupled information matrix as shown in Figure 2. Given
a rating matrix X ∈ R|U |×|I| and an auxiliary matrix
Y ∈ R|I|×|C| where the item information is coupled, these
two matrices are factorized into three latent feature matrices
A ∈ Rd×|U |, B ∈ Rd×|I|, G ∈ Rd×|C| and three latent
bias matrices A′ ∈ Rd′×|U |, B′ ∈ Rd′×|I|, G′ ∈ Rd′×|C|.
U, I , and C indicate set of users, items, and auxiliary entity
respectively, and each u of U , i of I , and c of C has a
feature vector and a bias vector. We use feature and bias
vectors to create an input vector that effectively describes the
given data. The user coupled case is similarly formulated.
With feature and bias vectors Au, Bi, Gc ∈ Rd, A′u, B′i,
G′c ∈ Rd′

, the model estimates each element of X and Y
as follows:

X̂ui = fx((Au ◦Bi), A
′
u, B

′
i) (3)

Ŷic = fy((Bi ◦Gc), B
′
i, G
′
c) (4)

where f is a feedforward network, and x and y are weights
used in the network. Feature vectors are multiplied to each
other and bias vectors are concatenated to the multiplied
feature vectors to create the input vector ∈ Rd+2d′

. Fea-
ture vectors are multiplied to each other to constitute the
interaction between entities. Bias vectors are concatenated
to the multiplied feature vectors to maximize generality and
allow the model to learn a non-linear function. Input vector
goes through each neural network which results in a single
predicted value. To learn the feature vector, bias vector, and
network weights, we minimize the objective function defined
in Equation 8:

lossX =
1

2

∑
(u,i)∈ΩX

(X̂ui −Xui)
2

(5)

lossY =
1

2

∑
(i,c)∈ΩY

(Ŷic − Yic)2
(6)

lossreg =
1

2
(‖Au‖22 + ‖A′u‖22 + ‖Bi‖22 + ‖B′i‖22

+ ‖Gc‖22 + ‖G′c‖22) (7)

L = lossX + lossY + λ · lossreg =

1

2

∑
(u,i)∈ΩX

(X̂ui −Xui)
2 +

1

2

∑
(i,c)∈ΩY

(Ŷic − Yic)2+

λ

2
(‖Au‖22 + ‖A′u‖22 + ‖Bi‖22 + ‖B′i‖22 + ‖Gc‖22 + ‖G′c‖22)

(8)

lossX minimizes the difference between the original existing
item rating values and the predicted values. Likewise, lossY

also minimizes the difference between the original values
and the predicted values regarding the auxiliary matrix. ΩX

and ΩY are sets of indices of observable entries in X and
Y , respectively. λ is a regularization parameter multiplied
to lossreg to prevent overfitting of feature and bias vectors.
Preventing overfitting is crucial because if features and
biases are not constrained, the learned model will fit too
much for the training data. This makes the performance on
unseen data such as the test data deteriorate.

To build the structure of coupled neural network we
need to train for two different matrices, rating and aux-
iliary matrices, but combine the learning process so we
can simultaneously update the shared matrices, B and B′.
By using separate weights for X̂ and Ŷ we create two
networks, fx and fy , that train for rating and auxiliary data
respectively. We combine fx and fy by using an integrated
loss function. The loss function contains both lossX and
lossY and regularizes for all components of X̂ and Ŷ .
By performing gradient descent on this loss function for
feature and bias vectors we unite the learning process, and
thereby fully establish coupled neural network. We explain
the learning process in detail in Section III-D.

B. NN-CMF-µ

Most existing methods overlook the fact that predicted
values tend to converge to the mean value. This can be
prevented by learning only residuals from the mean value. In
NN-CMF-µ we introduce the term µ to represent the mean
of Xtrain (training set of X). We train the model with µ
subtracted from the data. µ is added to the predicted rating
at the last layer of the overall structure as shown in Figure
2. This means that lossX in Equation 5 equals to Equation
10, but the subtractions are canceled out so it does not show
on the final objective function.

µ =

∑
(u,i)∈ΩXtrain

Xui

|Xtrain|
(9)

lossX =
1

2

∑
(u,i)∈ΩX

((X̂ui − µ)− (Xui − µ))2
(10)

Doing this prevents the model always predicting the missing
value as the average of observed values since the model will
focus on learning how differently each user or item behaves
aside the overall average.

