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Abstract. How can we rank nodes in signed social networks? Relationships between
nodes in a signed network are represented as positive (trust) or negative (distrust)
edges. Many social networks have adopted signed networks to express trust between
users. Consequently, ranking friends or enemies in signed networks has received much
attention from the data mining community. The ranking problem, however, is challeng-
ing because it is difficult to interpret negative edges. Traditional random walk based
methods such as PageRank and Random Walk with Restart cannot provide effective
rankings in signed networks since they assume only positive edges. Although several
methods have been proposed by modifying traditional ranking models, they also fail
to account for proper rankings due to the lack of ability to consider complex edge re-
lations. In this paper, we propose Signed Random Walk with Restart (SRWR), a
novel model for personalized ranking in signed networks. We introduce a signed random
surfer so that she considers negative edges by changing her sign for walking. Our model
provides proper rankings considering signed edges based on the signed random walk.
We develop two methods for computing SRWR scores: SRWR-Iter and SRWR-Pre
which are iterative and preprocessing methods, respectively. SRWR-Iter naturally fol-
lows the definition of SRWR, and iteratively updates SRWR scores until convergence.
SRWR-Pre enables fast ranking computation which is important for the performance
of applications of SRWR. Through extensive experiments, we demonstrate that SRWR
achieves the best accuracy for link prediction, predicts trolls 4× more accurately, and
shows a satisfactory performance for inferring missing signs of edges compared to other
competitors. In terms of efficiency, SRWR-Pre preprocesses a signed network 4.5×
faster, and requires 11× less memory space than other preprocessing methods; further-
more, SRWR-Pre computes SRWR scores up to 14× faster than other methods in the
query phase.
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1. Introduction

How can we obtain personalized rankings for users in signed social networks?
Many social networks have allowed users to express their trust or distrust to
other users. For example, in online social networks such as Slashdot (Kunegis,
Lommatzsch and Bauckhage, 2009), a user is explicitly able to mark other users
as friends or foes. The users are represented as nodes, and the expressions are
represented as positive and negative edges in graphs which are called signed net-
works (Szell, Lambiotte and Thurner, 2010). Ranking nodes in signed networks
has received much interest from data mining community to reveal trust and
distrust between users (Kunegis et al., 2009) inducing many useful applications
such as link prediction (Song and Meyer, 2015), anomaly detection (Kunegis
et al., 2009), sign prediction (Leskovec, Huttenlocher and Kleinberg, 2010a),
and community detection (Yang, Cheung and Liu, 2007) in signed networks.

Traditional ranking models, however, do not provide satisfactory node rank-
ings in signed networks. Existing random walk based ranking models such as
PageRank (Page, Brin, Motwani and Winograd, 1999) and Random Walk with
Restart (Tong, Faloutsos, Gallagher and Eliassi-Rad, 2007; Shin, Jung, Lee and
Kang, 2015; Jung, Shin, Sael and Kang, 2016; Jung, Park, Sael and Kang, 2017;
Yoon, Jin and Kang, 2018; Yoon, Jung and Kang, 2018) assume only positive
edges; thus, they are inappropriate in the signed networks containing negative
edges. Many researchers have proposed heuristics on the classical methods to
make them computable in signed networks (Kunegis et al., 2009; Shahriari and
Jalili, 2014). However, those heuristic methods still have room to improve in
terms of ranking quality since they do not consider complex social relationships
such as friend-of-enemy or enemy-of-friend in their rankings as shown in Fig-
ure 2. In addition, most existing ranking models in signed networks focus only
on a global node ranking, although personalized rankings are more desirable for
individuals in many contexts such as recommendation. Also, the fast ranking
computation is important for the computational performance of applications in
SRWR.

In this paper, we propose Signed Random Walk with Restart (SRWR),
a novel model for effective personalized node rankings in signed networks. The
main idea of SRWR is to introduce a sign into a random surfer in order to let the
surfer consider negative edges based on structural balance theory (Cartwright
and Harary, 1956; Leskovec et al., 2010a). Consequently, our model considers
complex edge relationships, and makes random walks interpretable in signed
networks. We devise SRWR-Iter, an iterative method which naturally follows
the definition of SRWR, and iteratively update SRWR scores until convergence.
Furthermore, we propose SRWR-Pre, a preprocessing method for computing
SRWR scores quickly which is useful for various applications in signed networks.
Through extensive experiments, we demonstrate that our proposed approach
offers improved performance for personalized rankings compared to alternative
methods in signed social networks. Our main contributions are as follows:

– Novel ranking model. We propose Signed Random Walk with Restart
(SRWR), a novel model for personalized rankings in signed networks (Defini-
tion 1). We show that our model is a generalized version of RWR working on
both signed and unsigned networks (Property 2).

– Algorithm. We propose SRWR-Iter and SRWR-Pre for computing SRWR
scores. SRWR-Iter is an iterative algorithm which naturally follows the
definition of SRWR (Algorithm 2). SRWR-Pre is a preprocessing method
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Table 1. Table of symbols. Boldface capital letters, such as A, represent matrices.
Boldface small letters, such as r, represent vectors.

Symbol Definition

G = (V,E) signed input graph
V set of nodes in G
E set of signed edges in G
n number of nodes in G
n1 number of spokes in G
n2 number of hubs in G
m number of edges in G
s seed node (= query node, source node)
c restart probability
ε error tolerance
←−
Nu set of in-neighbors to nodes u
−→
Nu set of out-neighbors from nodes u
A (n× n) signed adjacency matrix of G
|A| (n× n) absolute adjacency matrix of G
D (n× n) out-degree matrix of |A|, Dii =

∑
j |A|ij

Ã (n× n) semi-row normalized matrix of A

Ã+ (n× n) positive semi-row normalized matrix of A

Ã− (n× n) negative semi-row normalized matrix of A

|Ã| (n× n) absolute row-normalized matrix of |A|
q (n× 1) starting vector (= s-th unit vector)
r+ (n× 1) positive score vector
r− (n× 1) negative score vector
r (n× 1) trustworthiness score vector, e.g., r = r+ − r−

p (n× 1) p = r+ + r−

|H| (n× n) |H| = I− (1− c)|Ã|>
T (n× n) T = I− (1− c)(γÃ>+ − βÃ>−)

|H|ij ,Tij (ni × nj) (i, j)-th partition of |H| or T
S|H|, ST (n2 × n2) Schur complement of |H|11 or T11

qi, pi, r−i (ni × 1) i-th partition of q, p or r−

which employs a node reordering technique and block elimination to accelerate
SRWR computation speed (Algorithms 3 and 4).

– Experiment. We show that SRWR achieves higher accuracy for link predic-
tion (Figure 7), predicts trolls 4× more accurately (Figure 9), and provides a
good performance for sign prediction compared to other ranking models (Fig-
ure 10). In terms of efficiency, SRWR-Pre preprocesses signed networks up to
4.5× faster, and requires 11× less memory space than baseline preprocessing
methods. Furthermore, SRWR-Pre computes SRWR scores up to 14× faster
than other methods including SRWR-Iter (Figure 13).

The code of our method and datasets used in this paper are available at
http://datalab.snu.ac.kr/srwrpre. The rest of this paper is organized as fol-
lows. We first introduce the formal definition of the personalized ranking problem
in signed networks at Section 2. Then we provide a review of related works in
Section 3. In Section 4, we describe our proposed model and algorithms for com-
puting personalized rankings. After presenting experimental results in Section 5,
we conclude in Section 6. Table 1 lists the symbols used in this paper.

2. Problem Definition

We define the personalized ranking problem in signed networks as follows:

Problem 1 (Personalized Node Ranking in Signed Networks).

http://datalab.snu.ac.kr/srwrpre
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Fig. 1. Example of the personalized node ranking problem in Problem 1. Given
a signed network and a seed node (in this example, node A is the seed node),
our goal is to compute the trustworthiness score vector r w.r.t. the seed node.
Our proposed model SRWR (see Definition 1 in Section 4) aims to compute r
based on the positive and negative score vectors r+ and r−, i.e., r = r+ − r−.

–Input: a signed network G = (V,E) and a seed node s where V is the set of
nodes, and E is the set of signed edges.

–Output: a trustworthiness score vector r ∈ Rn of all other nodes for seed node
s to rank those nodes w.r.t. seed node s. �

In signed social networks, users are represented as nodes, and trust or distrust
relations between users are represented as positive or negative edges. When a
user u considers that a user v is trustworthy, a positive edge u→ v is formed. On
the contrary, a negative edge u → v is formed when u distrusts v. Given those
signed edges between nodes and a seed node s, the personalized ranking problem
is to rank all other nodes w.r.t. seed node s in the order of trustworthiness scores
represented by r where ru indicates how much seed node s should trust node
u as depicted in Figure 1. If the score ru is high, then s is likely to trust u.
Otherwise, s is likely to distrust u.

3. Related Work

In this section, we review related works, which are categorized into four parts:
1) ranking in unsigned networks, 2) ranking in signed networks, 3) applications
in signed networks, and 4) fast personalized ranking methods.

Ranking in unsigned networks. There are various global ranking mea-
sures based on link structure and random walk, e.g., PageRank (PR) (Page
et al., 1999), HITS (Kleinberg, 1999a), and SALSA (Lempel and Moran, 2001).
Furthermore, personalized ranking methods are explored in terms of node-to-
node relevance such as Random Walk with Restart (RWR) (Tong, Faloutsos
and Pan, 2008), Personalized PageRank (PPR) (Haveliwala, 2002), Personal-
ized SALSA (PSALSA) (Bahmani, Chowdhury and Goel, 2010). Among these
measures, RWR has received much interests and has been applied to many ap-
plications (Kang, Tong and Sun, 2012; Backstrom and Leskovec, 2011; Gleich
and Seshadhri, 2012; Jin, Jung and Kang, 2019). Note that these methods are
not applicable to signed graphs because they assume only positive edges; on the
contrary, our model works on signed networks as well as on unsigned networks.

Ranking in signed networks. Many researchers have made great ef-
forts to design global node rankings in signed networks. Kunegis et al. (Kunegis
et al., 2009) presented Signed spectral Ranking (SR) that heuristically computes
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PageRank scores based on a signed adjacency matrix. Wu et al. (Wu, Aggar-
wal and Sun, 2016) proposed Troll-Trust model (TR-TR) which is a variant of
PageRank. In the algorithm, the trustworthiness of an individual user is mod-
eled as a probability that represents the underlying ranking values. Shahriari
et al. (Shahriari and Jalili, 2014) suggested Modified PageRank (MPR), which
computes PageRank in a positive subgraph and a negative subgraph separately,
and subtracts negative PageRank scores from positive ones. Although the idea
of MPR is easily applicable to other personalized ranking models such as RWR
by computing ranking scores on the positive and negative subgraphs, this re-
sults in many disconnections between nodes. Note that all those models mainly
focus on global node rankings, and they do not consider complex relationships
between negative and positive edges such as friend-of-enemy or enemy-of-friend;
in contrast, our model SRWR provides an effective personalized ranking with
considering complicated relationships between nodes based on a social theory
such as structural balance theory (Cartwright and Harary, 1956).

