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Abstract— There are numerous 2-dimensional matrix data for 
clustering including a set of documents, citation networks, web 
graphs, etc. However, many real-world datasets have more than 
three modes which require at least 3-dimensional matrices or 
tensors. Focusing on the clustering algorithm known as cross-
association, we extend the algorithm to deal with a 3-dimensional 
matrix. Our proposed method is fully automated, and 
simultaneously discovers clusters of both row, column, and tube 
groups. Experiments on real and synthetic datasets show that our 
method is effective. Through the proposed method, useful 
information can be obtained even from sparse datasets. 

Keywords—3-dimensional matrix; clustering; cross association; 
data analysis 

I.  INTRODUCTION 
Recently, many studies for finding groups and patterns using 

clustering or classification methods have been reported [1][2]. 
Techniques for finding specific patterns or information from 
scattered and chaotic data are useful and can be used for a 
number of domains.  

Most clustering algorithms for matrices focus on 2-dimensional 
matrix data. For example, analysis of a market basket involves 
2-dimentional matrix data [3][4]; document analysis involves a 
data matrix containing a set of documents and a bag of words 
[7][8]; a graph is often represented by a 2-dimensional matrix 
[10][11]. However, in the real world, there are many matrices  or 
tensors having at least 3 dimensions: knowledge bases 
containing triples of subject, object, and verb [12]; lymphoma 
microarray dataset in biology analysis [13][5][6]; DBLP citation 
network containing author, keyword, and conference; app 
recommendation data containing user, app, and location entities 
[14]; and movie recommendation data containing user, movie, 
and time [15].  However, to the best of our knowledge, most 
clustering algorithms targeting over 3-dimensional matrix are 
based on tensor factorization [16][17] or k-means clustering. 

In this paper, we focus on cross-association [18] due to a 
number of advantages. Cross-association is based on co-
clustering, and therefore is able to simultaneously discover both 
row and column groups. Moreover, cross-association is fully 
automated, meaning that it does not require any parameters, e.g., 
the number of clusters. However, cross-association has 
limitations: it only targets sparse binary 2-dimentional matrices. 
Therefore, in this paper, we extend cross-association to handle 
3-dimensonal matrix. The proposed method simultaneously 

discovers clusters in a 3-dimensional matrix and is fully 
automatic, like cross-association. Using the proposed method, 
we cluster and analyze 3-dimensonal real-world matrix data. 

II. RELATED WORK 
In this section, we discuss several algorithms for finding 

patterns, correlations, and rules through clustering. They include 
spectral clustering [10], METIS [11], co-clustering [7], and 
cross-association [18]. Except cross-association, all algorithms 
we introduce require tuning and human intervention.  

Spectral clustering is based on finding “good cuts” in a graph. 
It finds clusters which contain dense internal edges and sparse 
external edges. Several versions of spectral clustering have been 
proposed, including the one using the ratio cut [9] and the one 
using the normalized cut [10]. METIS provides multilevel k-
way partitioning. The result of METIS is a set of balanced 
clusters of graph nodes, where the number of edges between 
clusters is small. Co-clustering is able to find clusters of rows 
and columns from given matrices or graphs simultaneously. It 
normalizes a contingency table or a two-dimensional probability 
distribution. Cross-association is from the co-clustering method. 
It simultaneously groups the row items and the column items 
from a given similarity matrix. The difference between 
Information Co-Clustering [8] and cross-association is that 
Information Co-Clustering uses lossy code, which is for rank-
one matrix approximation, while Cross-association takes 
lossless code, which uses the Shannon entropy function. One of 
the important properties of cross-association is that it is fully 
automated, meaning that it does not require any parameters. 
However, it targets only sparse binary 2-dimensional matrices. 

III. PROPOSED METHOD 
The goal of this paper is to find clusters in 3-dimensional 

matrix data by extending Cross-association. The main idea of 
cross-association is to exploit the Minimum Description Length 
[20] principle: it finds clusters which minimize the number of 
bits required to transmit both the summary of the structure, as 
well as each rectangular area. Table 1 shows the symbols and 
definitions used in this paper.  