C. NN-CMF

Conventional CMF does not notice the difference of
importance between the item rating matrix and auxiliary
matrix. In NN-CMF we introduce the term α to reflect
the importance of the auxiliary matrix relative to the item
rating matrix. α is multiplied to lossY defined in Equation
6. Therefore the final objective function to minimize is as



Table II: Statistics of the Datasets.

dataset # of users # of items # of ratings density of
ratings

# of
auxiliary

rows

# of
auxiliary
columns

#of
auxiliary

data

density of
auxiliary

matrix

total
density

aML100K 943 1682 100000 6.30% 1682 19 31958 100% 8.15%
bML1M 6040 3706 1000209 4.47% 3883 19 73777 100% 4.77%

cFilmTrust 1508 2071 35497 1.14% 609 732 1853 0.42% 1.04%
dEpinions 40163 139738 664824 0.01% 33960 49288 487183 0.03% 0.02%

eCiao-i 17615 16121 72665 0.03% 16121 17 274057 100% 0.12%
Ciao-u 17615 16121 72665 0.03% 1438 4299 40133 0.65% 0.04%

ahttps://grouplens.org/datasets/movielens/100k/
bhttps://grouplens.org/datasets/movielens/1m/
chttps://www.librec.net/datasets/filmtrust.zip
dhttp://www.trustlet.org/downloaded epinions.html
ehttps://www.librec.net/datasets/CiaoDVD.zip

follows:

L = lossX + α · lossY + λ · lossreg =

1

2

∑
(u,i)∈ΩX

(X̂ui −Xui)
2 +

α

2

∑
(i,c)∈ΩY

(Ŷic − Yic)2+

λ

2
(‖Au‖22 + ‖A′u‖22 + ‖Bi‖22 + ‖B′i‖22 + ‖Gc‖22 + ‖G′c‖22)

(11)

α controls the importance of the auxiliary information rela-
tive to the main rating information. This allows us to control
the magnitude of influence of the auxiliary information. The
auxiliary information is less influential than the item rating
information when α is small and more influential when α
large. Intuitively the rating information may seem to be
more important for the final prediction. When the auxiliary
matrix is item coupled, auxiliary information will provide
how much some other item is similar or different from
another item. This provides insight about whether the user
will prefer an unknown item. If it is similar to items he or she
used to like, it is more likely that he or she will prefer this
unknown item as well. However there can be exceptions and
auxiliary information cannot give more direct insight than
the actual rating information itself. Same goes for when the
auxiliary information is user coupled. Information about how
one user is similar to another user is a secondary information
compared to the rating information. However, if the ratings
information is very sparse, increasing the importance of
auxiliary information improves the performance. There is
not enough direct information so we have to increase the
magnitude of indirect information to get better predictions.
In addition, if the densities of rating and auxiliary data
differ a lot, we need to balance the magnitude of both data.
We show introducing the α term produces better results in
Section IV-B.

D. Learning Process

In total, we have two different targets to update: features,
biases (A, B, G, A′, B′, G′) and networks (fx, fy).
Prediction error e is defined as follows :

eui = X̂ui −Xui = fx((Au ◦Bi), A
′
u, B

′
i)−Xui

eic = Ŷic − Yic = fy((Bi ◦Gc), B
′
i, G
′
c)− Yic

We update the features using gradient descent similar to the
method stated in Gatys et al. [30] which also learns multiple
features sets. We alternate between (1) updating the network
while fixing features and biases, and (2) updating features
and biases while fixing the network. The update procedures
for (1) are conducted by back-propagation using gradient
descent. The update procedures for (2) are as follows where
l is a learning rate.

Au ← Au − l
∂L

∂Au
,

∂L

∂Au
=

∑
(u,i)∈ΩX

(eui
∂X̂ui

∂Au
) + λAu

A′u ← A′u − l
∂L

∂A′u
,

∂L

∂A′u
=

∑
(u,i)∈ΩX

(eui
∂X̂ui

∂A′u
) + λA′u

(12)

Bi ← Bi − l
∂L

∂Bi
,

∂L

∂Bi
=

∑
(u,i)∈ΩX

(eui
∂X̂ui

∂Bi
) + α

∑
(i,c)∈ΩY

(eic
∂Ŷic
∂Bi

) + λBi

B′i ← B′i − l
∂L

∂B′i
,

∂L

∂B′i
=

∑
(u,i)∈ΩX

(eui
∂X̂ui

∂B′i
) + α

∑
(i,c)∈ΩY

(eic
∂Ŷic
∂B′i

) + λB′i

(13)