Applications in signed networks. Numerous applications in signed social
networks such as link prediction, troll detection, and sign prediction have been
studied in many literatures. Song et al. (Song and Meyer, 2015) proposed GAUC
(Generalized AUC) to measure the quality of link prediction in signed networks
where the link prediction task is to predict nodes which will be positively or
negatively linked by a node in the future. They devised a matrix factorization
based method GAUC-OPT which approximately maximizes GAUC for link pre-
diction. Kunegis et al. (Kunegis et al., 2009) analyzed the Slashdot dataset from
the perspective of troll detection, and proposed Negative Rank (NR) as a variant
of PageRank for detecting trolls who behave abnormally in the social network.
Leskovec et al. (Leskovec et al., 2010a) proposed LOGIT which is specially de-
signed for sign prediction classifying the sign between two arbitrary nodes. They
exploited a logistic classifier trained by node and edge features such as node
degrees and common neighbors between those two nodes. Guha et al. (Guha,
Kumar, Raghavan and Tomkins, 2004) also studied sign prediction, and devised
TRUST measuring trustworthiness between two source and target nodes by prop-
agating trust and distrust from the source node to the target node. Note that our
model SRWR shows better performance in link prediction, troll detection, and
sign prediction tasks compared to those methods as demonstrated in Section 5.

Fast personalized ranking methods. Many researchers have emphasized
the importance of fast computation for personalized rankings such as RWR to re-
duce their computational cost and boost the performance of applications based
on ranking in terms of efficiency. Tong et al. (Tong et al., 2008) proposed an
approximate method which exploits a low-rank approximation based on matrix
decomposition in the preprocessing phase, and computes an RWR query from the
decomposed matrices in the query phase. Fujiwara et al. utilized LU factoriza-
tion (Fujiwara, Nakatsuji, Onizuka and Kitsuregawa, 2012) with degree ordering
to speed up the RWR computation. Shin et al. (Shin et al., 2015) proposed a
block elimination approach based on node reordering to accelerate RWR compu-
tation speed. Although those approaches significantly increase the performance
of ranking in terms of running time, they only focus on ranking in unsigned
networks. In our previous work (Jung, Jin, Sael and Kang, 2016), we designed
a random surfer model for ranking nodes in signed networks, and developed an
iterative method for computing trust and distrust scores. However, the iterative
method is not appropriate for real-time applications since the method is not fast
in large signed networks as shown in Figure 13(c). In this work, we also aim
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(a) Traditional random walks (b) Signed random walks

Fig. 2. Examples of traditional random walks and signed random walks. Each
case represents 1) friend’s friend, 2) friend’s enemy, 3) enemy’s friend, or 4)
enemy’s enemy from the top. A random surfer has either a positive (blue) or a
negative (red) sign on each node in Figure 2(b). When the signed surfer traverses
a negative edge, she changes her sign from positive to negative or vice versa.

to develop an efficient preprocessing method to accelerate the query speed of
SRWR in signed networks. We will demonstrate that our preprocessing method
SRWR-Pre is the fastest for computing SRWR scores among other baselines as
presented in Figure 13(c).

4. Proposed Methods

We propose Signed Random Walk with Restart (SRWR), a novel rank-
ing model for signed networks in Section 4.1. Then we first develop an iterative
algorithm SRWR-Iter for computing SRWR scores w.r.t. a seed node in Sec-
tion 4.2, and then propose a preprocessing algorithm SRWR-Pre to accelerate
SRWR computation speed in Section 4.3.

4.1. Signed Random Walk with Restart Model

As discussed in Section 1, complicated relationships of signed edges are the main
obstacles for providing effective rankings in signed networks. Most existing works
on signed networks have not focused on personalized rankings. In this work, our
goal is to design a novel ranking model which resolves those problems in signed
networks. The main ideas of our model are as follows:

– We introduce a signed random surfer. The sign of the surfer is either positive
or negative, which means favorable or adversarial to a node, respectively.

– When the random surfer encounters a negative edge, she changes her sign from
positive to negative, or vice versa. Otherwise, she keeps her sign.

– We introduce balance attenuation factors into the surfer to consider the un-
certainty for friendship of enemies.

There are four cases according to the signs of edges as shown in Figure 2:
1) friend’s friend, 2) friend’s enemy, 3) enemy’s friend, and 4) enemy’s enemy.
Suppose a random surfer starts at node s toward node t. A traditional surfer
just moves along the edges without considering signs as seen in Figure 2(a) since
there is no way to consider the signs on the edges. Hence, classical models cannot
distinguish those edge relationships during her walks. For instance, the model
considers that node s and node t are friends for the second case (friend’s enemy),
even though node t are more likely to be an enemy w.r.t. node s.
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On the contrary, our model in Figure 2(b) has a signed random surfer who
considers those complex edge relationships. If the random surfer starting at node
s with a positive sign encounters a negative edge, she flips her sign from positive
to negative, or vice versa. Our model distinguishes whether node t is the friend
of node s or not according to her sign at node t. As shown in Figure 2(b),
the results for all cases from our model are consistent with structural balance
theory (Cartwright and Harary, 1956). Thus, introducing a signed random surfer
enables our model to discriminate those edge relationships.

Trust or distrust relationships between a specific node s and other nodes are
revealed as the surfer is allowed to move around a signed network starting from
node s. If the positive surfer visits a certain node u many times, then node u
is trustable for node s. On the other hand, if the negative surfer visits node
u many times, then node s is not likely to trust node u. Thus, rankings are
obtained by revealing a degree of trust or distrust between people based on the
signed random walks. Here, we formally define our model on signed networks in
Definition 1. Note that Definition 1 involves the concept of restart which provides
personalized rankings w.r.t. a user.

Definition 1 (Signed Random Walk with Restart). A signed random surfer has
a sign, which is either positive or negative. At the beginning, the surfer starts with
+ sign from a seed node s because she trusts s. Suppose the surfer is currently
at node u, and c is the restart probability of the surfer. Then, she takes one of
the following actions:

–Action 1: Signed Random Walk. The surfer randomly moves to one of
the neighbors from node u with probability 1 − c. The surfer flips her sign if
she encounters a negative edge. Otherwise, she keeps her sign.

–Action 2: Restart. The surfer goes back to the seed node s with probability
c. Her sign should become + at the seed node s because she trusts s. �

We measure two probabilities on each node through Signed Random Walk
with Restart (SRWR) starting from the seed node s. The two probabilities
are represented as follows:

– r+
u = P (u,+): the probability that the positive surfer visits node u after SRWR

from seed node s.

– r−u = P (u,−): the probability that the negative surfer visits node u after
SRWR from seed node s.

Note that r+
u (or r−u ) corresponds to a ratio of how many times the positive

(or negative) surfer visits node u during SRWR. If the positive surfer visits node
u much more than the negative one, then s is likely to trust u. Otherwise, s is
likely to distrust u. In other words, s would consider u as a positive node if r+

u is
greater than r−u . On the contrary, s would treat u as a negative one if r−u is greater
than r+

u . Based on this intuition, we define the relative trustworthiness score
ru = r+

u −r−u between s and u. For all nodes, r+ is a positive score vector and r−

is a negative score vector of SRWR. Then, the trustworthiness score vector for
SRWR is represented as r = r+−r−, the output of Problem 1. Many researchers
have dealt with trust and distrust between nodes through such representation
for trustworthiness (Kunegis et al., 2009; Shahriari and Jalili, 2014; Mishra and
Bhattacharya, 2011; Guha et al., 2004). Especially, the interpretation of the
resulting values from ru = r+

u − r−u is consistent with what Kunegis et al. said
as follows:
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(a) A trustful case (b) A neutral case (c) A distrustful case

Fig. 3. Examples of how to interpret positive and negative scores of our model
between nodes s and u. The bars on node u depict how many the signed surfer
visits that node, indicating positive and negative scores between s and u. (a)
and (c) represent trustful and distrustful cases between those nodes: s is likely
to trust u in (a), and s is likely to distrust u in (c). However, if the those scores
are similar as in (b), it is difficult for node s to decide whether to trust node u
or not. Hence, s is likely to be neutral about node u in (b).

– “The resulting popularity (based on trustworthiness) measure admits both posi-
tive and negative values, and represents a measure of popularity in the network,
with positive edges corresponding to a positive endorsement and negative edges
to negative endorsements. This interpretation is consistent with the semantics
of the ‘friend’ and ‘foe’ relationships (Kunegis et al., 2009).”

Note that from the viewpoint of measure theory, the relative trustworthiness
ru is also an acceptable measure as signed measure (Taylor, 2006) if we consider
r+
u and r−u as non-negative measures (i.e., r+

u ≥ 0 and r−u ≥ 0). We discuss this
in detail in Appendix A.6.

Discussion on positive and negative SRWR scores. We explain how
to interpret positive and negative SRWR scores using an example in Figure 3.
Suppose the signed surfer starts at node s, and performs SRWR to measure
the trustworthiness between nodes s and u. Note that the trustworthiness score
depends on which signed surfer stays at node u more frequently. Then, there
would be three cases depending on the link structure between s and u as shown
in Figure 3. For the case in Figure 3(a), s is likely to trust u since the positive
surfer visits u much more than the negative surfer through paths from s to u
(i.e., the positive score is larger than the negative one at u). For the opposite
case in Figure 3(c), s is likely to distrust u because the negative surfer frequently
visits u. However, if those scores on u are similar as shown in Figure 3(b), then
it is hard for s to determine whether to trust u or not. In this case s is likely
to be neutral about node u. Thus, the trustworthiness score ru of the trustful
case is high (and positive in SRWR), and that of the distrustful case is low (and
negative in SRWR). For the neutral case, the score would be in the middle (and
around zero between −1 and 1 in SRWR).

Connection to balance theory. According to balance theory (Cartwright
and Harary, 1956; Easley and Kleinberg, 2010), Figure 3(a) and 3(c) are balanced
networks because the graphs are divided into two sets of users with mutual
antagonism between the sets. For example, the set of nodes {v1, v2, s} and the
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(a) An example of a positive

probability, r+u (t+ 1)

(b) An example of a negative

probability, r−u (t+ 1)

Fig. 4. Examples of how r+
u and r−u are defined in SRWR.

other set of nodes {w1, w2, u} in Figure 3(c) are connected with negative edges,
and nodes in each set are positively connected. In the balanced networks, each
node has either a positive score or a negative one. Because the signed surfer
changes her sign walking negative edges linking the two groups, the positive
surfer stays and walks only in one group and the negative surfer stays and walks
only in the other group. However, Figure 3(b) is an unbalanced network because
it cannot be divided into two sets that are negatively connected each other.
Hence, positive and negative surfers visits the same node, i.e., each node has
both positive and negative scores. In this case, the trustworthiness score on a
node is determined by which signed surfer visits the node more frequently, which
is represented by the difference between positive and negative scores.

