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Abstract—Given a real world graph, how can we find a
large subgraph whose partition quality is much better than
the original? Graph partitioning has received great attentions
in graph mining, and especially balanced graph partitioning is
required in many real world applications. However, the balanced
graph partitioning is known to be NP-hard, and moreover it is
known that there is no good cut at a large scale for real graphs.
Due to this difficulty, in this paper, we propose a new paradigm
for graph partitioning. Instead of dealing with the whole graph,
our focus is on finding a large subgraph with high quality
partitions, in terms of conductance. We show that removing
problematic nodes, i.e. large degree nodes called hub nodes in
real graphs, remarkably decreases conductance for the remaining
giant connected component (GCC), while the number of nodes in
the GCC is still significant. In experiments, we demonstrate that
our method finds a subgraph of quite a large size with low conduc-
tance graph partitions, compared with competing methods. We
also show that the competitors cannot find connected subgraphs
while our method does, by construction. This improvement in
partition quality for the subgraph is especially noticeable for large
scale cuts—for a balanced partition, down to 14% of the original
conductance with GCC size 70% of the total. As a result, the found
subgraph has clear partitions at almost all scales compared with
the original, and this result especially helps find communities
which are well-formed, but hidden by hubs at various scales in
real world graphs like social networks.

Keywords—Graph Partition; Balanced Graph Partition; Con-
ductance

I. INTRODUCTION

In a real world graph, how can we choose a large subset
of nodes for which high quality partitions exist compared with
the whole graph? Graph partitioning has become an important
task due to its wide applications in the real world, including
community detection [1], load balancing in distributed sys-
tems [2], VLSI design [3], and image segmentation in com-
puter vision [4]. The problem is conceptually well-described
and involves grouping nodes so that a group has many internal
edges and few external edges, which is usually evaluated by
the number of edges across the groups. Especially, in practice,
enforcing groups to have balanced sizes is often required. This
constraint, however, makes the problem NP-hard, and thus
various approaches have been proposed in wide research areas
including data mining, computer vision, and theory [4], [5],
[6], [7], [8]. Despite such extensive studies, there have been
also negative results on graph partitioning targeted at all the
nodes for real graphs. Precisely, it is known that there is no
good cut at a large scale in real world graphs [9], [10].

In this paper, instead of dealing with all nodes in a
graph, we focus on discovering a large subset of nodes that
has high quality partitions. It can be understood to identify
a large portion of the total for which the problem has a
much better solution than for the total. This approach also

∗These authors contributed equally to this work.

has various applications like community detection in social
networks where communities clearly exist but are hidden or
blurred due to other structural properties of the networks. To
measure quality of a partition, we use conductance [8], [9],
[11], [12], a widely used measure described in Section II,
which measures how clearly a group is separated from the
other part, and thus especially consider bipartitioning which
is used as a basic building block for more general multi-way
graph partitioning.

Our main idea is simple and quite intuitive: remove prob-
lematic nodes, which we will define soon, and work with
the remaining well-handled nodes. For the purpose of graph
partitioning, there are two sorts of problematic nodes: 1) large
degree nodes called hub nodes which increase interdependency
between groups, and 2) spokes attached only to the hub nodes
which do not contribute to homogeneity within any group.
From this idea, we propose MTP (Minus Top-k Partition)
which removes hub nodes and computes a partition only for the
remaining giant connected component. After this, conductance
of the resulting partition is much lower than that for the whole
graph while the size of the giant connected component (GCC)
remains quite large—remarkable for partitions at large scales
like a balanced partition. MTP is also efficient in terms of time
and space—excluding the partitioning step, the time and space
complexities are linear on a graph size; empirically, using the
state-of-the-art graph partitioning method METIS, we show
that MTP has linear run time on a graph size.

Fig. 1 summarizes our results. Fig. 1a shows the result for
CondMat graph data where a subset of nodes found by MTP
has a balanced partition whose conductance is lower than that
for the whole graph, and also than that found by competing
methods. Fig. 1b compares MTP and the competitors for all
graph data used in our paper; note that MTP consistently
outperforms the others. Fig. 1c shows that SUBSETS1 found by
MTP reduce conductance, compared with the whole graph, at
all size scales.