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/1m/
https://www.librec.net/datasets/filmtrust.zip
http://www.trustlet.org/downloaded_epinions.html
https://www.librec.net/datasets/CiaoDVD.zip


Gc ← Gc − l
∂L

∂Gc
,

∂L

∂Gc
= α

∑
(i,c)∈ΩY

(eic
∂Ŷic
∂Gc

) + λGc

G′c ← G′c − l
∂L

∂G′c
,

∂L

∂G′c
= α

∑
(i,c)∈ΩY

(eic
∂Ŷic
∂G′c

) + λG′c

(14)

IV. EXPERIMENTS

We present experiment results of NN-CMF evaluating the
following questions:
• Q1. (Performance of NN-CMF) How accurate is NN-

CMF? (Section IV-B)
• Q2. (Comparison with Baselines) How better is NN-

CMF compared to the baselines CMF-5 and CMF-10?
(Section IV-C)

• Q3. (Scalability) How scalable is NN-CMF? (Section
IV-D)

• Q4. (Performance by Data Sparsity) How does NN-
CMF perform regarding data sparsity? (Section IV-E)

We show overall results compared with naive versions of
NN-CMF in Section IV-B and baselines in Section IV-C.
We state the scalability of our method in Section IV-D, and
performance by data sparsity in Section IV-E.

A. Experimental Setup

Data. We conduct experiments on real-world datasets
MovieLens 100K (ML100K), MovieLens 1M (ML1M),
FilmTrust, Epinions, and Ciao. The statistic of the datasets
is summarized in Table II. ML100K and ML1M datasets
provide item-coupled information (movie-genre), while
FilmTrust and Epinions datasets provide user coupled in-
formation (user-user trust relationship). Ciao provides both
item-coupled and user-coupled information which we denote
by Ciao-i and Ciao-u respectively in the results. Density of
ratings is computed as follows:

|ratings|
|U | · |I|

(15)

In item coupled datasets, ML100K has the highest density,
ML1M the second highest, and Ciao-i has the lowest density.
In user coupled datasets, FilmTrust has the highest density,
Ciao-u the second highest density, and Epinions has the
lowest density.

Metrics. We use root mean square error (RMSE) as the
metric for our experiments.

RMSE =

√√√√∑
u

∑
i

(X̂ui −Xui)
2

|ratings|
A smaller RMSE indicates better performance since it means
the predicted value is closer to the real value. We addi-
tionally state the variance of prediction value distribution
compared to the original distribution of rating values. Com-
paring the distribution of predictions shows the accuracy of

Table III: Common parameter setting of NN-CMF.

hidden layers learning rate (l) dropout rate d d′

[10] ∗ 4 0.0015 0.0 15 5

Table IV: Parameter setting of NN-CMF.

batch size lambda (λ) alpha (α)

ML100K 4000 1.0 0.7
ML1M 40000 1.0 1.4

FilmTrust 2000 1.5 0.6
Epinions 20000 2.0 1.5

Ciao-i 8000 2.0 0.1
Ciao-u 10000 1.0 0.6

a method in more detail, while RMSE averages all errors so
such details are overlooked.

Baselines. We use conventional CMF using rank 5 and
10, which we denote by CMF-5 and CMF-10, respectively.
We apply sigmoid function to the predicted matrices from
Equation 1 as below:

X̂ui = σ(Aᵀ
uBi), Ŷic = σ(Bᵀ

i Gc) (16)

Many existing methods that deal with sparse and large
datasets with values within a narrow range uses the sigmoid
function σ(x) = 1/(1 + exp(−x)) to bound the range
of predictions [19] [3]. This function prevents the loss
from diverging when using such datasets. Sigmoid function
bounds the values to be between 0 and 1, while rating values
range from 1 to 5. Without loss of generality we normal-
ize the rating values of X using min-max normalization:
(r− 1)/(5− 1) for rating r. We show that the performance
of our proposed NN-CMF surpasses the performance of both
CMF-5 and CMF-10.

Parameter. We find the best parameter setting using
binary search for both NN-CMF and conventional CMF. The
parameters we use for each dataset are shown in Tables III
and IV.