4.1.1. Formulation for Signed Random Walk with Restart

We formulate the probability vectors, r+ and r−, following Signed Random
Walk with Restart. First, we explain how to define r+ and r− using the ex-
ample shown in Figure 4. In the example, we label a (sign, transition probability)
pair on each edge. For instance, the transition probability for the positive edge
from node i to node u is 1/3 because node i has 3 outgoing edges. This edge
is denoted by (+, 1/3). Other pairs of signs and transition probabilities are also
similarly defined. In order that the random surfer has a positive sign on node u
at time t+1, a positive surfer on one of u’s neighbor at time t must move to node
u through a positive edge, or a negative surfer must move through a negative
edge according to the signed random walk action in Definition 1. Considering
the restart action of the surfer with the probability c, r+

u (t+ 1) in Figure 4(a) is
represented as follows:

r+
u (t+ 1) = (1− c)

(
r+
i (t)

3
+

r−j (t)

2
+

r−k (t)

2

)
+ c1(u = s)

where 1(u = s) is 1 if u is the seed node s and 0 otherwise. In Figure 4(b),
r−u (t+ 1) is defined similarly as follows:

r−u (t+ 1) = (1− c)

(
r−i (t)

3
+

r+
j (t)

2
+

r+
k (t)

2

)
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Note that we do not add the restarting score c1(u = s) to r−u (t + 1) in this
case because the surfer’s sign must become positive when she goes back to the
seed node s. The recursive equations of our model are defined as follows:

r+
u = (1− c)

 ∑
v∈
←−
N+

u

r+
v

|
−→
Nv|

+
∑
v∈
←−
N−

u

r−v

|
−→
Nv|

+ c1(u = s)

r−u = (1− c)

 ∑
v∈
←−
N−

u

r+
v

|
−→
Nv|

+
∑
v∈
←−
N+

u

r−v

|
−→
Nv|

 (1)

where
←−
Ni is the set of in-neighbors of node i, and

−→
Ni is the set of out-neighbors

of node i. Superscripts of
←−
Ni or

−→
Ni indicate signs of edges between node i and

its neighbors (e.g.,
←−
N+
i indicates the set of positively connected in-neighbors of

node i). We need to introduce several symbols related to an adjacency matrix A
to vectorize Equation (1).

Definition 2 (Signed adjacency matrix). The signed adjacency matrix A of G
is a matrix such that Auv is positive or negative when there is a positive or a
negative edge from node u to node v respectively, and zero otherwise. �

Definition 3 (Semi-row normalized matrix). Let |A| be the absolute adjacency
matrix of A, and D be the out-degree diagonal matrix of |A| (i.e., Dii =

∑
j |A|ij).

Then semi-row normalized matrix of A is Ã = D−1A. �

Definition 4 (Positive or negative semi-row normalized matrix). The positive

semi-row normalized matrix Ã+ contains only positive values in the semi-row

normalized matrix Ã. The negative semi-row normalized matrix Ã− contains

absolute values of negative elements in Ã. In other words, Ã = Ã+ − Ã−, and

|Ã| = Ã+ + Ã−. �

Based on Definitions 3 and 4, Equation (1) is represented as follows:

r+ = (1− c)
(
Ã>+r+ + Ã>−r−

)
+ cq

r− = (1− c)
(
Ã>−r+ + Ã>+r−

) (2)

where q is a vector whose sth element is 1 and all other elements are 0.

4.1.2. Balance Attenuation Factors

The signed surfer measures positive and negative scores of nodes w.r.t. a seed
node in terms of trust and distrust according to edge relationships as discussed in
Section 4.1. Our model in Definition 1 strongly supports the four cases between
nodes in Figure 2(b) where those cases represent strong balance theory (Heider,
1946; Cartwright and Harary, 1956). However, recent works (Leskovec, Hutten-
locher and Kleinberg, 2010b) have argued that the strong balance theory is un-
satisfactory for fully supporting real-world signed networks, since unbalanced
relationships frequently appear. Thus, this limitation would be naturally inher-
ent in our model. To alleviate this limitation, many researchers have studied
weak balance theory (Davis, 1967; Leskovec et al., 2010b) which generalizes the
strong balance theory by allowing several unbalanced cases such as ”the enemy
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(a) The surfer’s sign at node t is positive
with β (balanced case)

(b) The surfer’s sign at node t is negative
with 1− β (unbalanced case)

(c) The surfer’s sign at node t is negative
with γ (balanced case)

(d) The surfer’s sign at node t is positive
with 1− γ (unbalanced case)

Fig. 5. Examples of balance attenuation factors. (a) and (b) represent the uncer-
tainty for ”the enemy of my enemy is my friend” with probability β, and (c) and
(d) represent the uncertainty for ”the friend of my enemy is my enemy” with
probability γ.

of my enemy is my enemy”. Similarly, we adopt the generalization strategy of
the weak balance theory to make our model flexible on unbalanced networks
through dealing with both balanced and unbalanced cases.

We consider that the relationship of enemies of a seed user is uncertain since
the user cannot believe the information provided by her enemies. We reflect
the uncertainty of the relationship of those enemies into our ranking model by
introducing stochastic parameters, β and γ, called balance attenuation factors.
Note that we assume that the positive and negative relationship of friends of
the seed user is reliable since the user trusts her friends. β is a parameter for
the uncertainty of ”the enemy of my enemy is my friend”, and γ is for ”the
friend of my enemy is my enemy.” We first explain β using the fourth case
(enemy’s enemy) in Figure 2(b). Suppose a surfer with a positive sign starts at
node s toward node t and encounters two consecutive negative edges. Based on
strong balance theory, her sign becomes negative at the intermediate node m and
positive at node t in Figure 5(a). However, some people might think that the
enemy of my enemy is my enemy as shown in Figure 5(b). In this case, her sign
will be negative at nodes m and t. To consider this uncertainty, we introduce a
parameter β so that if the negative surfer at node m encounters a negative edge,
her sign becomes positive with probability β or negative with 1−β at node t. The
other parameter γ is also interpreted similarly to β. When the negative surfer
at node m encounters a positive edge, her sign will be negative with probability
γ or positive with 1− γ at node t as in Figures 5(c) and 5(d). SRWR with the
balance attenuation factors is represented as follows:

r+ = (1− c)
(
Ã>+r+ + βÃ>−r− + (1− γ)Ã>+r−

)
+ cq

r− = (1− c)
(
Ã>−r+ + γÃ>+r− + (1− β)Ã>−r−

) (3)

Discussion on other balance attenuation factors. Note that other pa-
rameters for the uncertainties of ”enemy of friend” and ”friend of friend” could
be easily adopted into our model. However, we do not reflect those parameters
on our model with the following reasons:

– As described in this subsection, we assume that the positive and negative
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relationship of friends of a seed user is reliable and stable. If the seed user’s
friends distrust a user, then she is unlikely to believe the user since the user
trusts her friends.

– Introducing the additional parameters could improve the performance of ap-
plications in signed networks, but it increases the complexity of our model
considering too many uncertain cases. We consider that introducing β and γ
achieves a good trade-off between the model complexity and the performance
of each application as shown in Section 5.

Discussion on the initial sign. In Definition 1, we initialize the signed
surfer as positive when she restarts at a seed node s. One might consider that
our model is easily extendable to probabilistically initializing the signed surfer
as negative for the restart action. Let p denote the probability of being the
positive surfer for the restart action. Then, the extended version is established
by changing cq to (c × p)q in the first equation and adding (c × (1 − p))q into
the second equation of equation (3). However, we do not consider such case with
the following reason:

– If the negative surfer starts at s, the surfer becomes positive at nodes negatively
connected from s and negative at those positively connected from s. This
implies that the surfer recognizes the friends of s as enemies and the enemies
of s as friends. Thus, it is hard to interpret the scores measured by the negative
initial surfer in terms of trustworthiness for s based on balance theory.

4.2. SRWR-Iter: Iterative Algorithm for Signed Random Walk
with Restart

We present an iterative algorithm SRWR-Iter for computing SRWR scores
based on Equation (3). Note that the solution of a linear system with recursive
structure is typically and efficiently obtained via an iterative manner such as
power iteration and Jacobi method (Strang, 2006). We also adopt such itera-
tive strategy to solve the recursive equations in Equation (3). We describe how
SRWR-Iter obtains the trustworthiness SRWR score vector r given a signed
network and a seed node in Algorithms 1 and 2. Moreover, we prove that the
iterative approach in SRWR-Iter converges, and returns a unique solution for
the seed node in Theorem 1 of Section 4.2.1.

Normalization phase (Algorithm 1). Our proposed algorithm first com-
putes the out-degree diagonal matrix D of |A|, which is the absolute adjacency
matrix of A (line 1). Then, the algorithm computes the semi-row normalized

matrix Ã using D (line 2). We split Ã into two matrices: the positive semi-row

normalized matrix (Ã+) and the negative semi-row normalized matrix (Ã−)

(line 3) satisfying Ã = Ã+ − Ã−.
Iteration phase (Algorithm 2). Our algorithm computes the SRWR score

vectors r+ and r− for the seed node s with the balance attenuation factors (β
and γ) in the iteration phase. We set q to s-th unit vector, and initialize r+ to
q and r− to 0 (lines 1 and 2). Our algorithm iteratively computes Equation (3)
(lines 4 and 5). We concatenate r+ and r− vertically (line 6) into h. We then
compute the error δ between h and h′ which is the result in the previous itera-
tion (line 7). We update h into h′ for the next iteration (line 8). The iteration
stops when the error δ is smaller than a threshold ε (line 9). We finally return
the trustworthiness score vector r used for the personalized ranking w.r.t. s by
computing r = r+ − r− (lines 10 and 11).
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Algorithm 1: Normalization phase of SRWR-Iter
Input: signed adjacency matrix: A

Output: positive semi-row normalized matrix: Ã+, and negative semi-row normalized

matrix: Ã−
1: compute out-degree matrix D of |A|, Dii =

∑
j |A|ij

2: compute semi-row normalized matrix, Ã = D−1A.

3: split Ã into Ã+ and Ã− such that Ã = Ã+ − Ã−

4: return Ã+ and Ã−

Algorithm 2: Iteration phase of SRWR-Iter

Input: positive semi-row normalized matrix: Ã+, and negative semi-row normalized matrix:

Ã−, and seed node: s, restart probability: c, balance attenuation factors: β and γ, and
error tolerance: ε.

Output: trustworthiness SRWR score vector: r
1: set the starting vector q from the seed node s
2: set r+ = q, r− = 0, and h′ = [r+; r−]
3: repeat

4: r+ ← (1− c)(Ã>+r+ + βÃ>−r− + (1− γ)Ã>+r−) + cq

5: r− ← (1− c)(Ã>−r+ + γÃ>+r− + (1− β)Ã>−r−)

6: concatenate r+ and r− into h = [r+; r−]>

7: compute the error between h and h′, δ = ‖h− h′‖
8: update h′ ← h for the next iteration
9: until δ < ε

10: compute r = r+ − r−

11: return r

The space and time complexities of Algorithms 1 and 2 are analyzed in
Lemma 5 of Appendix A.3.