Our main contributions are summarized as follows.
• New Paradigm: Rather than investigating the whole

graph, we focus on finding a large subset of nodes
that has partitions with much lower conductance.

• Novel Method: By excluding hub nodes and spokes
which are problematic in graph partitioning, we find a
partition from the remaining part. The method requires
linear time and space complexities on a graph size, and
due to its simplicity, implementation is quite easy.

• Performance: We show that as more hubs and the
corresponding spokes are removed, conductance of a
balanced partition for the remaining giant component
gets much lower—down to 14% of the original while

1We use SUBSET to indicate a set of nodes in a graph.
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(a) Subset size ratio vs. conductance ratio for
balanced partitions (CondMat)
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(c) NCP plot for Flickr

Fig. 1: Our proposed MTP method outperforms competitors. Here, |V | and φ denote the number of nodes in the original graph
and its conductance of a balanced partition by METIS, respectively. (a) Performance of MTP for CondMat graph data, compared
with other competitors described in Section IV. For a balanced partition, the SUBSET found by MTP has significantly lower
conductance than the whole graph and also lower than for SUBSETS found by the competitors. (b) Ratio of subset size vs. ratio
of conductance for a balanced partition for each graph and each method. Each point chosen is the one having the minimum
conductance among the results with a subset size ratio at least 0.7 in Fig. 7. Note that for all graphs, MTP finds quite a large
subset whose conductance for a balanced partition is effectively reduced compared with that for the whole graph. In contrast,
the competitors fail to find such subsets. (c) NCP plot for Flickr data showing that the SUBSET found by MTP has imbalanced
partitions at various size scales with lower conductance than does the whole graph. Here, n = |V |. Details of the NCP plot is
explained in Section II-A.

TABLE I: Symbol table.

Symbol Definition

G a graph
V a set of nodes in the whole graph
VSUBSET a set of nodes in the SUBSET
n the number of nodes of the whole graph
m the number of edges of the whole graph
k the number of hub nodes removed
φ conductance of a balanced partition for the whole graph
φSUBSET conductance of a balanced partition for the SUBSET

the GCC size remains 70% of the total. We also
show that the found SUBSET has partitions with lower
conductance than the whole graph at all size scales,
in addition to the balanced case. The running time
of MTP with the state-of-the-art graph partitioning
method METIS is linear on a graph size.

The codes and data used in this paper are available at
http://kdmlab.org/mtp. The rest of the paper is or-
ganized as follows. In Section II, we give brief preliminaries
and discuss related work. We describe the proposed method
MTP based on our main idea and discuss complexities of MTP
in Section III. After presenting experimental results including
comparison of MTP with other competitors in Section IV, we
conclude in Section V.

TABLE I lists the symbols used in this paper.

II. BACKGROUND
A. Preliminaries

Graph Conductance: Conductance is a metric widely
used to evaluate the quality of a graph partition [11], [12].
Roughly, this is related to how fast a random walker starting
in one group can move to another group. Thus, as connectivity
of a group gets internally stronger and externally weaker, its
conductance gets lower. Given a graph G = (V,E), the formal
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Fig. 2: Example of an NCP plot. This plot shows conductance
changes of partitions into two groups at various scales. Recent
work [9] reports that NCP plots of real world graphs exhibit
V-shapes with the minimum at a small group size of 10 ∼ 100.

definition of conductance ϕ(A) for A ⊆ V is as follows.

ϕ(A) =
cut(A)

min
{
vol(A), vol(Ā)

} ,
where cut(A) = |{(u, v) ∈ E : u ∈ A, v ∈ Ā}| and vol(A) =∑
u∈V deg(u). Note that ϕ gets smaller as not only the number

cut(A) of cross edges tends to be small but also two groups
tend to have similar volumes. However, minimizing ϕ over
A ⊂ V is known to be NP-hard [11]. This minimum value is
called the graph conductance of G. Recent work reports that
conductance shows the best performance in finding ground-
truth communities [8].

