
TeGViz: Distributed Tera-Scale Graph Generation
and Visualization

ByungSoo Jeon
Dept. of Computer Science

Korea Advanced Institute of
Science and Technology (KAIST),

Daejeon, Korea 34141
Email: bsjeon@kaist.ac.kr
Phone : +82-10-5001-4553

Inah Jeon
Future IT R&D Lab.

LG Electronics
Seoul, Korea 06772

Email: june5324@gmail.com
Phone : +82-10-3089-5324

U Kang
Dept. of Computer Science and Engineering

Seoul National University
Seoul, Korea 08826

Email: ukang@snu.ac.kr
Phone : +82-2-880-7254

Abstract—How can we generate and visualize tera-scale
graphs efficiently? Although there are several graph generators
available, they lack scalability, and require additional time
to upload graphs for further analysis in distributed systems.
Visualizing a massive graph from a graph generator is another
challenge since the amount of information in the graph exceeds
the resolution of a typical screen.

In this paper, we proposes TeGViz, a distributed Tera-scale
graph generation and visualization tool. TeGViz consists of two
modules: graph generation and visualization. The graph gener-
ation module TeG generates a wide range of graphs including
Erdős-Rényi random graph and realistic graphs including R-
MAT and Kronecker directly on distributed systems. Thanks
to our carefully designed parallel algorithms, TeG outperforms
competitors in terms of scalability. The visualization module Net-
Ray summarizes graphs using spy plot, distribution plot, and
correlation plot to find regularities and anomalies effectively and
makes it easy to understand generated graphs.

Keywords—Graph Generator; Visualization; Large-scale
Graph; Random Graph; R-MAT; Kronecker; MapReduce

I. Introduction

Graphs are used extensively to model many real world
processes, like social network, the Web, citation network, etc.
Although there are many public graphs available for study, an
important tool for graph analysis is a graph generator which
generates graphs with arbitrary sizes and various characteris-
tics. Graph generator has a wide range of applications:

• Simulation: in designing a new graph analysis algorithm,
we want to test the algorithm’s behavior on different graph
sizes and characteristics.

• Sampling/Extrapolation: if we cannot run an algorithm
on a given graph due to its complexity, we want to
generate a smaller graph with similar characteristics. On
the other hand, we might want to generate a much larger
graph to a given graph with similar characteristics.

• Graph understanding: by understanding how the model
parameters affect the network properties, we can better
understand the graph.

Although there are several graph generators [1] [2] [3]
available, they have limitations. First, while the needs for

*Corresponding author: U Kang (email: ukang@snu.ac.kr)

Fig. 1: Overview of TeGViz. TeGViz consists of 2 modules which
work in a fully distributed way on Hadoop Framework. The graph
generation module efficiently generates various random and realistic
graphs. The visualization module visualizes the generated graph to
show the connectivity, community, and outliers in the graph.

generating very large graphs are increasing, most of the
existing generators run on a single machine, and thus cannot
generate very large graphs exceeding the capacity of a single
machine. Second, recently significant portion of the data are
stored in distributed systems (e.g. MapReduce and Hadoop)
for which many data analysis tools are designed. Since the
existing generators store the data in a system separated from
the distributed systems, it takes another huge amount of time
to upload the generated graph to the distributed systems. Thus,
the need for an efficient and effective graph generation system
that conquers the above limitations are ever increasing.

Another challenge is to visualize a massive graph from a
graph generator; visualization of the graph is important since 1)
it directly gives important information on the graph including
connectivity patterns, community structures, outliers, etc., and
2) it gives a crucial tool for data miners to communicate with
non-experts: e.g., government officials, domain experts, etc.

In this paper, we proposes TeGViz, a distributed Tera-
scale graph generation and visualization tool. It runs on
MapReduce [4], or its open-source counterpart Hadoop [5],
framework for scalability. TeGViz supports a wide variety
of graphs including Erdős-Rényi random graph, and realistic
graph models like R-MAT [6] and Kronecker [7] which gen-
erate graphs reflecting the characteristics of real world graphs
such as power law degree distribution and small diameter.



Fig. 2: R-MAT model. Each edge is recursively placed in one of the
4 partitioned regions with probabilities of a, b, c, and d, respectively.

After the user specifies the input parameters, TeGViz carefully
distributes the required graph generation tasks into distributed
machines which work independently to generate the graph. The
resulting graph is fed into our distributed graph visualization
module which shows connectivity and community structure
patterns.