4.2.1. Theoretical Analysis of Iterative Algorithm and Signed Random
Walk with Restart

We theoretically analyze the iterative algorithm SRWR-Iter and the properties
of Signed Random Walk with Restart.

Convergence Analysis of SRWR-Iter. We show that the iteration in
Algorithm 2 converges to the solution of a linear system as described in the
following theorem.

Theorem 1 (Convergence of SRWR-Iter). Suppose h = [r+; r−]> and qs =
[q; 0]>. Then the iteration for h in Algorithm 2 converges to the solution h =

c(I− (1− c)B̃>)−1qs where B̃> =

[
Ã>+ βÃ>− + (1− γ)Ã>+
Ã>− (1− β)Ã>− + γÃ>+

]
.

Proof. Equation (3) is represented as follows:[
r+

r−

]
= (1−c)

[
Ã>+ βÃ>− + (1− γ)Ã>+
Ã>− (1− β)Ã>− + γÃ>+

] [
r+

r−

]
+c

[
q
0

]
⇔ h = (1−c)B̃>h+cqs

where B̃> =

[
Ã>+ βÃ>− + (1− γ)Ã>+
Ã>− (1− β)Ã>− + γÃ>+

]
, h =

[
r+

r−

]
, and qs =

[
q
0

]
. Thus, the
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iteration in Algorithm 2 is written as in the following equation:

h(k) = (1− c)B̃>h(k−1) + cqs

=
(

(1− c)B̃>
)2

h(k−2) +
(

(1− c)B̃> + I
)
cqs

= · · ·

=
(

(1− c)B̃>
)k

h(0) +

k−1∑
j=0

(
(1− c)B̃>

)j cqs

(4)

The spectral radius ρ((1 − c)B̃>) = (1 − c) < 1 when 0 < c < 1 since B̃> is a
column stochastic matrix and its largest eigenvalue is 1 (Strang, 2006). Therefore,

limk→∞((1− c)B̃>)kh(0) = 0 and limk→∞ h(k) converges as follows:

lim
k→∞

h(k) = 0 + lim
k→∞

k−1∑
j=0

(
(1− c)B̃>

)j cqs = c
(
I− (1− c)B̃>

)−1

qs.

In the above equation,
∑∞
j=0((1 − c)B̃>)j is a geometric series of the matrix

(1−c)B̃>, and the series converges to (I−(1−c)B̃>)−1 since the spectral radius

of (1 − c)B̃> is less than one. Note that the inverse matrix is a non-negative
matrix whose entries are positive or zero because the matrix is the sum of non-
negative matrices (i.e.,

∑∞
j=0((1−c)B̃>)j). Hence, each entry of h is non-negative

(i.e., hu ≥ 0 for any node u).

Properties of SRWR. We discuss the properties of our ranking model
SRWR to answer the following questions: 1) Is the signed random surfer able
to visit all nodes in a network which is strongly connected? and 2) Does SRWR
work on unsigned networks as well? The first question is answered in Property 1,
and the second one is answered in Property 2.

Property 1. Suppose a signed network is strongly connected. Then, all entries
of r+ + r− are positive (i.e., r+ + r− > 0).

Proof. Let r+ + r− be p. By summing the recursive equations on r+ and r− in
Equation (3), p is represented as follows:

p = (1− c)
(
Ã>+p + Ã>−p

)
+ cq⇔ p = (1− c)|Ã|>p + cq⇔ p = Gp

where |Ã| = Ã+ + Ã− by Definition 3, G = (1 − c)|Ã|> + cq1>, and 1>p =∑
i pi = 1 by Property 3. Note that the graph represented by G is also strongly

connected since the graph of |Ã| has the same topology with the original graph
which is strongly connected. Moreover, the graph represented by G has a self-
loop at the seed node s due to cq1>. Thus, G is irreducible and aperiodic.
Hence, all entries of p = r+ + r− are positive according to Perron-Frobenius
theorem (Langville, Meyer and Fernández, 2008).

Note that r+
u (or r−u ) indicates that the stationary probability of the positive

(or negative) surfer visits node u after performing SRWR starting from a seed
node. According to Property 1, r+

u +r−u for an arbitrary node u is always positive
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if a given signed network is strongly connected. That is, the signed random surfer
is able to visit node u with probability r+

u +r−u which is always greater than zero.
Next, we prove that our model SRWR is a generalized version of RWR work-

ing on both unsigned and signed networks in the following property.

Property 2. The result of SRWR on networks containing only positive edges is
the same as that of RWR.

Proof. Ã+ = Ã and Ã− = 0n×n because the adjacency matrix A only con-
tains positive edges. Also, r− = 0n×1 at the beginning time of Algorithm 2.
Equation (3) is represented as follows:

r+ = (1− c)
(
Ã>r+ + β0n×n × 0n×1 + (1− γ)Ã>0n×1

)
+ cq

r− = (1− c)
(
0n×n × r+ + γÃ>0n×1 + (1− β)0n×n × 0n×1

)
Therefore, r− = 0n×1 and r+ = (1− c)Ã>r+ + cq. The equation of r+ is exactly
the same as that of RWR.

4.3. SRWR-Pre: Preprocessing Algorithm for Signed Random
Walk with Restart

We propose SRWR-Pre, a preprocessing algorithm to quickly compute SRWR
scores. The iterative approach SRWR-Iter in Algorithm 2 requires multiple
matrix-vector multiplications to compute SRWR scores whenever seed node s
changes; thus the iterative method is not fast enough when we require SRWR
scores for any pair of nodes in large-scale signed networks. Our goal is to directly
compute SRWR scores from precomputed intermediate data without iterations.
We exploit the following ideas for our preprocessing method:

– The positive and negative SRWR score vectors r+ and r− are obtained by
solving linear systems (Section 4.3.1).

– The adjacency matrix of real-world graphs is permuted so that it contains
a large but easy-to-invert block diagonal matrix as shown in Figure 6 (Sec-
tion 4.3.2).

– The block elimination approach efficiently solves a linear system on a matrix
if it has an easy-to-invert sub-matrix (Section 4.3.3).

Our preprocessing method comprises two phases: preprocessing phase (Algo-
rithm 3) and query phase (Algorithm 4). The preprocessing phase preprocesses
a given signed adjacency matrix into several sub-matrices required in the query
phase to compute SRWR scores w.r.t. seed node s. Note that the preprocess-
ing phase is performed once, and the query phase is run for each seed node.
The starting vector q in Equation (3) is called an SRWR query, and r+ and r−

are the results corresponding to the query q. The query vector q is determined
by the seed node s, and r+ and r− are distinct for each SRWR query. To ex-
ploit sparsity of graphs, we save all matrices in a sparse matrix format such as
compressed column storage (Duff, Grimes and Lewis, 1989) which stores only
non-zero entries and their locations.

4.3.1. Formulation of Signed Random Walk with Restart as Linear
Systems

We first represent linear systems related to r+ and r−. Let p be the sum of r+

and r− (i.e., p = r+ +r−). Then, p is the solution of the following linear system:
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|H|p = cq⇔ p = c|H|−1
q (5)

where |H| = I − (1 − c)|Ã|> and |Ã| = Ã+ + Ã−. The proof of Equation (5)
is presented in Lemma 1. The linear system for r− is given by the following
equation:

Tr− = (1− c)Ã>−p⇔ r− = (1− c)
(
T−1(Ã>−p)

)
(6)

where T = I−(1−c)(γÃ>+−βÃ>−), and γ and β are balance attenuation factors.
Theorem 2 shows the proof of Equation (6). Based on the aforementioned linear
systems in Equations (5) and (6), r− and r+ for a given seed node s are computed
as follows:

1. Set a query vector q whose s-th element is 1 and all other elements are 0.

2. Solve the linear system in Equation (5) to obtain the solution p.

3. Compute r− by solving the linear system in Equation (6).

4. Compute r+ = p− r−.

Lemma 1. Suppose that p = r++r−, |H| = I−(1−c)|Ã|> and |Ã| = Ã++Ã−.
Then, p is the solution of the following linear system:

|H|p = cq⇔ p = c|H|−1
q

Proof. According to the result in Property 1, the recursive equation for p is
represented as follows:

p = (1− c)|Ã|>p + cq

where |Ã| = Ã+ + Ã− is the row-normalized matrix of |A|. The linear system

for p is represented by moving (1− c)|Ã|>p to the left side as follows:(
I− (1− c)|Ã|>

)
p = cq⇔ |H|p = cq

where |H| is I− (1− c)|Ã|>. Note that |H| is invertible when 0 < c < 1 because

it is strictly diagonally dominant (Van Loan, 1996). Hence, p = c|H|−1
q.

Theorem 2. The SRWR score vectors r+ and r− from Equation (3) are repre-
sented as follows:

r+ = p− r−

r− = (1− c)
(
T−1(Ã>−p)

)
where p = c|H|−1

q, T = I − (1 − c)(γÃ>+ − βÃ>−), and γ and β are balance
attenuation factors which are between 0 and 1 (i.e., 0 < γ, β < 1).

Proof. Note that r− = (1− c)(Ã>−r+ +γÃ>+r−+(1−β)Ã>−r−) by Equation (3),
and r+ = p− r− according to Lemma 1. The equation for r− is represented by
plugging r+ = p− r− as follows:

r− = (1− c)
(
Ã>−p− Ã>−r− + γÃ>+r− + (1− β)Ã>−r−

)
⇔

r− = (1− c)
(
γÃ>+ − βÃ>−

)
r− + (1− c)Ã>−p
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We move (1 − c)(γÃ>+ − βÃ>−)r− to the left side; then, the above equation is
represented as follows:(

I− (1− c)(γÃ>+ − βÃ>−)
)

r− = (1− c)Ã>−p⇔ Tr− = (1− c)Ã>−p

where T is I−(1−c)(γÃ>+−βÃ>−). Note that the matrix T is strictly diagonally
dominant when 0 < c < 1 and 0 < γ, β < 1; thus, T is invertible. Hence,
r− = (1− c)(T−1(Ã>−p)). r+ is obtained by computing r+ = p− r−.

One naive approach (Inversion) for SRWR score vectors r+ and r− based on
the linear systems in Equations (5) and (6) is to precompute the inverse of the
matrices |H| and T. However, this approach is impractical for large-scale graphs
since inverting a matrix requires O(n3) time and O(n2) space where n is the
dimensions of the matrix. Another approach (LU) is to obtain the inverse of LU
factors of |H| and T after reordering the matrices in the order of node degrees
as suggested in (Fujiwara et al., 2012) (i.e., p = c(U−1

p (L−1
p q)); r− = (1 −

c)(U−1
r− (L−1

r− (Ã>−p))) where |H|−1
= U−1

p L−1
p and T−1 = U−1

r− L−1
r− ). Although

LU is more efficient than Inversion in terms of time and space as shown in
Figure 13, LU still has a performance issue due to O(n3) time and O(n2) space
complexities. On the other hand, our preprocessing method SRWR-Pre is faster
and more memory efficient than Inversion and LU as we will see in Section 5.7.