Network Community Profile (NCP) Plot [9]: Given a
graph, an NCP plot is a plot showing change of conductance
over community sizes. Concretely, the x-axis corresponds
to the community size and the y-axis to the corresponding
conductance. In the original paper [9], drawing the NCP plot
in a log-log scale, the authors observed the pattern that NCP
plots of real world graphs form V-shapes where the valleys are
found around community sizes of 10 ∼ 100. This states the



important structural property of real world graphs that only at
a small scale, a good partition exists. Fig. 2 shows an example
of the NCP plot for Epinions graph data2. The point at x and
y implies that y is conductance for a partition of two groups
with sizes x and n− x where x ≤ bn/2c.

METIS: METIS is a graph partitioning method based
on multilevel `-way partitioning algorithms [6], which is
able to compute a balanced bipartition. The overall se-
quence of METIS consists of three phases: coarsening, initial-
partitioning, and refining. In the coarsening phase, a graph
is coarsened by aggregating nodes. Starting with the original
graph G0 = (V0, E0), for every iteration, nodes in Vi are
coalesced to form ‘larger’ nodes, resulting in Vi+1 of a smaller
size than Vi. In the initial-partitioning phase, `-way partitioning
of GT is computed, where T is the number of iterations in
the first phase. Among several `-way partitioning algorithms
[13], [14], METIS adopts a multilevel recursive bisection
algorithm [6]. In the refining phase, graph GT is projected to
the original graph G0 by passing through GT−1, GT−2, ...G1

with refinement. A simplified version of Kernighan-Lin par-
titioning algorithm [15] which incrementally swaps nodes
to reduce cross edges of the partitioning was used for the
refinement [16], [17]. Recently, METIS has been improved
in performance especially for power-law graphs [18].

B. Related Work
There have been a number of studies on graph parti-

tioning, including METIS [6], spectral clustering [4], cross-
association [19], co-clustering [20], and label propagation [2],
[21]. Despite different objective functions, they explicitly or
implicitly share a common concept of partitioned groups: many
intra-edges and few inter-edges.

Overlapping Graph Partitioning: Often, the problem
allows or requires overlapping. For example, in community de-
tection for social networks, it may be more natural that people
belong to several communities. For overlapping graph parti-
tioning, in recent years various methods have been proposed,
including an axiom based method [22], a probabilistic model
based method [23], a matrix factorization based method [24],
and line grouping [25], [26].

Balanced Graph Partitioning: One issue frequently en-
countered in practice for graph partitioning is about balancing
sizes of partitioned groups. To handle this size constraint,
researchers have proposed various metrics such as normalized
cut [4], ratio cut [7], and conductance [11]. In general, directly
optimizing such metrics is NP-hard, and thus many approx-
imate algorithms and heuristics have been developed [7],
[4], [27]. However, since they were not designed for strict
balancing, optimizing those metrics often results in quite im-
balanced partitioning. More strictly balanced partitioning has
been also studied theoretically [28], [29] and empirically [6],
[30], [31]. Recently, the problem for graph streams has been
also studied [32], [33], [34], [35].

No Good Partition at Large Scale: Despite numerous
graph partitioning methods, it has been shown in several
studies [36], [9] that there is no good cut for real graphs
at a large scale. One reason is that the degree distribution
of real world graphs is heavy-tailed [37], [38], implying the
existence of hub nodes that may seriously contribute to a large
number of cross edges. Rather than finding a good cut in real

2http://snap.stanford.edu/data/index.html
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(b) Shattered by k hubs

Fig. 3: Comparison of degree distributions of the original graph
and GCC after removing k hub nodes for Epinions graph data.
Here, k is set to 1% of the total nodes in the original graph.
Note that in the original graph, there exist hub nodes with
extremely large degrees while in the reduced graph, there are
no such nodes.

graphs, researches aimed at finding and evaluating ground-truth
communities have been also done with various approaches [8],
[39], [40], [41], [42].