Our main contributions are the followings.

• Efficient algorithm and implementation: TeGViz is
carefully designed to work on distributed systems.
TeGViz works in an embarassingly parallel way; each
machine has a balanced amount of tasks.

• Scalability: TeGViz generates at least 512× larger graph
than existing generators. Also, TeGViz achieves near
linear scalability on the number of machines. Generating
and visualizing a billion-scale graph takes less than a
minute.

• Generation inside distributed systems: Since the gen-
erated graphs are on distributed systems, there is no need
to upload the graphs to distributed systems to apply many
data analysis tools (e.g., [8]) designed for distributed
systems.

The TeGViz code is available at http://datalab.snu.ac.kr/
tegviz. The rest of the paper is organized as follows: system
overview in Section 2, demonstration plan in Section 3, related
works in Section 4, and conclusion in Section 5.

II. System Overview

A. Overview

TeGViz includes TeG, a distributed graph generator we
propose in this paper. TeG generates three types of graphs
from different models: Erdős-Rényi, R-MAT, and Kronecker.
Erdős-Rényi is a random graph model. R-MAT and Kronecker
are widely used models to generate realistic graphs that capture
the properties of real world graphs. TeG also uses Net-Ray [9]
to visualize tera-scale graphs using spy plot, distribution plot,
and correlation plot. We implement our software on MapRe-
duce [4] framework for scalability.

B. Graph Generation

1) R-MAT Graph: R-MAT [6] is one of the most widely
used graph generative models. The main idea is to place
each edge in one of the 4 partitioned regions with different
probabilities recursively, as shown in Figure 2.

A challenge in designing a distributed algorithm for R-
MAT is to evenly distribute the work into each machine. Our
main idea is to assign each block to each machine in a greedy
way until balance is not destroyed. Our proposed distributed

Algorithm 1: Distributed R-MAT in TeG: work assign-
ment

Input: n: number of nodes,
m: number of edges,
N: number of machines,
ε : unbalance parameter, and
probabilities: a, b, c, and d

Output: rectListForMachine(Mi) for i = 1..N (group of
rectangles of adjacent matrix for each machine)

1: initialize rectListForMachine(Mi) to be empty
2: set rectList to the 4 rectangles from the original adjacent

matrix
3: repeat
4: /* fill rectListForMachine(Mi) for each machine */
5: pop first item from rectList
6: if there exists rectListForMachine(Mi) whose number

of edges after adding item to it is smaller than m
N + ε

then
7: add item to rectListForMachine(Mi)
8: else
9: split item into 4 pieces (for a,b,c,d)

10: add 4 pieces to rectList
11: end if
12: until rectList becomes empty

Algorithm 2: Distributed R-MAT in TeG: graph gener-
ation in machine i

Input: rectListForMachine(Mi): rectangles for machine i to
generate, and
probabilities: a, b, c, and d

Output: edges generated from machine i
1: repeat
2: pop first item from rectListForMahcine(Mi)
3: if the number of edges in item is 1 then
4: generate a random edge in item
5: else
6: split item into 4 pieces (for a,b,c,d)
7: add 4 pieces to rectListForMachine(Mi)
8: end if
9: until rectListForMachine(Mi) becomes empty

R-MAT in TeG consists of two steps: 1) work assignment step,
and 2) distributed generation step. In the work assignment step
(Algorithm 1) which is done in a single machine, the goal is
to assign ki edges, where m

N − (N − 1)ε ≤ ki ≤
m
N + ε, to

each machine i where m is the total number of edges, N is
the number of machines, and ε is a parameter to bound the
maximum error in balance. We start with the initial 4 blocks
from the original adjacency matrix, and assign each block to an
available machine whose total number of edges after adding the
edges in the block is less than m

N +ε. If none of the machines are
available since the block is too large, we recursively partition
the block, until each of the divided block is assigned to at least
one machine. Note that in the end the difference of the assigned
edges in any two machines is at most Nε since in the extreme
case the first N − 1 machines will have m

N + ε edges while the
last machine would have m

N − (N − 1)ε edge. In the distributed
generation step (Algorithm 2), each machine generates edges
based on the assignment determined in the previous step, in
a fully distributed way without any communication with other
machines.



Fig. 3: The construction of Kronecker graph in TeG. The entire
graph is divided into several subgraphs which are assigned to each
machine; each machine recursively generates the assigned subgraph.