4.3.2. Node Reordering based on Hub-and-Spoke Structure

SRWR-Pre permutes the matrices |H| and T using a reordering technique based
on hub-and-spoke structure. Previous works (Shin et al., 2015) have exploited
the reordering technique to reduce computational cost of graph operations in
real-world graphs. We also adopt the node reordering based on hub-and-spoke
structure to efficiently solve the linear systems in Equations (5) and (6).

The hub-and-spoke structure indicates that most real-world graphs follow
power-law degree distribution with few hubs (very high degree nodes) and ma-
jority of spokes (low degree nodes). The structure has been utilized to concentrate
entries of an adjacency matrix by reordering nodes as shown in Figure 6. Any
reordering method based on the hub-and-spoke structure can be utilized for the
purpose; in this paper, we use SlashBurn (Kang and Faloutsos, 2011; Lim, Kang
and Faloutsos, 2014) as a hub-and-spoke reordering method because it shows the
best performance in concentrating entries of an adjacency matrix (see the details
in Appendix A.1).

We reorder nodes of the signed adjacency matrix A so that reordered matrix
contains a large but easy-to-invert submatrix such as block diagonal matrix as
shown in Figure 6. We then compute |H| = I − (1 − c)(Ã>+ + Ã>−) and T =

I − (1 − c)(γÃ>+ − βÃ>−). Note that |H| and T have the same sparsity pattern

as the reordered adjacency matrix A> except for the diagonal part. Hence, |H|
and T are partitioned as follows:

|H| =
[
|H|11 |H|12
|H|21 |H|22

]
,T =

[
T11 T12

T21 T22

]
. (7)

Let n1 and n2 denote the number of spokes and hubs, respectively (see the
details in Appendix A.1). Then |H|11 and T11 are n1 × n1 matrices, |H|12 and
T12 are n1×n2 matrices, |H|21 and T21 are n2×n1 matrices, and |H|22 and T22

are n2×n2 matrices. The linear systems for |H| and T in Equations (5) and (6)
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(a) Original matrix |H| in the
Wikipedia dataset

(b) Original matrix |H| in the
Slashdot dataset

(c) Original matrix |H| in the
Epinions dataset

(d) Reordered matrix |H| in
the Wikipedia dataset

(e) Reordered matrix |H| in
the Slashdot dataset

(f) Reordered matrix |H| in
the Epinions dataset

Fig. 6. The result of node reordering on each signed network. (a), (b), and (c) are
the original matrix |H| before node reordering in the Wikipedia, the Slashdot,
and the Epinions datasets, respectively. (d), (e) and (f) present |H| reordered
by the hub-and-spoke method. Note that T is also reordered equivalently to |H|
since they have the same sparsity pattern. |H|11 and T11 are block diagonal.

are represented as follows:

|H|p = cq⇔
[
|H|11 |H|12
|H|21 |H|22

] [
p1

p2

]
= c

[
q1

q2

]
(8)

Tr− = (1− c)t⇔
[
T11 T12

T21 T22

] [
r−1
r−2

]
= (1− c)

[
t1

t2

]
(9)

where t = Ã>−p is an n× 1 vector.

4.3.3. Block Elimination for Solving Linear Systems

The solutions of the partitioned linear systems in Equations (8) and (9) are
obtained by the following equations:

p =

[
p1

p2

]
=

[
|H|−1

11 (cq1 − |H|12p2)

c(S−1
|H|(q2 − |H|21(|H|−1

11 (q1))))

]
(10)

r− =

[
r−1
r−2

]
=

[
T−1

11 ((1− c)t1 −T12r
−
2 )

(1− c)(S−1
T (t2 −T21(T−1

11 (t1))))

]
(11)

where S|H| = |H|22 − |H|21|H|
−1
11 |H|12 is the Schur complement of |H|11 and

ST = T22−T21T
−1
11 T12 is the Schur complement of T11. Equations (10) and (11)
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Algorithm 3: Preprocessing phase of SRWR-Pre
Input: signed adjacency matrix: A, restart probability: c, balance attenuation factors:

β and γ

Output: preprocessed matrices from |H| and T, negative semi-row normalized matrix Ã−
1: reorder A using the hub-and-spoke reordering method (Kang and Faloutsos, 2011; Lim

et al., 2014)

2: compute Ã+ and Ã− from A using Algorithm 1

3: compute |H| and T, i.e., |H| = I− (1− c)|Ã|> and T = I− (1− c)(γÃ>+ − βÃ>−)

4: partition |H| into |H|11, |H|12, |H|21, |H|22, and compute |H|−1
11

5: partition T into T11, T12, T21, T22, and compute T−1
11

6: compute the Schur complement of |H|11, i.e., S|H| = |H|22 − |H|21|H|
−1
11 |H|12

7: compute the Schur complement of T11, i.e., ST = T22 −T21T−1
11 T12

8: compute the inverse of LU factors of S|H|, i.e., S−1
|H| = U−1

|H|L
−1
|H|

9: compute the inverse of LU factors of ST, i.e., S−1
T = U−1

T L−1
T

10: return preprocessed matrices from |H|: L−1
|H|, U−1

|H|, |H|
−1
11 , |H|12, and |H|21

preprocessed matrices from T: L−1
T , U−1

T , T−1
11 , T12, and T21

negative semi-row normalized matrix Ã−

are derived by applying block elimination described in Lemma 2 to the parti-
tioned linear systems in Equations (8) and (9), respectively. Note that the sub-
matrices |H|11 and T11 are invertible when 0 < c < 1 and 0 < γ, β < 1 since
they are strictly diagonally dominant. If all matrices in Equations (10) and (11)
are precomputed, then the SRWR score vectors r+ and r− are efficiently and
directly computed from the precomputed matrices.

Lemma 2 (Block Elimination (Boyd and Vandenberghe, 2004)). Suppose a lin-
ear system Ax = b is partitioned as follows:[

A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
where A11 and A22 are square matrices. If the sub-matrix A11 is invertible, then
the solution x is represented as follows:

x =

[
x1

x2

]
=

[
A−1

11 (b1 −A12x2)
S−1(b2 −A21(A−1

11 (b1)))

]
where S = A22 −A21A

−1
11 A12 is the Schur complement of A11. �

Lemma 2 implies that a partitioned linear system is efficiently solved if it
contains an easy-to-invert sub-matrix and the dimension of the Schur comple-
ment is small. Note that inverting H11 and T11 is trivial because they are block
diagonal matrices as shown in Figure 6. Also, the dimension of S|H| and ST is n2

where n2 is the number of hubs and most real-world graphs have a small number
of hubs compared to the number of nodes (see Table 2).

Preprocessing phase (Algorithm 3). Our preprocessing phase precom-
putes the matrices exploited for computing SRWR scores in the query phase.
Our algorithm first reorders nodes of a given signed adjacency matrix A using
the hub-and-spoke reordering method, and performs semi-normalization on A
to obtain Ã+ and Ã− using Algorithm 1 (lines 1∼2). Then our algorithm com-
putes |H| and T, and partitions the matrices as shown in Figure 6 (lines 3∼5).
Our algorithm calculates the inverses of |H|11 and T11, and computes the Schur
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Algorithm 4: Query phase of SRWR-Pre
Input: seed node: s, preprocessed matrices from Algorithm 3
Output: trustworthiness SRWR score vector: r
1: create q whose s-th entry is 1 and the others are 0, and partition q into q1 and q2

2: compute p2 = c(U−1
|H|(L

−1
|H|(q2 − |H|21(|H|−1

11 q1))))

3: compute p1 = |H|−1
11 (cq1 − |H|12p2)

4: create p by concatenating p1 and p2

5: compute t = Ã>−p, and partition it into t1 and t2

6: compute r−2 = (1− c)(U−1
T (L−1

T (t2 −T21(T−1
11 t1))))

7: compute r−1 = T−1
11 ((1− c)t1 −T12r−2 ))

8: create r− by concatenating r−1 and r−2
9: compute r+ = p− r−

10: compute r = r+ − r−

11: return r

complements of |H|11 and T11 (lines 4∼7). When we compute S−1
|H| and S−1

T , we

invert the LU factors of S|H| and ST (lines 8 and 9) because this approach is
faster and more memory efficient than directly inverting S|H| and ST as in (Shin
et al., 2015).

Query phase (Algorithm 4). Our query phase computes SRWR score
vectors r+ and r− for a given seed node s using precomputed matrices from
Algorithm 3. Our algorithm first creates a starting vector q whose entry at the
index of the seed node s is 1 and otherwise 0, and partitions q into q1 and q2

(line 1). We then compute p2 and p1 based on Equation (10), and concatenate the

vectors to obtain p (lines 2∼4). Our algorithm calculates t = Ã>−p and partitions

t into t1 and t2 (line 5). We compute r−2 and r−1 based on Equation (11), and
concatenate the vectors to obtain r− (lines 6∼8). After computing r+ = p− r−

to obtain r+ (line 9), we obtain r = r+ − r− (line 10).
The space and time complexities of Algorithms 3 and 4 are analyzed in Lem-

mas 6∼8 of Appendix A.3.

5. Experiments

We evaluate the effectiveness of SRWR compared to existing ranking meth-
ods. Since there is no ground-truth of personalized rankings for each node in
real-world graphs, we exploit an indirect way by examining the performance
of applications such as link prediction, troll identification, and sign prediction
tasks. We also investigate the performance of our approaches in terms of time
and space. Based on these settings, we aim to answer the following questions
from the experiments:

– Q1. Link prediction (Section 5.2). How effective is our proposed SRWR
model for the link prediction task in signed networks?

– Q2. User preference preservation (Section 5.3). How well does our
model SRWR preserve users’ known preferences in personalized rankings in
signed networks?

– Q3. Troll detection (Section 5.4). How well do personalized rankings of
SRWR capture trolls who are abnormal users compared to those of other
models?

– Q4. Sign prediction (Section 5.5). How helpful are trustworthiness scores
of SRWR for predicting missing signs of edges in signed networks?
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Table 2. Dataset statistics. n is the number of nodes and m is the total number of
edges. m+ is the number of positive edges, m− is the number of negative edges,
and n2 is the number of hubs.

Dataset n m m+ m− n2

Wikipedia1 7,118 103,617 81,285 22,332 1,800
Slashdot2 79,120 515,561 392,316 123,245 10,160
Epinions3 131,828 841,372 717,667 123,705 10,164
1 http://snap.stanford.edu/data/wiki-Vote.html
2 http://dai-labor.de/IRML/datasets
3 http://www.trustlet.org/wiki/Extended Epinions dataset

– Q5. Effects of balance attenuation factors (Section 5.6). How effec-
tive are the balance attenuation factors of SRWR for applications in signed
networks?

– Q6. Efficiency (Section 5.7). How fast and memory efficient is our prepro-
cessing method SRWR-Pre compared to other baselines?