Exploiting Hub Nodes: Recently, to analyze graph
structure, there have been several studies that exploit the
characteristic of the existence of hub nodes. Siganos et al. [43]
proposed a method to group hub nodes first and recursively
attach the remaining nodes, resulting in a hierarchical grouping
model of a graph. In another study [42], the authors observed
that the assortativity coefficient of ground-truth communi-
ties can be different from that of the whole graph, and
proposed edge-weighting methods to decrease the influence
of disassortative edges (e.g. hub-spoke edges), leading to
finding communities with high similarity to the ground-truth.
Other work [44], [45], sharing a basic idea with our work,
was done on graph compression. They proposed an ordering
method called SlashBurn that places hub nodes in front, and
disconnected nodes appearing due to hub removal in back.
These methods regard that hub nodes are few but play a con-
siderably important role in graph structure, and thus specially
handle such a property of the hubs. However, they focused
on quickly shattering graphs by removing the hub nodes, and
there was no discussion about graph partitioning after their
removal. In this paper, following such a basic idea to analyze
a graph having a heavy-tailed degree distribution, we show that
removing hub nodes remarkably decreases conductance values
of partitions of the remaining graph. SlashBurn was applied
to other related tasks including graph summarization [46] and
graph visualization [47].

III. PROPOSED METHOD
A. Motivation

One well-known characteristic of many real world graphs is
that the degree distribution is heavy-tailed. This is distinct from
a random graph with an exponential degree distribution. This
implies that there exist hub nodes having very large degrees.
In graph partitioning, particularly that with balancing, these
hub nodes become seriously problematic: due to their diverse
neighbors, assigning them to one group would greatly increase
interdependency between groups.

Recent work shows that real world graphs are easily
shattered by removing hub nodes [44]. Concretely, removing
the hub nodes results in a giant connected component of a
significant size, and many disconnected components of very
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Fig. 4: Illustration of our main idea. We envision a graph
consisting of three parts: hub nodes, the giant connected
component and disconnected components appearing after hub
nodes are removed. The dashed lines represent the edges
removed with removal of hubs. Note that after removing the
hub nodes, the corresponding giant connected component has
a much clearer partition.

small sizes. Although the giant connected component has a
structure of hub nodes similar to the whole graph, we observe
that there is no hub node with an extremely large degree, as
shown in Fig. 3. This observation motivated us to exploit the
hubs and disconnected components for high quality partitions.
Below, we explain our method, called Minus Top-k Partition
(MTP), to find a large subset of nodes for which high quality
partitions exist.
B. Minus Top-k Partition (MTP)

The main idea of MTP is to envision a graph as a collection
of three parts: hub nodes, spokes only attached to the hub
nodes, and the remaining part. Here, the spokes correspond
to disconnected components and the remainders correspond
to the giant connected component (GCC) after removing the
hub nodes. Let [n] = {1, . . . , n} and G(U) is the induced
subgraph of U ⊆ V . If we remove the set H of hub nodes
from a graph, the graph is divided into a set of p connected
components CCSET = {CCi ⊂ V \H : i ∈ [p]}, satisfying
• CC1, . . . , CCp are mutually disjoint sets.
• For every i ∈ [p] and any pair (u, v) ∈ (CCi)

2, there
is a path between u and v in G(CCi).

• For every pair (i, j) ∈ [p]2 and any pair (u, v) ∈
CCi × CCj , there is no path between u and v in
G(V \H).

Then, GCC and spokes are formally defined as follows:

GCC = argmax
CC∈CCSET

|CC|,

SPOKES = V \(H ∪GCC).

The hub nodes become a major obstacle in finding a good
partition because their diverse connectivity makes partitioned
groups have high interdependency. Our approach is to exclude
those problematic nodes and take the remaining giant con-
nected component as a subgraph for which we hope to obtain
a high quality partition (see Fig. 4).

MTP first finds and removes the top-k hub nodes from a
graph. As a result, the graph is shattered into a number of
connected components as described above. Next, MTP finds
the GCC among them, which can be done using a standard

Algorithm 1 Minus Top-k Partition (MTP)
Input: Graph G, the number of removed hubs k.
Output: SUBSETPARTITION (A,B).