A. Extended Cross-association  
Compared to 2-D cross association, the key difference of our 

method is that it targets a 3-dimensional matrix. Let D denote an 
α x β x γ (α,β, γ ≥ 1)  matrix. Let us index the rows, columns, 
and tubes as (1, 2, … ,α), (1, 2, … ,β), and (1,2, … , γ),  
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TABLE I.  SYMBOLS AND DEFINITIONS. 

respectively. Let k, l, and m  denote the expected number of 
disjoint row groups, column groups, and tube groups, 
respectively. And let us index the row groups as (1, 2, … , k), 
column groups as  (1, 2, … , l) and tube groups as (1,2, … , m). 
Let Ψ: {1, 2, … ,α} → {1, 2, . . , 𝑘𝑘},Φ: {1, 2, … ,β} → {1, 2, … , 𝑙𝑙} , 
and Ω: {1, 2, … γ} → {1, 2, . . , m}  denote the results of 
assignments of rows to row groups, columns to column groups, 
and tubes to tube groups. Extended Cross-association outputs 
Ψ,Φ, and Ω. With the given Extended Cross-association, we are 
able to gain more insights on the structure of D. Using Ψ, we 
rearrange rows of D so that rows corresponding to group 1 is 
listed first, rows corresponding to group 2 is listed second, and 
so on. Columns and tubes are rearranged in a similar manner 
based on Φ and Ω.  Through this rearrangement, matrix D is 
divided into smaller rectangular blocks. We denote each cross-
associate as Di,j,h, where 𝑖𝑖 = 1,2, … , 𝑘𝑘, 𝑗𝑗 = 1,2, … , 𝑙𝑙, and ℎ =
1,2, … ,𝑚𝑚. The dimensions of Di,j,h are denoted by �ai, bj, ch�. 

B. Compression 
The total code length for the given matrix D, with respect to 

a given Extended Cross-association, comprises two parts: the 
description (model) complexity and the data complexity. 
Description complexity considers the cost of storing the 
following model parameters: 

 Number of row groups, column groups, and tube groups,   

 Number of rows in each row group, number of columns in 
each column group, number of tubes in each tube group 

 Number of ones in each cross-associate Di,j,h 

Let A be an a × b × c matrix. Let 𝑛𝑛1(𝐴𝐴) and 𝑛𝑛0(𝐴𝐴) be the 
number of non-zero entries and zero entries in A. The optimal 
code length to encode A is given by [18], as in (1):  

C(A) ≔  �𝑛𝑛𝑖𝑖(𝐴𝐴) log�
𝑛𝑛(𝐴𝐴)
𝑛𝑛𝑖𝑖(𝐴𝐴)� = 𝑛𝑛(𝐴𝐴)𝐻𝐻(𝑃𝑃𝐴𝐴(0))

1
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where H() is the Shannon entropy function. The data complexity 
considers the number of bits to encode D using an optimal code. 
For the given matrix D, the total code length is as in (2).  

T(D; k, l, m,Φ,Ψ,Ω) ≔ log∗ 𝑘𝑘 + log∗ 𝑙𝑙 + log∗ 𝑚𝑚 +  
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where 𝑎𝑎𝚤𝚤�  is defined to be (∑ 𝑎𝑎𝑡𝑡𝑘𝑘
𝑡𝑡=𝑖𝑖 ) − 𝑘𝑘 + 𝑖𝑖 . 𝑏𝑏𝚥𝚥�  and 𝑐𝑐ℎ�  are 

defined in a similar manner. Our goal is to find the number of 
row groups k∗, the number of column groups l∗, and the number 
of tube groups m∗ , and an Extended Cross-association 
(Ψ∗,Φ∗,Ω∗)  such that the total resulting code length 
T(D; k∗, l∗, m∗,Ψ∗,Φ∗,Ω∗)  is minimized. To determine the 
proper number of groups in each dimension, and also a 
corresponding Extended Cross-association, we propose a two-
step approach. The first step is for finding a good Extended 
Cross-association for a given number of rows, columns, and tube 
groups. The second part is for finding the proper number of rows, 
columns, and tube groups. In the following, we first explain the 
strategy to search over k, l, and m to minimize the total code 
length T mentioned above. Then, a minimization algorithm 
called Extended-ReGroup to find an optimal Extended Cross-
association for a given number of groups in each dimension is 
then proposed.  