B. Performance of NN-CMF

We use 5-fold cross validation for experiments. We ran-
domly shuffle the data set and split it into five folds. For
each experiment we use each fold as test set and the other
four folds as training set. We also use 2 percent of the
training set as valid set for the learning process. We continue
the learning process until the RMSE of the validation set
has increased continuously. Then we bring the saved model
when the RMSE of the validation set was the smallest and
report the resulting RMSE of the test set on the final model.
The main results of NN-CMF are shown in Figure 1.

NN-CMF-µ always outperforms NN-CMF-B proving the
usefulness of modeling the term µ. We find that using µ
prevents the predictions from converging to the mean. Table
V shows the variance of prediction distribution of methods



Table V: Variance of prediction distribution of methods on
ML100K dataset. Methods that use the term µ, NN-CMF
and NN-CMF-µ, show the closer variance to the original
rating variance 1.2671, and NN-CMF shows the closest
variance to the original.

method variance

NN-CMF 0.4987
NN-CMF-µ 0.4830
NN-CMF-B 0.4745

CMF 0.2341

Table VI: Difference of the best value of α from 1 regarding
rating data density. Datasets are ordered from denser sets
to sparser sets. The difference increases as rating data gets
sparser.

item-coupled difference user-coupled difference

ML100K 0.3 FilmTrust 0.4
ML1M 0.4 Ciao-u 0.4
Ciao-i 0.9 Epinions 0.5

on ML100K dataset. Methods that use the term µ, NN-CMF
and NN-CMF-µ, show the closer variance to the original
rating variance 1.2671, and NN-CMF shows the closest
variance to the original. This indicates our method produces
the most similar rating predictions to the original.

NN-CMF surpasses NN-CMF-µ at all times, which vali-
dates the effectiveness of using the term α. We also find that
the difference of α from 1 and data sparsity have a positive
relationship. Recalling that when α is 1, it is equivalent
to not using the α term, the value of α tends to deviate
from 1 as data gets sparser. We examine the relationship in
item-coupled datasets and user-coupled datasets, separately.
Item-coupled datasets have 100% density of auxiliary data,
while user-coupled datasets have much more sparse coupled
data. This difference influences the size of α, which made
us consider the two types of datasets separately. We present
the difference of α from 1 in Table VI. For each type
of coupling, datasets are ordered from denser to sparser
sets. For both item-coupled and user-coupled datasets, the
difference increases as rating data sparsity rises. The result
implies that for sparser datasets it is more crucial to balance
the impact of auxiliary data. In summary, using α is effective
for solving data sparsity problem.

All additional optimizations improve the performance of
NN-CMF. On average additional optimizations increase the
performance by 0.9% and up to 2.3%. For sparser datasets
additional optimizations increase performance on average by
1.4% and for denser datasets by 0.5%, indicating µ and α
are even more effective on handling sparser datasets.

Figure 3: The running time of NN-CMF linearly increases
with regard to number of ratings.

C. Comparison with Baselines

We compare the performance of NN-CMF with baseline
methods, CMF-5 and CMF-10. Results are shown in Figure
1. NN-CMF outperforms both CMF-5 and CMF-10 for all
datasets, at most by 5.4% and on average 3.4%. NN-CMF
improves the performance of CMF on sparser datasets on
average by 4.2% while on denser datasets by 2.6%. This
shows that NN-CMF is even more effective in improving
the performance of sparse datasets, making it more useful
in real world applications.

NN-CMF also shows superior prediction distribution com-
pared to CMF. As shown in Table V, The variance of NN-
CMF is much closer to the original variance, than that of
CMF is.

D. Scalability

We show the scalability of NN-CMF by reporting the
running time on principal submatrices of ML1M dataset.
We vary the range of the number of ratings from 40000 to
1000000. Running time of NN-CMF linearly increases with
regard to the number of ratings, indicating our method is
scalable considering data size.

E. Performance by Data Sparsity

We compare how NN-CMF and CMF perform considering
data sparsity. Since we have two different sizes of matrices
with different densities for each dataset, we calculate the
total density considering the size of each matrix as well.
The total density of an item-coupled dataset is computed as
follows:

Total density =
|ratings|+ |auxiliary data|

(|U | · |I|) + (|I| · |C|)
(17)

For a user-coupled dataset the term |I| · |C| changes to
|U | · |C|. Total sparsity would be 1 − total density. We
use the most dense dataset ML100K to show our results.
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Figure 4: RMSE of NN-CMF linearly increases as sparsity
rises while that of CMF increases exponentially.