1: Find the top-k high degree nodes in G.
2: Remove them from G.
3: Find the giant connected component (GCC).
4: Partition the GCC into (A,B).
5: Return (A,B).

graph traversal algorithm like the breadth first search (BFS).
Last, it computes a partition (A,B) for the GCC, and then
outputs (A,B). Although any partitioning method can be
applied, in this paper we use METIS, which is considered
the state-of-the-art graph partitioning method [9]. Algorithm 1
describes the whole MTP procedure.

MTP is simple, intuitive, and easily implementable. As de-
scribed in Section IV, MTP discovers a SUBSETPARTITION, a
partition of a subgraph, with quite low conductance. Moreover,
we compare MTP with other baseline methods to demonstrate
non-triviality of our results. We will see that the baseline
methods are not effective in reducing conductance, or that
they choose a subgraph consisting of many small connected
components for which a partition is not very meaningful.

C. Complexity Analysis
Our proposed method MTP is quite efficient in terms of

time consumption and space usage. Excluding the partitioning
step, the time complexity and the space complexity of MTP
are linear on a graph size: O(n+m) and O(n), respectively.
The detailed analysis is given below.

Lemma 1: The time complexity of MTP excluding the
partitioning step is O(n+m).

Proof: Without computing a partition, MTP consists of
the two main steps: 1) removing the top-k hub nodes, and 2)
identifying the giant connected component. Step 1) involves
finding the top-k hub nodes which can be done in O(n) using
Hoare’s selection algorithm [48]; Step 2) is done by finding
connected components using a standard graph traversal algo-
rithm like the breath-first search (BFS), which takes O(n+m).
Hence, the total time complexity excluding the partitioning
step becomes O(n+m).
Although we exclude the partitioning step in the analysis since
its time complexity varies with algorithms used, we empirically
show in Section IV that MTP with METIS is fast.

The next lemma states the space complexity of MTP.
Lemma 2: The space complexity of MTP excluding the

partitioning step is O(n).
Proof: As we stated, MTP involves the two main com-

putation steps: running the selection algorithm for the first
k largest degree nodes, and running a connected component
algorithm. In the first step, computing degrees of nodes require
O(n) space, and Hoare’s selection algorithm require no addi-
tional space; in the second step, finding connected components
requires O(n). Combining all the space requirements, the
lemma is proved.

IV. EXPERIMENTS

In this section, experimental results are used to answer:
Q1 How low conductance does a SUBSETBALPARTI-

TION3 by MTP have compared with the whole graph
and with other naive methods? (Answers in Observa-
tion 1 and 3)

3a balanced partition for a subset of nodes.



TABLE II: Summary of the graphs used in our experiments.
The number of nodes and edges are counted after taking the
giant connected component with removing direction, weights,
and self-edges.

Graph Nodes Edges Description

Advogato1 5,054 49,821 Trust network
Oregon22 11,461 32,730 Router connections
CondMat2 21,363 91,286 Collaboration network
Donations3 23,033 877,625 Who donated whom
Enron2 33,695 180,810 Enron email data
Cit-HepPh2 34,401 420,784 Citation network
Slashdot1 51,083 116,573 Reply network
Epinions2 75,877 405,739 Trust network
Wordnet1 142,505 642,207 Word association network
Gowalla2 196,591 950,327 Online social network
Amazon2 334,863 925,872 Co-purchasing network
Flickr4 404,733 2,110,078 Social network in Flickr

1http://konect.uni-koblenz.de 2http://snap.stanford.edu/data/index.html
3http://download.srv.cs.cmu.edu/∼mmcgloho/fec/data/fec data.html
4http://www.flickr.com
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Fig. 5: Degree distributions of some graphs described in
TABLE II. Note that all the data used, exhibits heavy-tailed
degree distributions, which means that our main assumption of
the existence of hub nodes holds. The other graphs not shown
here also show similar patterns.