5.1. Experimental Settings

Machines. The experiments on the effectiveness of SRWR in Sections 5.2,
5.4, 5.5 and 5.6 are conducted on a PC with Intel(R) Core(TM) i5-4590 CPU @
3.30GHz and 8GB memory. The experiments on the computational performance
of SRWR-Pre in Section 5.7 are performed on a workstation with a single
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and 256GB memory.

Datasets. The signed networks for our experiments are summarized in Ta-
ble 2. We use all datasets in the link prediction task, the sign prediction task and
the experiments for evaluating the computational performance of the proposed
methods (Sections 5.2, 5.5, and 5.7). We use the Slashdot dataset in the troll
identification task (Section 5.4) since there is a troll list only in the dataset.

Methods. To answer Q1-4, we compare our proposed model with Random
Walk with Restart (RWR) (Haveliwala, 2002), Modified Random Walk with
Restart (M-RWR) (Shahriari and Jalili, 2014), Modified Personalized SALSA
(M-PSALSA) (Ng, Zheng and Jordan, 2001), Personalized Signed spectral Rank
(PSR) (Kunegis et al., 2009), Personalized Negative Rank (PNR) (Kunegis et al.,
2009), Troll-Trust Model (TR-TR) (Wu et al., 2016), TRUST (Guha et al., 2004),
LOGIT (Leskovec et al., 2010a), and GAUC-OPT (Song and Meyer, 2015). Note
that RWR is computed on the absolute adjacency matrix of a signed network.
For Q5, we compare our model SRWR to H-SRWR which is a version of SRWR
without the balance attenuation parameters. For Q6, we compare our preprocess-
ing method SRWR-Pre to other baseline methods Inversion and LU mentioned
in Section 4.3.1 including our iterative method SRWR-Iter.

Parameters. There are three hyper-parameters in our ranking model, i.e.,
restart probability c and balance attenuation parameters β and γ. We set c to
0.15 for all random walk based approaches including our model for simplicity.
To choose β and γ, we perform a grid search over a range 0 ≤ β, γ ≤ 1 by 0.1
(i.e., search (β, γ) in P = {(0.1x, 0.1y)|0 ≤ x, y ≤ 10 and x, y ∈ Z}). To select
proper parameters, we randomly split a dataset into training, validation, and
test sets; and then, we compute personalized rankings based on the training set,
and choose the best parameter combination (β, γ) on the validation set with a
target metric corresponding to each task. We report results on the test set with
the validated parameters. The detailed settings on how to split the dataset and
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(a) GAUC on Epinions (b) GAUC on Slashdot (c) GAUC on Wikipedia

(d) AUC on Epinions (e) AUC on Slashdot (f) AUC on Wikipedia

Fig. 7. The link prediction performance of ranking models in terms of GAUC and
AUC. GAUC indicates how well a model ranks nodes to be positively connected
by a seed node at the top and those to be negatively linked at the bottom. AUC
indicates how many positive nodes are ranked higher than negative ones (see
the details in Appendix A.5.1). Our proposed model SRWR shows the best link
prediction performance in terms of GAUC and AUC for all the datasets.

which metric is used are described in each subsection of the corresponding task.
The validated parameters of SRWR are summarized as follows:

– Link prediction task (Section 5.2): In the Epinions and the Slashdot datasets,
β = 0.5 and γ = 0.8. In the Wikipedia dataset, β = 0.5 and γ = 0.5.

– Troll identification task (Section 5.4): In this task, the Slashdot dataset is used
as mentioned above, and in the dataset, β = 0.1 and γ = 1.0.

– Sign prediction task (Section 5.5): In the Epinions and the Slashdot datasets,
β = 0.5 and γ = 0.8. In the Wikipedia dataset, β = 0.2 and γ = 0.6.

5.2. Link Prediction Task

We evaluate the performance of personalized ranking models on link prediction
in signed networks. The link prediction task is defined as follows: given a signed
network and a seed node s, predict nodes which will be positively or negatively
linked by the seed node in the future. An ideal personalized ranking for this task
should place nodes that the seed node s potentially trusts (i.e., positive links)
at the top, those that s potentially distrusts (i.e., negative links) at bottom,
and other unknown ones in the middle. GAUC (Generalized AUC), proposed by
(Song and Meyer, 2015), has been used to evaluate the quality of personalized
rankings for link prediction in signed networks, and it measures such ideal rank-
ing as 1.0. We also evaluate the ranking quality in terms of AUC indicating
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how many positive nodes are ranked higher than negative ones (see the details
in Appendix A.5.1).

To perform this evaluation, we randomly select 1, 000 seed nodes, and choose
20% edges of positive and negative edges from each seed node to form a validation
set. Then, we randomly select another 1, 000 seed nodes, and choose 20% edges of
positive and negative edges from each seed node as a test set. We remove those
selected edges, and utilize the remaining edges as a training set to compute
personalized rankings. For given a parameter combination, we measure GAUC
on the personalized ranking w.r.t. each seed node in the validation set, and record
the average GAUC over all the seed nodes. Then, we pick the best parameter
combination that provides the highest average GAUC in the validation set. With
the validated parameters, we report the average GAUC over all seed nodes in the
test set. We perform the same procedure for AUC. For nodes directly connected
with a seed node s in the training set, we exclude those nodes from a personalized
ranking list w.r.t. s since we need to recommend links which are unknown to s.

Results. We compare SRWR to other random-walk based models M-RWR,
M-PSALSA, PSR, RWR, and TR-TR on the link prediction task in signed net-
works. We also compare our method to GAUC-OPT which is a matrix factor-
ization based link prediction method approximately maximizing GAUC (Song
and Meyer, 2015). As demonstrated in Figure 7, SRWR presents the best link
prediction performance in terms of GAUC and AUC among the evaluated mod-
els over all the datasets. Compared to RWR which does not consider negative
signs at all, our approach SRWR shows the significant improvement in the link
prediction accuracy. Especially, GAUC of all other methods considering signed
edges is higher than that of RWR as shown in Figure 7. This indicates that it is
important to consider the sign of edges when we compute personalized rankings
for link prediction in signed networks. Furthermore, SRWR outperforms other
random walk based models including GAUC-OPT which is specially designed for
this task, implying our signed surfer based on balance theory effectively estimates
personalized rankings for link prediction in signed networks.

5.3. User Preference Preservation Task

Since a personalized ranking includes known and unknown users for a seed user
(or node), how the ranking is consistent with the seed user’s known preferences
is also considered as one criterion for evaluating the quality of personalized rank-
ings. In signed social networks, we consider that the known preferences of a seed
user s are well preserved in a personalized ranking if positive users for s (i.e.,
they are positively connected by s) are at the top and negative ones are at the
bottom in the ranking. Hence, an ideal ranking for s (excluding s from the rank-
ing) should produce 1.0 GAUC with known positive and negative links from s
in terms of user preference preservation. To evaluate the preference preservation
performance of each method, we report the average GAUC over all test seed
nodes without removing the selected test edges from a training set.

As shown in Table 3, our ranking model SRWR demonstrates the best GAUC
in user preference preservation among all tested methods, indicating that SRWR
almost perfectly preserves users’ known preferences within their personalized
rankings. The main reason for the result is that our signed surfer occasionally
restarts at a seed node s with a positive sign; thus, the positive surfer frequently
visits the positive neighbors of s, and the negative surfer frequently visits the
negative neighbors of s. Hence, the trustworthiness scores on the positive neigh-
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Table 3. The user preference preservation quality of ranking models in terms of
GAUC (Appendix A.5.1). Note that 1.0 GAUC indicates that a method perfectly
preserves a user’s known preferences in its personalized ranking. Our proposed
model SRWR shows the best performance in user preference preservation among
all tested methods.

Datasets
(GAUC)

SRWR
(prop.) M-RWR M-PSALSA PSR RWR TR-TR

GAUC
-OPT

Epinions 1.000 0.999 0.902 0.730 0.708 0.650 0.824

Slashdot 1.000 0.982 0.800 0.728 0.705 0.625 0.708

Wikipedia 0.999 0.944 0.934 0.707 0.702 0.778 0.742

bors are high, and those on the negative neighbors are low compared to those
on nodes that are not connected by s.

One might think a simple approach that arbitrarily places the positive neigh-
bors at the top, the negative ones at the bottom, and the other unknown nodes
at the middle in a ranking list. The simple approach will produce 1.0 GAUC
for user preference preservation; however, this cannot work on link prediction
since we need to predict target nodes among unknown nodes (i.e., they are not
connected to a seed node). On the contrary, our model SRWR is effective for
not only user preference preservation but also signed link prediction as shown in
Table 3 and Figure 7.

5.4. Troll Identification Task

In this section, we investigate the quality of a personalized ranking generated
by SRWR in identifying trolls who behave abnormally or cause normal users
to be irritated. The task is defined as follows: given a signed network and a
normal user, identify trolls using a personalized ranking w.r.t. the user. In signed
networks, we consider that a good personalized ranking of the normal user needs
to capture trolls at the bottom of the ranking since most normal users are likely
to dislike those trolls. Thus, we measure how well a personalized ranking of each
method captures trolls at the bottom of the ranking to examine the quality of
personalized node rankings.

As in the previous work (Kunegis et al., 2009), we also use the enemies of
a user called No-More-Trolls in the Slashdot dataset as trolls. The user is an
administrative account created for the purpose of collecting a troll list (i.e., the
administrator is negatively connected to each troll). There are 96 trolls in the
list. We exclude the edges adjacent to No-More-Trolls from the Slashdot dataset,
and use the remaining edges to estimate a personalized ranking as a training
set. We use the bottom-k of the ranking to search for those trolls. We ran-
domly select 1, 000 seed nodes as a validation set to search for hyper-parameters
required by each method. We pick the best parameter combination that pro-
vides the highest Mean Reciprocal Rank (MRR) in the validation set. Then, for
each user, we search for trolls within the bottom-k ranking, and evaluate how
those trolls are ranked low in the ranking, which is measured by MRR. We also
measure Mean Average Precision (MAP@k), Normalized Discount Cumulated
Gain (NDCG@k), Precision@k, and Recall@k to check the performance of each
method in terms of various metrics (see the details in Appendix A.5.2). Since
there are no user-graded scores for the troll list, we set those scores to 1 for
NDCG.

Results. Our proposed model SRWR significantly outperforms other rank-
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Fig. 8. MRR of SRWR. The measure indicates how trolls are ranked low in a
personalized ranking. The SRWR is the highest MRR among all tested models.