2) Random Graph: In random graph, edges are generated
randomly. Users give the number of nodes and edges as input,
and the random graph generator outputs edges between ran-
domly selected nodes. TeG’s distributed algorithm to generate
random graph is very similar to the algorithm for distributed
R-MAT in Section II-B1 since random graph is a special case
of R-MAT graph where a = b = c = d = 0.25. The only
difference is that the number of nodes in random graphs does
not need to be a power of 2.

3) Kronecker Graph: Kronecker graph model [7] is another
real-world graph generative model. Kronecker graph model
recursively performs the Kronecker product to generate graph.
The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is
denoted by A ⊗ B. The result is a matrix of size (IK) × (JL)
and defined by

A ⊗ B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB
...

...
. . .

...
aI1B aI2B · · · aIJB


To generate Kronecker graph, TeG receives the number of

iterations, the number of machines, and a small sized seed
graph as input parameters. In each iteration the current graph
is expanded to a larger graph by Kronecker multiplication with
the seed graph. As in the R-MAT and random graphs, an
important point in generating Kronecker graph is to divide the
work evenly into each machine. TeG exploits the characteristic
of Kronecker product that each nonzero at an iteration is
expanded to the same number of nonzeros in later iterations.
Thus, TeG first expands the seed graph until the number of
nonzeros exceeds the number of machines; then each nonzero
is assigned to a machine which expands the assigned nonzeros
into many edges. Note that this method guarantees that each
machine is assigned at most two nonzeros at the time of
assignment.

4) Performance of Graph Generator: We compare the run-
ning time of TeG and existing graph generators, GTgraph [1],
GraphStream [2] and NetworkX [3]. To run TeG, we use
a Hadoop cluster with 40 machines where each machine is
equipped with an Intel Xeon E3-1230v3 CPU (quad-core at
3.30GHz), and 32GB RAM. To run single machine graph
generators, we use a machine in the Hadooop cluster. In
R-MAT and random graph generator of Figure 4, existing
generators run out of memory when the numbers of edges
are beyond 106 and 107, respectively, while TeG continues
to run. The figure shows TeG generates at least 512× larger

graphs than existing generators. Note that all three generators
make a graph with 1 billion edges in less than a minute. We
also evaluate TeG for machine scalability; TeG shows a linear
machine scalability.

C. Visualization

The visualization module of TeGViz provides a quick and
useful view of tera-scale graphs. Tera-scale graphs are difficult
to visualize due to the amount of information overflowing the
resolution of a typical screen. TeGViz uses distributed systems
to efficiently generate visualization of the graph; such visual-
ization helps user easily find interesting characteristics such
as regularities, communities, and anomalies including near
spokes, near cliques and spikes. TeGViz uses the following
three plots to visualize large graphs.

1) Spy Plot: Spy plot shows connectivity patterns between
nodes and community structures in a graph. For example, the
spy plot of a Web graph shown in Figure 5 shows a high
activity region in the lower left area.

2) Distribution Plot: Distribution plot (e.g., degree distri-
bution and triangle distribution) reveals abundant information
on the regularities as well as deviating patterns of a graph. For
example, in many cases degree distribution of a real world
graph follows a power-law; anomalous nodes with strange
number of neighbors are represented by "spikes" in the degree
distribution plot [9].

3) Correlation Plot: Correlation plot of two features of
a graph helps find correlations and anomalies in nodes. For
example, correlation plot of degree and triangle of nodes can
be used to detect anomalous nodes which form a near-clique
with its neighbors [10].

Since the visualization is performed in a fully distributed
way to process data residing in a Hadoop cluster, the visualiza-
tion finishes quickly. For example, generating a spy plot from
a billion scale graph takes less than a minute.

III. Demonstration Plan

A. Present State of Demo

Our current prototype generates and visualizes a billion-
scale graph within 1 minute.

B. Demonstration Details

The audience will be invited to 1) generate billion-scale
graphs which existing generators cannot easily create, and 2)
visualize it. We will connect to our remote cluster using our
laptop. We will also pre-install Hadoop on our laptop to run our
software using pseudo-distributed mode in case the network
connection is not stable.

Graph Generation. We will let audiences generate billion-
scale graphs. Audiences can select one of thee three types of
graphs: random, R-MAT, and Kronecker. Users can specify pa-
rameters for each type of graph to customize the characteristics
of the graphs that they want to generate.