Q2 How do conductance values of SUBSETBALPARTI-
TIONS found by MTP change over increasing k?
(Answer in Observation 2)

Q3 How low conductance do SUBSETPARTITIONS by
MTP at various size scales have compared with the
whole graph? (Answer in Observation 4)

Q4 How fast is MTP? (Answer in Observation 5)

A. Settings
To verify our method, we gathered graph data from diverse

domains such as social networks, collaboration networks,
internet connections, and word association. We took only the
giant connected component from each graph and made them
have no direction, weight, and self-edges. The statistics and
brief description of the graph data are presented in TABLE II.
Fig. 5 shows degree distributions of some of the graphs. All of
them follow heavy-tailed distributions, which means that our
assumption of the existence of hub nodes holds.

For partitioning, we use the METIS library of version 5.1.0
given at http://glaros.dtc.umn.edu/gkhome/views/metis.

B. Performance of MTP
Now, we show how good SUBSETBALPARTITION MTP

discovers through extensive experiments. We examine conduc-
tance of SUBSETBALPARTITIONS found by MTP over the
number k of removed hub nodes. To this end, while varying k
from 0 to 0.1 with interval 0.001, we 1) remove bknc number

of hub nodes from each graph, 2) run METIS to obtain a
balanced partition for the giant connected component, and 3)
compute conductance for the partition. Note that k = 0 implies
applying METIS to the whole graph.

Observation 1 (High Quality SUBSETBALPARTITION):
Conductance of a SUBSETBALPARTITION discovered by
MTP is effectively lower than that of a balanced partition for
the whole graph.

Observation 2 (Better as k Gets Larger): As the number
k of removed hub nodes gets larger, quality gap between
a SUBSETBALPARTITION by MTP and a global balanced
partition gets much significant. The conductance of the SUB-
SETBALPARTITION is down to 14% of the global one with
SUBSET size 70% of the total.

Fig. 6 shows changes of conductance of SUBSETBALPAR-
TITIONS by MTP and sizes of the corresponding SUBSETS
over the number k of removed hub nodes. In general, the
conductance of the SUBSETBALPARTITIONS is smaller than
that for the whole graph. Notably, as k gets larger, the
conductance gap gets much significant, which is consistently
exposed by all the used graphs.

We note that size decreases of the SUBSETS are positively
correlated with conductance decreases of the corresponding
SUBSETBALPARTITIONS. For example, the conductance de-
crease of a SUBSETBALPARTITION is most remarkable in
Oregon2 whose SUBSET size is dramatically reduced over k
while Cit-HepPh graph shows the opposite example. Moreover,
for all cases, the conductance decrease is much significant
compared with the SUBSET size decrease. For example, com-
pared with METIS applied to the whole graph, MTP finds a
SUBSET of a size at least 80% of the total, but conductance of
the corresponding SUBSETBALPARTITION becomes less than
half of the original.

Next, we demonstrate the non-triviality of MTP by com-
paring with other competitors to find a SUBSETBALPAR-
TITION. Below, the competitors that we consider here are
described.
• RndSetMts: Select a random subset of nodes, and

apply METIS to that set.
• MtsDelRnd: Compute a balanced partition for the

whole graph using METIS, and randomly remove the
same number of nodes from each group.

• MtsDelHub: Compute a balanced partition for the
whole graph using METIS, and remove the same
number of hub nodes from each group.

Observation 3 (Non-triviality of MTP): The competitors
for finding a SUBSETBALPARTITION do not decrease conduc-
tance effectively, or they result in SUBSETS consisting of the
giant connected component of an insignificant size and many
disconnected components of very small sizes.

Fig. 7 shows the comparison of the SUBSETBALPARTI-
TIONS computed by MTP and the three competitors described
above. Given k, the results of RndSetMts and MtsDelRnd
are computed by running the methods 10 times and taking
averages of the 10 conductance values. For all the competitors,
we exclude results if the corresponding SUBSET for which the
conductance is computed has a giant connected component of
a size less than half of the SUBSET size since the case is less
meaningful to compute a balanced partition.