(a) MAP@k (b) NDCG@k (c) Precision@k (d) Recall@k

Fig. 9. The performance of ranking models for the troll identification task through
various measurements: MAP@k (9(a)), NDCG@k (9(b)), Precision@k (9(c)), and
Recall@k (9(d)). SRWR shows the best performance for all the measurements
compared to other competitors.

ing models for the troll identification task as shown in Figures 8 and 9. According
to Figure 8, the rank of a bottom ranked troll from our model is lower than that
of other ranking models because MRR of our model is the highest compared to
other competitors. More trolls are captured within the bottom-k ranking pro-
duced by our proposed model according to MAP@k shown in Figure 9(a). Note
that Figures 9(c) and 9(d) indicate that SRWR achieves higher Precision@k
and Recall@k for capturing trolls than other methods. SRWR provides 4× bet-
ter performance than PNR, the second best one, in terms of Precision@k when
k = 1. Many trolls tend to be ranked low in our personalized ranking because
SRWR achieves better MAP@k and NDCG@k than other ranking models as
presented in Figures 9(a) and 9(b).

Case study. We investigate the top-20 and the bottom-20 of the person-
alized ranking for a user called ”yagu” in Table 4. We list the users in the
bottom-20 ranking in the ascending order of the ranking scores in Table 4. Ac-
cording to the result, more trolls are ranked low in the personalized ranking from
SRWR, indicating that our model is more sensitive in capturing trolls than other
models. Also, the query user is ranked low at the bottom of the ranking from
M-PSALSA while the user is ranked high in the ranking from our model. The
query user should trust himself; thus, the user should be ranked at the top in a
personalized ranking. This implies our model is more desirable than other models
for personalized rankings in signed networks.
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(a) Macro accuracy (b) Micro accuracy

Fig. 10. The performance of SRWR on the sign prediction task in terms of
macro and micro accuracies where the macro accuracy indicates the average
seed-wise accuracy, and the micro accuracy indicates the ratio of the number of
correct predictions to the total test edges. While the micro accuracy of SRWR
is the second best, the macro accuracy of SRWR is the best compared to its
competitors.

5.5. Sign Prediction Task

We evaluate ranking scores produced by each ranking model rather than the
order between nodes. Note that a ranking score between a seed node s and a
target node t is based on the trustworthiness between those nodes. Hence, it is
also important to examine how well those ranking scores reflect trust relation-
ships between nodes. We measure the quality of those ranking scores exploiting
the sign prediction task which is defined as follows: given a signed network and
a seed node s where signs of edges connected from s are missed, predict those
signs using the personalized ranking scores of each method with respect to the
seed node s.

To construct a validation set, we randomly select 1, 000 seed nodes, and
choose 20% edges of positive and negative links from each seed node. We also
randomly select another 1, 000 seed nodes, and choose 20% positive and negative
edges from each seed node to form a test set. Then, we remove each selected edge
(s → t), and predict the edge’s sign based on personalized ranking scores w.r.t.
node s in the graph represented by the remaining edges. Our ranking score vector
is r = r+ − r− whose values range from −1 to 1. If rt is greater than or equal
to 0, then we predict the sign of the edge (s → t) as positive. Otherwise, it
is considered as negative. We pick the best parameter combination having the
highest micro accuracy (see the below) in the validation set. With the validated
parameters, we measure the following prediction accuracies of a test set, macro
and micro accuracies which are defined as follows:

macro accuracy =
1

nQ

nQ∑
i=1

accuracy(i)

micro accuracy =
# of correct predictions

# of total test edges

where nQ is the number of test seed nodes, and accuracy(i) is the seed-wise
accuracy of i-th test seed node (i.e., the ratio of the number of correct predictions
to the number of test edges on i-th seed node).
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Table 5. The difference between SRWR and LOGIT in terms of macro accura-
cies of high and low degree groups. The overall group is the union of the high
and low degree groups. We measure the average of seed-wise accuracies for each
group (i.e., the macro accuracy of the group) and the standard deviation between
accuracies of those groups. LOGIT tends to predict a seed node’s test edges in
the high degree group better than SRWR, while SRWR predicts better those in
the low degree group compared to LOGIT. Also, the result on the standard de-
viation indicates that the disparity of SRWR between accuracies of those groups
is smaller than that of LOGIT.

Datasets Methods
Overall
Group

High Degree

Group

Low Degree

Group
Standard
Deviation

Epinions
SRWR 0.8696 0.8876 0.8651 0.0159
LOGIT 0.7762 0.8760 0.7510 0.0883

Slashdot
SRWR 0.7128 0.7133 0.7127 0.0004
LOGIT 0.6827 0.7943 0.6546 0.0987

Wikipedia
SRWR 0.8004 0.8556 0.7865 0.0489
LOGIT 0.7937 0.8671 0.7752 0.0650

Results. We compare the performance of SRWR to that of other random
walk based ranking models M-RWR, M-PSALSA, TR-TR, and PSR on the
sign prediction task. We also compare our model SRWR to TRUST (Guha
et al., 2004) and LOGIT (Leskovec et al., 2010a) which are specially designed
for predicting signs between two arbitrary nodes in signed networks. As shown in
Figure 10(a), SRWR shows the best macro accuracy among all tested methods.
Although SRWR obtains higher micro accuracy than LOGIT in the Epinions
dataset, the micro accuracy of LOGIT is better than that of SRWR in other
datasets as shown in Figure 10(b).

Another observation is that LOGIT has a large gap between macro and mi-
cro accuracies while SRWR has a small gap as shown in Figure 10. A large gap
implies that on average, the deviation between micro accuracy and seed-wise ac-
curacy (i.e., accuracy(i)) is large, i.e., accuracy(i) for i-th test seed node is likely
to deviate substantially from the micro accuracy. To analyze such deviation, we
look into seed-wise accuracies in terms of node degrees. Since there are a few
high degree nodes and a lot of low degree nodes in real-world graphs according
to power-law degree distribution (Barabási and Albert, 1999), we split test seed
nodes into two groups as follows: high (top-20%) and low (bottom-80%) groups
in the order of out-degrees of test seed nodes. Then, we measure the average
of seed-wise accuracies for each group (i.e., the macro accuracy of the group)
and the standard deviation between the accuracies of those groups. According
to Table 5, LOGIT tends to better predict test edges of a seed node in the high
degree group than those in the low degree one. In particular, on the Epinions and
the Slashdot datasets, the macro accuracy of LOGIT in the low degree group is
rather lower than that of LOGIT in the high degree group. These results imply
that LOGIT is biased toward predicting test edges from a high degree seed node.
Note that the number of test edges from a high degree node is larger than that of
test edges from a low degree node since 20% test edges are randomly extracted
from each selected test node. Thus, the total number of correct predictions from
LOGIT is large (i.e., the micro accuracy becomes high). However, the seed-wise
accuracies of LOGIT are low in the low degree group (i.e., the macro accuracy
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(a) Epinions (b) Slashdot (c) Wikipedia

Fig. 11. Accuracy maps of SRWR according to β and γ where each color in-
dicates a degree of accuracy. The Epinions and the Slashdot datasets present
similar tendencies while the Wikipedia dataset shows a different result from
those of the two datasets.

becomes low) as shown in Table 5, thereby increasing the gap of LOGIT between
micro and macro accuracies.

On the contrary, the gap of SRWR between micro and macro accuracies are
relatively smaller than that of LOGIT as shown in Figure 10, along with the small
standard deviation of SRWR as shown in Table 5. Note that SRWR outperforms
LOGIT in the low degree group over all the datasets as shown in Table 5. That
is why the macro accuracy of SRWR is higher than that of LOGIT for the total
test seed nodes as shown in Figure 10. SRWR also shows a satisfactory perfor-
mance in the high degree group, especially on the Epinions dataset, although the
performance of SRWR is not better than that of LOGIT on the Slashdot and the
Wikipedia datasets as shown in Table 5. Thus the standard deviation of SRWR
between those groups is smaller than that of LOGIT. These experimental results
indicate that SRWR is competitive enough to be comparable to other models
such as LOGIT in the sign prediction task.

Note that LOGIT is a graph feature based method which exploits local graph
features, within 1 hop from seed and target nodes, such as node degrees, common
neighbors, and local wedges for predicting the sign between the seed and target
nodes. A high degree node is likely to have plentiful features, since the high
degree node has many connections to other nodes. A low degree node would
not have such local features enough due to less connections; hence, LOGIT has
a limitation on increasing the predictive performance for test edges from the
low degree node based only on local graph features. On the other hand, SRWR’s
inference is based on the information more than 1 hop from the seed node because
the signed random surfer visits the target node via various length of paths from
the seed node to the target node. That is why SRWR works well on predicting
test edges of low degree nodes compared to LOGIT.

Balance attenuation factors. We adjust the balance attenuation factors
of SRWR, and evaluate the sign prediction task in terms of micro accuracy to
examine how well balance theory explains signed networks. In this experiment, we
use the top-100 highest degree nodes as a test set for each network. The Epinions
and the Slashdot datasets show similar results where larger values of β and γ
achieve high accuracy as shown in Figures 11(a) and 11(b). Unlike these two
datasets, the accuracy is high when β is small in the Wikipedia network as shown
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(a) GAUC of the link
prediction task

(b) MRR of the troll
identification task

(c) Micro Accuracy of the sign
prediction task

Fig. 12. Effect of the balance attenuation factors of SRWR. The performance
of SRWR is better than that of H-SRWR (i.e., SRWR without using balance
attenuation factors) in terms of the link prediction, the troll identification, and
the sign prediction tasks.

in Figure 11(c). This implies that ”an enemy of my enemy is my friend” would
not be correct in the network, which means balance theory does not apply well
to the Wikipedia dataset. The reason is that the Wikipedia network represents
votes between users to elect administrators; thus, the dataset is different from
the Epinions and the Slashdot networks which are general social networks. Note
that the validated balance attenuation factors for the sign prediction task in
Section 5.1 are consistent with the tendency demonstrated in Figure 11. Another
observation is that the ideal balance theory does not apply to real-world signed
networks because the accuracy is not the best over all datasets when β = 1 and
γ = 1 (i.e., the ideal balance theory).

5.6. Effectiveness of Balance Attenuation Factors

We examine the effects of the balance attenuation factors of SRWR on the
performance of the link prediction, the troll identification, and the sign prediction
tasks. In this experiment, we use H-SRWR (β = 1 and γ = 1) and SRWR
with validated balance factors for each dataset as mentioned in Section 5.1. H-
SRWR indicates that we compute SRWR scores using Equation (2) which does
not adopt balance attenuation factors. We measure GAUC for link prediction,
MRR for troll prediction, and micro accuracy for sign prediction to compare
SRWR and H-SRWR.

Figure 12 indicates that introducing balance attenuation factors is helpful for
improving the performance of each application in signed networks. As shown in
Figure 12(a), SRWR obtains higher GAUC than H-SRWR in the link predic-
tion task. Also, Figure 12(b) presents that SRWR achieves better MRR than
H-SRWR on the troll identification task. Moreover, the accuracy of SRWR is
higher than that of H-SRWR over all datasets for the sign prediction task as
presented in Figure 12(c). Although introducing balance attenuation factors in-
crease the complexity of our model and demand an additional step for searching
those factors, it makes our model flexible so that SRWR resolves the weakness
inherent from the strong balance theory as discussed in Section 4.1.2 through
adjusting those factors, and improves the performance of each application in
signed social networks.
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(a) Preprocessing time (b) Memory space for
preprocessed data

(c) Query time

Fig. 13. Performance of SRWR-Pre: (a) and (b) show the comparison of the
preprocessing time and the memory space for preprocessed data among prepro-
cessing methods; (c) compares the query time among all tested methods. SRWR-
Pre presents the best performance compared to other preprocessing methods in
terms of preprocessing time and memory efficiency. SRWR-Pre also computes
SRWR scores more quickly than SRWR-Iter and the baseline methods.