The total sparsity of ML100K is approximately 92%. We
randomly remove 25%, 50%, and 75% of the data, making
the total sparsity 94%, 96%, and 98% respectively. The per-
formance of NN-CMF and CMF regarding data sparsity is
shown in Figure 4. As sparsity increases in the dataset, NN-
CMF outperforms CMF from 4.6% to 5.8%. Also RMSE of
NN-CMF linearly increases as sparsity rises while that of
CMF increases exponentially. This indicates that NN-CMF
utilizes given data better and maintains accuracy.

V. RELATED WORKS

We review related works based on two perspectives: col-
laborative filtering with additional data, and neural network
matrix factorization.

A. Collaborative Filtering with Additional Data

Many studies proposed methods that leverage additional
information to alleviate the rating sparsity problem in col-
laborative filtering. The methods are classified into two
categories according to the type of additional data: user
based methods, and item based methods.

User based methods. Studies [1], [3], [5], [6], [7], [9]
extensively proved that using not only rating data but also
user based data mitigates rating sparsity problem in collabo-
rative filtering. Ma et al. [3] proposed SoRec that uses rating
matrix and trust matrix to predict unobserved ratings. SoRec
optimizes item latent vector using rating matrix, and jointly
optimizes using both rating matrix and trust matrix. SoRec
predicted the ratings more precisely than the baseline models
using the user’s in-node and out-node ratio. Yang et al. [7]
proposed a method that extracts a subset of friends to be used
in collaborative filtering. Guo et al. [5] proposed TrustSVD
that combines user’s implicit data and rating matrix based
on biased matrix factorization [2].

Item based methods. Previous works [4], [31], [8], [26],
[25], [32], [33] proposed models that utilize item based data
as additional information, and there also have been many

methods using review data to provide personalized recom-
mendations [34]. Li et al. [4] used implicit data of items
to optimize item latent vector. Leung et al. [31] proposed
a method that quantifies reviews through sentiment analysis
and reflects it in rating prediction. Wang et al. [8] combined
topic modeling and collaborative filtering. Wang et al. [26]
integrated Stacked Denoising AutoEncoder (SDAE) [35]
and Probabilistic Matrix Factorization (PMF) [19]. Kim et
al. [25] proposed ConvMF that incorporate Convolutional
Neural Network (CNN) model which captures contextual
information of the item documents into the PMF. ConvMF
learned item latent vector better through the CNN model
and predicted ratings more accurately than existing baseline
models. Kim et al. [36] further improved the accuracy of
ConvMF by differently applying the Gaussian noise of each
item. Hu et al. [32] proposed a model that integrates item re-
views into Matrix Factorization based Bayesian personalized
ranking (BPR-MF). Bauman et al. [33] proposed SULM that
analyzes sentiment for each aspect by decomposing reviews
into aspect units. SULM predicts not only the probability
that a user likes an item but also which aspect has a big
influence.

B. Neural Network Matrix Factorization

Dziugaite and Roy [24] proposed Neural Network Matrix
Factorization (NNMF) that performs matrix factorization
using neural network. Conventional matrix factorization
predicts entries of a matrix with the inner product of two
vectors. NNMF replaces the linear function to a multilayered
feed forward neural network. However NNMF is limited in
the following aspects: 1) it cannot utilize additional informa-
tion, and thus cannot perform coupled matrix factorization,
2) the model uses dense connections in the first layer which
limits the performance when data are sparse, and 3) the
model outputs a value biased toward the mean value since
the model does not consider the residual from the mean.

VI. CONCLUSION

In this paper, we propose NN-CMF, a neural network
based method that predicts missing values of rating ma-
trix by learning a non-linear function and latent matrices
from both rating matrix and auxiliary data. NN-CMF is a
generalized implementation of coupled matrix factorization
using neural network. NN-CMF surpasses the accuracy of
conventional coupled matrix factorization by up to 5.4% and
on average by 3.4%. NN-CMF’s predicted value distribution
is closer to the real rating data distribution. Furthermore,
NN-CMF shows linear scalability on the number of ratings.
NN-CMF works even better in improving the performance
on sparser datasets. NN-CMF improves the performance
of CMF on sparser datasets on average by 4.2% while
on denser datasets by 2.6%. In addition, as we randomly
remove data in an arbitrary dataset thereby increase spar-
sity, RMSE of NN-CMF increases linearly while CMF



increases exponentially, making the performance gap even
larger. Future works include modeling temporal dynamics of
recommendation with recurrent neural network.
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