Overall, MTP results in SUBSETBALPARTITIONS with
much smaller conductance than those made by competitors,
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Fig. 6: MTP finds a large subset of nodes whose conductance for balanced partition is fairly reduced compared with that for the
whole graph. For each plot, k denotes the number of hub nodes removed; the red dot denotes conductance computed by METIS
for the whole graph; the black line denotes the conductance φSUBSET of the SUBSETBALPARTITIONS; and the blue line denotes
the ratio of subset sizes over n. Note that the red dot also corresponds to the case of MTP with k = 0. Overall, conductance
consistently decreases as k gets larger, and its amount is larger than the decrease of SUBSET sizes.
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(l) Flickr

Fig. 7: MTP outperforms competitors in terms of conductance of a SUBSETBALPARTITION. For RndSetMts and MtsDelRnd
involving random processes, each value is computed by the average of results over 10 trials. Note that if the GCC of a computed
SUBSET is of a size less than half of the subset size, it is not presented. This is because the case is less meaningful to compute
a balanced partition. For example, in CondMat, only the black line is cut off, and in extreme cases like Oregon2, there is no
black line at all in the plot. Overall, RndSetMts and MtsDelRnd are not effective in reducing the conductance. Although
MtsDelHub seems to reduce the conductance effectively for a few graphs, its corresponding GCC size decreases very rapidly
(Fig. 8), implying that the computed SUBSET consists of many small connected components.

especially as k gets larger (e.g., in CondMat), MTP is 4.8x
better than RndSetMts, 6.1x better than MtsDelRnd, and 1.9x
better than MtsDelHub. Although RndSetMts finds SUBSET-
BALPARTITIONS with low conductance for some graphs like
Amazon, MTP still outperforms it. The best result for each
method and each graph in Fig. 7, is shown in Fig. 1b.

Fig. 8 shows sizes of GCCs in SUBSETS found by the four
methods. None of the competitors find a connected SUBSET
at all, while SUBSETS by MTP are always connected by
construction. For RndSetMts and MtsDelRnd, their GCCs
in computed SUBSETS are quite large, but the corresponding
conductance values are not reduced effectively (Fig. 7). Espe-

cially, the GCC size of a SUBSET by MtsDelHub decreases fast
with increasing k, implying that the SUBSET consists of small
connected components in which a balanced partition becomes
less meaningful.

Observation 4 (Good Partitions at All Scales): A
SUBSET found by MTP has partitions at all scales whose
conductance is lower than that of the whole graph at the same
scales.

Fig. 9 depicts Network Community Profile (NCP) plots,
which we explained in Section II, for SUBSETS found by MTP
with k ∈ {0, 0.01n, 0.03n, 0.05n} for each graph. Each line
corresponds to an NCP plot for the SUBSET obtained with the
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(f) Flickr
Fig. 8: MTP finds a connected SUBSET by construction
while SUBSETS by competitors are disconnected. The plots
show sizes of GCCs belonging to the SUBSETS found by
each method. By construction, SUBSETS by MTP are always
connected, leading to the value of 1. For RndSetMts and
MtsDelRnd, the decrease of the GCC size is linear. On
the other hand, for MtsDelHub, the GCC size dramatically
decreases, which means that the subsets found become less
meaningful even though it has a balanced partition with low
conductance. The graphs not shown here also exhibit similar
patterns.
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Fig. 10: MTP runs in linear time on the number of edges in a
graph. We use principal submatrices of the adjacency matrix
of the Flickr graph data.

specified k. From the figure, we observe that an NCP plot
gets lower as k becomes larger. For most of the graphs, the
NCP plots are clearly separated—it is remarkable especially
for Slashdot, Wordnet and Flickr. This means that MTP finds
a SUBSET in which partitions at various scales have lower
conductance compared with those for the whole graph at the
same scales. In other words, the found SUBSET by MTP is
partitioned much clearly compared with the whole graph at any
scale while keeping V-shape patterns observed in real world
graphs.

Observation 5 (Linear Running Time): Running time of
MTP is linear on the number of edges in a graph.