Graph Visualization. TeGViz visualizes massive graphs
using three types of plots: spy plot, distribution plot, and
correlation plot. We will mainly focus on the spy plot since



(a) R-MAT Graph Generator (b) Random Graph Generator (c) Kronecker Graph Generator
Fig. 4: Comparison of the running time between TeG and existing generators. The label ‘O.O.M.’ means ’Out of Memory’. In R-MAT and
random graph, existing generators run out of memory when the numbers of edges are beyond 106 and 107, respectively, while TeG continues
to run. Note that TeG generates at least 512× larger graphs than existing generators. Note also that all three generators make a graph with 1
billion edges in less than a minute.

Fig. 5: Spy plot (adjacency matrix pattern) of a Web graph with 1.4
billion nodes and 6.6 billion edges. Note that the dense region in the
lower left area is clearly identified.

it directly shows the connectivity and community patterns
of the generated graph quickly. Generating distribution and
correlation plots on the fly requires more time since it needs
statistics of the graph like degree distribution and PageRank;
thus we will show these plots using pre-computed statistics.

IV. RelatedWork

Several graph generators have been proposed. In [1], Bader
et al. propose GTgraph, a synthetic random graph generator
which supports random, R-MAT, and SSCA]2 graphs. Graph-
Stream [2] is a graph library that includes graph generators
for random, Barabasi-Albert, and grid graphs. NetworkX [3],
a python graph library, provides random, line, bipartite graph
generators, etc. Although they support several graph genera-
tors, they are designed to run on a single machine, and thus
cannot generate very large graphs exceeding the capacity of
a single machine. On the other hand, TeGViz is carefully
designed to generate very large graphs and supports a wide
range of graph generators for both random and realistic graphs.
The Parallel BGL [11] is a parallel C++ graph generator which
provides random, R-MAT, SSCA graphs, etc. Unlike TeGViz
which uses Hadoop, Parallel BGL uses MPI, and thus the
burden of data management and fault tolerance is up to the
user which hinders its usability.

V. Conclusion

In this paper we proposes TeGViz, a distributed tera-
scale graph generation and visualization tool that supports
a wide range of large-scale graphs including random and

realistic graphs. TeGViz is carefully designed to work in an
embarrassingly parallel way, and the task is evenly divided into
each machine. TeGViz is scalable and nimble: e.g., TeGViz
creates at least 512× large graphs than its competitors, and
processes billion-scale graphs in less than a minute. TeGViz
also visualizes the generated graph to give users insights on
the connectivity and community patterns in it.

Future works include extending the work to generate and
visualize time-evolving graphs, or tensors [12].

Acknowledgment

This work was supported by the National Research Foun-
dation of Korea(NRF) Grant funded by the Korean Govern-
ment(MSIP)(No. 2013R1A1A1064409).

References
[1] D. Bader and K. Madduri, “Gtgraph: A synthetic graph generator suite,”

http://www.cse.psu.edu/madduri/software/GTgraph/, 2006.
[2] “Graphstream library,” http://graphstream-project.org/.
[3] “Networkx information,” http://networkx.github.io/.
[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters.” in OSDI. USENIX Association, 2004, pp. 137–150.
[5] “Hadoop information,” http://hadoop.apache.org/.
[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model

for graph mining,” in SDM, 2004.
[7] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos, “Re-

alistic, mathematically tractable graph generation and evolution, using
kronecker multiplication.” in PKDD, 2005.

[8] U. Kang, D. H. Chau, and C. Faloutsos, “Pegasus: Mining billion-
scale graphs in the cloud,” in 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2012, Kyoto, Japan,
March 25-30, 2012, 2012, pp. 5341–5344.

[9] U. Kang, J. Y. Lee, D. Koutra, and C. Faloutsos, “Net-ray: Visualizing
and mining billion-scale graphs,” in Advances in Knowledge Discovery
and Data Mining - 18th Pacific-Asia Conference, PAKDD 2014, Tainan,
Taiwan, May 13-16, 2014. Proceedings, Part I, 2014, pp. 348–361.

[10] U. Kang, B. Meeder, E. Papalexakis, and C. Faloutsos, “Heigen:
Spectral analysis for billion-scale graphs,” Knowledge and Data En-
gineering, IEEE Transactions on, vol. 26, no. 2, pp. 350–362, February
2014.

[11] “Parallel bgl information,” http://www.boost.org/.
[12] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2: Billion-

scale tensor decompositions,” in ICDE, 2015.