C. Extended Cross-association Search  
In this part, we propose an algorithm to find the proper 

number of groups, k, l, and m. It is based on the total cost model. 
Staring with the minimum number (k0 = l0 = m0 = 1 ), we 
increase each of the number of groups. For each increase, the 
matrix is then rearranged with Extended-ReGroup which will be 
described at the next section. In contrast to the 2-D cross 
association which alternates increasing the number of rows, and 
columns, resp., we choose the best dimension (row or column or 
tube) that decreases the total cost the most.  

D. Extended Regroup 
Extended ReGroup finds the local minimum of Extended 

Cross-association. If we have the number of row groups k, the 
number of column groups l, and the number of tube groups m, 
we focus on obtaining an Extended Cross-association 
(Ψ∗,Φ∗,Ω∗) that minimizes the cost function. 

���𝐶𝐶(𝐷𝐷𝑖𝑖,𝑗𝑗,ℎ)
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The idea is alternating minimization, i.e., alternately choose a 
dimension, and for each index of the dimension, choose the best 
group assignment that minimizes the cost function. 

IV. EXPERIMENTS 
To validate the usefulness and clustering performance of our 

method, we carried out experiments with two kinds of data, 
synthetic and real-world. The synthetic dataset includes a block-
diagonal 3-dimensional matrix with varied block sizes, and its 
shuffled version. The real-world dataset includes the DBLP (ver. 
7) citation network data [21] from AMiner containing 2,244,021 
papers and 4,354,534 citation relationships. 

With the synthetic data, we show that our method catches 
clusters in a 3-D matrix by rearranging entity indexes. Figure 1 
shows a block-diagonal raw data, and Figure 2 shows the 

Symbol Definition 
D 

α,β, γ 
3-dimentional matrix 
Number of row, columns, and tubes in D 

k, l, m 
k∗, l∗, m∗ 
(Φ,Ψ,Ω) 

Number of rows, columns, and tube groups 
Optimal numbers of groups 
Extended Cross-association 

Di,j,h 
ai, bj, ch 
𝑛𝑛(Di,j,h) 

n0�𝐷𝐷𝑖𝑖,𝑗𝑗,ℎ�,𝑛𝑛1�𝐷𝐷𝑖𝑖,𝑗𝑗,ℎ� 

(i,j,h)th cross-associate 
Dimensions of Di,j,h 
Number of elements in Di,j,h 
Number of 0s and 1s in Di,j,h 

H(p) Shannon entropy function 
C(Di,j,h) 

T(D; k, l, m,Φ,Ψ,Ω) 
Code cost for Di,j,h 
Total cost for D 



shuffled version of the data in Figure 1. We apply our method to 
find clusters in the data in Figure 2. The resulting 3-D matrix is 
exactly the same as the data in Figure 1, as expected. Figure 3 
shows the resulting 3-D matrix, where the ith subfigure is a 
collapsed version (along the z-axis) of the 3-D submatrix whose 
group assignment in the z-axis is i. The darkness of a box 
represents the density of it. 

In the real-world data experiment, we use the DBLP (paper, 
author, year) 3-D matrix data as shown in Figure 4. The number 
of papers, authors, and years is 3000, 5000, and 50, respectively. 
We apply our method on the data, and as a result we found 4 
paper groups, 3 author groups, and 4 year groups. The size of the 
paper groups, author groups, and year groups is {1424, 803, 412, 
362}, {3076, 568, 665}, and {30, 9, 1, 1}, respectively. Figure 5 
shows the resulting 3-D matrix, where the ith subfigure is a 
collapsed version (along the z-axis) of the 3-D sub matrix whose 

group assignment in the z-axis is i. As in the synthetic data 
experiment, the darkness of a box represents the density of it. 
We see that each subfigure has a small number of dense blocks, 
rather than many sparse blocks, as intended by our method.  

V. CONCLUSION 
In this paper, we proposed Extended Cross-association, an 

algorithm that extends 2-D cross-association to handle 3-
dimensional matrices or tensors. Our proposed method is 
parameter-free, and it simultaneously finds row, column, and 
tube groups. Experiments on real world DBLP data and 
synthetic dataset show our method is effective.  

Future research topics include 1) more experiments with real 
world data, and 2) improving the performance of Extended 
Cross-association to handle much larger data. 
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