With METIS used for the partitioning step, the running
time of MTP is linear on the number of edges in a graph
as shown in Fig. 10. We took principal submatrices of the
adjacency matrix of Flickr to make graphs with appropriate
sizes.

V. CONCLUSION

In this paper, we propose MTP, a simple, elegant, and fast
method for finding a subset of nodes providing high quality
partitions in real world graphs. The main contributions of this
work are the followings.
• New Paradigm: Instead of finding a global partition,

we focus on finding a large subgraph for which we can
find partitions with significantly lower conductance.

• Novel Method: We propose a simple, elegant, and
linear time method, called MTP, to find high qual-
ity SUBSETPARTITIONS. It removes hub nodes and
related disconnected components, and computes a
partition only for the giant connected component.

• Performance: We show that in general, MTP discovers
a SUBSET of a significant size with lower conductance
than the whole graph for a balanced partition, down
to 14% of the original conductance with a SUBSET of
size 70% of the total. We also show that in a SUBSET
by MTP, conductance of partitions at various scales
is lower compared with the whole graph. Lastly, MTP
runs in linear time on a graph size.

Research on graph partitioning can benefit significantly
from the high quality SUBSETPARTITIONS, simplicity, and
ease of implementation provided by MTP. Future research
directions include scaling up the graph partitioning methods
for very large graphs, using distributed systems.
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Fig. 9: Conductance of a SUBSET by MTP is lower than the whole graph not only for a balanced partition but also for partitions
of various imbalanced sizes. The plots show Network Community Profile (NCP) plots [9], explained in Section II, for each graph
with different k values. For each plot, each line is computed by the SNAP library [49] for a SUBSET found by MTP with the
specified k. Note that for almost all cases, the NCP plot tends to move down as k gets larger—the pattern is fairly clear, though
slightly weaker for Donations, Cit-HepPh and Amazon.

[15] S. L. B. W. Kernighan, “An efficient heuristic procedure for partitioning
graphs,” The Bell system technical journal, 1970.

[16] B. Hendrickson and R. Leland, “The chaco user’s guide version 2.0,”
Sandia National Laboratories, Tech. Rep., 1995.

[17] ——, “An improved spectral graph partitioning algorithm for mapping
parallel computations,” SIAM Journal on Scientific Computing, vol. 16,
no. 2, pp. 452–469, 1995.

[18] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for partitioning
power-law graphs,” in IPDPS, 2006.

[19] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos, “Fully
automatic cross-associations,” in KDD, 2004.

[20] I. S. Dhillon, S. Mallela, and D. Modha, “Information-theoretic co-
clustering,” in KDD, 2003.

[21] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algo-
rithm to detect community structures in large-scale networks,” Physical
Reveiw E, vol. 76, no. 3, 2007.

[22] S. Arora, R. Ge, S. Sachdeva, and G. Schoenebeck, “Finding overlap-
ping communities in social networks: toward a rigorous approach.” in
ACM Conference on Electronic Commerce, 2012.

[23] P. Gopalan, D. M. Mimno, S. Gerrish, M. J. Freedman, and D. M. Blei,
“Scalable inference of overlapping communities.” in NIPS, 2012.

[24] J. Yang and J. Leskovec, “Overlapping community detection at scale:
a nonnegative matrix factorization approach.” in WSDM, 2013.

[25] T. S. Evans and R. Lambiotte, “Line graphs, link partitions, and
overlapping communities,” Physical Review E, 2009.

[26] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” Nature, vol. 466, pp. 761–764,
2010.

[27] K. Lang and S. Rao, “A flow-based method for improving the expansion
or conductance of graph cuts,” in IPCO, 2004.

[28] R. Andersen, F. R. K. Chung, and K. J. Lang, “Local graph partitioning
using pagerank vectors.” in FOCS, 2006.

[29] D. Spielman and S. Teng, “Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems,” in STOC,
2004.

[30] V. Satuluri and S. Parthasarathy, “Scalable graph clustering using
stochastic flows: applications to community discovery,” in KDD, 2009.

[31] F. Bourse, M. Lelarge, and M. Vojnović, “Balanced graph edge parti-
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