Table 6. Total number of non-zeros (nnzt) in precomputed matrices for each
preprocessing method. Our method SRWR-Pre generates less non-zeros in pre-
computed matrices than other preprocessing methods.

Dataset
A: nnzt in

SRWR-Pre
B: nnzt in

LU
C: nnzt in
Inversion

Ratio
B/A

Ratio
C/A

Wikipedia 3,207,758 11,257,644 23,928,232 3.51 7.46
Slashdot 119,580,272 1,032,276,955 4,817,461,830 8.63 40.29
Epinions 165,006,379 1,825,755,902 11,755,245,476 11.06 71.24

5.7. Performance of SRWR-Pre

We investigate the performance of our preprocessing method SRWR-Pre in
terms of preprocessing time, memory space for precomputed data, and query
time. We compare SRWR-Pre to other baseline preprocessing methods Inver-
sion and LU as well as our iterative method SRWR-Iter. Preprocessing and
query time are measured in wall-clock time, and we measure the average query
time for 1, 000 random seed nodes. We set β = 0.5, γ = 0.5, c = 0.05 for all
tested methods. In SRWR-Pre, we set the hub selection ratio t = 0.001 for
the hub-and-spoke reordering method to make the number of hubs n2 small
enough as in (Shin et al., 2015) We also measure how much memory space each
preprocessing method needs for the precomputed matrices to compare memory
efficiency. We omit bars for SRWR-Iter in Figures 13(a) and 13(b) because
SRWR-Iter does not involve a heavy preprocessing phase (i.e., the time cost
for the normalization phase of SRWR-Iter in Algorithm 1 is trivial, and the
memory usage of SRWR-Iter is equal to that of the input graph).

Figures 13(a) and 13(b) show that SRWR-Pre provides better performance
than LU and Inversion in terms of preprocessing time and memory space for
preprocessed data. SRWR-Pre is up to 4.5× faster than the second best pre-
processing method LU in terms of preprocessing time. Also, SRWR-Pre requires
up to 11× less memory space than LU. Especially, our method SRWR-Pre uses



32 J. Jung et al

2.6GB memory for the precomputed data in the Epinions dataset while LU and
Inversion require 28GB and 180GB memory, respectively. These results imply
that SRWR-Pre is fast and memory-efficient compared to other preprocessing
methods. SRWR-Pre also shows the fastest query speed among other competi-
tors including our iterative method SRWR-Iter as presented in Figure 13(c).
SRWR-Pre is up to 14× faster than SRWR-Iter, and up to 15× faster than
the second best preprocessing method LU in the Epinions dataset. Note that
SRWR-Pre computes SRWR scores for a given seed node in less than 0.3 sec-
ond over all signed networks. Inversion is the slowest among the tested methods
over all datasets. The main reason is that Inversion produces a very large number
of non-zeros in precomputed matrices (e.g., Inversion produces about 11 billion
non-zeros in the Epinions dataset as presented in Table 6). These results indi-
cate that SRWR-Pre is appropriate to serve given queries in real-time on the
datasets with low memory usage compared to other methods.

Discussion. In this work, we propose two methods for SRWR: SRWR-
Iter and SRWR-Pre which are iterative and preprocessing methods comput-
ing SRWR scores, respectively. SRWR-Iter does not require heavy precom-
puted data to compute SRWR scores. However, SRWR-Iter shows slow query
speed as presented in Figure 13(c) because SRWR-Iter should perform matrix
vector multiplications many times for a given seed node. On the other hand,
SRWR-Pre is faster up to 14× than SRWR-Iter in term of query speed since
SRWR-Pre directly computes SRWR scores from precomputed data. However,
in SRWR-Pre, the values of the parameters c, β, and γ of SRWR are fixed
through the preprocessing phase (Algorithm 3); thus, SRWR-Pre cannot change
the parameters in the query phase (Algorithm 4). To obtain SRWR scores with
the different values of the parameters, we need to perform the preprocessing
phase with the parameters again. On the contrary, SRWR-Iter easily handles
the change of the parameters in the query phase (Algorithm 2) without addi-
tional operations such as preprocessing. One appropriate usage for our methods
is that a user uses SRWR-Iter to find proper parameters for a specific appli-
cation; and then, the user exploits SRWR-Pre with the discovered parameters
to accelerate the query speed in the application.

6. Conclusion
We propose Signed Random Walk with Restart, a novel model which

provides personalized trust or distrust rankings in signed networks. In our model,
we introduce a signed random surfer so that she considers negative edges by
changing her sign for surfing on signed networks. Consequently, our model pro-
vides personalized trust or distrust rankings reflecting signed edges. Our model is
a generalized version of Random Walk with Restart working on both signed and
unsigned networks. We also devise SRWR-Iter and SRWR-Pre, iterative and
preprocessing methods to compute SRWR scores, respectively. We experimen-
tally show that SRWR achieves the best accuracy for link prediction, predicts
trolls 4× more accurately, and shows a satisfactory performance for inferring
missing signs of edges compared to other methods. SRWR-Pre preprocesses a
signed network up to 4.5× faster, and requires 11× less memory space than other
preprocessing methods; SRWR-Pre computes SRWR scores up to 14× faster
than other methods. Future research directions include developing a learning al-
gorithm which automatically learns the balance attenuation factors of our model
from a given input graph.



Random Walk Based Ranking in Signed Social Networks: Model and Algorithms 33

Acknowledgments. This work was supported by Institute of Information &
Communications Technology Planning & Evaluation(IITP) grant funded by the
Korea government(MSIT) [2013-0-00179, Development of Core Technology for
Context-aware Deep-Symbolic Hybrid Learning and Construction of Language
Resources]. The Institute of Engineering Research at Seoul National University
provided research facilities for this work. The ICT at Seoul National University
provides research facilities for this study.

References

Backstrom, L. and Leskovec, J. (2011), Supervised random walks: predicting and recommending
links in social networks, in ‘Proceedings of the fourth ACM international conference on Web
search and data mining’, ACM, pp. 635–644.

Bahmani, B., Chowdhury, A. and Goel, A. (2010), ‘Fast incremental and personalized pager-
ank’, Proceedings of the VLDB Endowment 4(3), 173–184.

Barabási, A.-L. and Albert, R. (1999), ‘Emergence of scaling in random networks’, science
286(5439), 509–512.

Boyd, S. and Vandenberghe, L. (2004), Convex optimization, Cambridge university press.
Cartwright, D. and Harary, F. (1956), ‘Structural balance: a generalization of heider’s theory.’,

Psychological review 63(5), 277.
Davis, J. A. (1967), ‘Clustering and structural balance in graphs’, Human relations 20(2), 181–

187.
Duff, I. S., Grimes, R. G. and Lewis, J. G. (1989), ‘Sparse matrix test problems’, ACM Trans-

actions on Mathematical Software (TOMS) 15(1), 1–14.
Easley, D. and Kleinberg, J. (2010), Networks, crowds, and markets: Reasoning about a highly

connected world, Cambridge University Press.
Fujiwara, Y., Nakatsuji, M., Onizuka, M. and Kitsuregawa, M. (2012), ‘Fast and exact top-k

search for random walk with restart’, Proceedings of the VLDB Endowment 5(5), 442–453.
Gleich, D. F. and Seshadhri, C. (2012), Vertex neighborhoods, low conductance cuts, and good

seeds for local community methods, in ‘Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining’, ACM, pp. 597–605.

Guha, R., Kumar, R., Raghavan, P. and Tomkins, A. (2004), Propagation of trust and distrust,
in ‘Proceedings of the 13th international conference on World Wide Web’, ACM, pp. 403–
412.

Haveliwala, T. H. (2002), Topic-sensitive pagerank, in ‘Proceedings of the 11th international
conference on World Wide Web’, ACM, pp. 517–526.

Heider, F. (1946), ‘Attitudes and cognitive organization’, The Journal of psychology 21(1), 107–
112.

Jin, W., Jung, J. and Kang, U. (2019), ‘Supervised and extended restart in random walks for
ranking and link prediction in networks’, PloS one 14(3), e0213857.

Jung, J., Jin, W., Sael, L. and Kang, U. (2016), Personalized ranking in signed networks using
signed random walk with restart, in ‘IEEE 16th International Conference on Data Mining,
ICDM 2016, December 12-15, 2016, Barcelona, Spain’, pp. 973–978.
URL: http://dx.doi.org/10.1109/ICDM.2016.0122

Jung, J., Park, N., Sael, L. and Kang, U. (2017), Bepi: Fast and memory-efficient method
for billion-scale random walk with restart, in ‘Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May
14-19, 2017’, pp. 789–804.

Jung, J., Shin, K., Sael, L. and Kang, U. (2016), ‘Random walk with restart on large graphs
using block elimination’, ACM Trans. Database Syst. 41(2), 12.
URL: http://doi.acm.org/10.1145/2901736

Kang, U. and Faloutsos, C. (2011), Beyond ‘caveman communities’: Hubs and spokes for graph
compression and mining, in ‘ICDM’.

Kang, U., Tong, H. and Sun, J. (2012), Fast random walk graph kernel, in ‘Proceedings of the
Twelfth SIAM International Conference on Data Mining, Anaheim, California, USA, April
26-28, 2012.’, pp. 828–838.

Kleinberg, J. M. (1999a), ‘Authoritative sources in a hyperlinked environment’, Journal of the
ACM (JACM) 46(5), 604–632.

Kleinberg, J. M. (1999b), ‘Hubs, authorities, and communities’, ACM Computing Surveys
(CSUR) 31(4es), 5.



34 J. Jung et al

Kunegis, J., Lommatzsch, A. and Bauckhage, C. (2009), The slashdot zoo: mining a social
network with negative edges, in ‘Proceedings of the 18th international conference on World
wide web’, ACM, pp. 741–750.

Langville, A. N., Meyer, C. D. and Fernández, P. (2008), ‘Google’s pagerank and beyond: the
science of search engine rankings’, The Mathematical Intelligencer 30(1), 68–69.

Lempel, R. and Moran, S. (2001), ‘Salsa: the stochastic approach for link-structure analysis’,
ACM Transactions on Information Systems (TOIS) 19(2), 131–160.

Leskovec, J., Huttenlocher, D. and Kleinberg, J. (2010a), Predicting positive and negative links
in online social networks, in ‘Proceedings of the 19th international conference on World
wide web’, ACM, pp. 641–650.

Leskovec, J., Huttenlocher, D. and Kleinberg, J. (2010b), Signed networks in social media, in
‘Proceedings of the SIGCHI conference on human factors in computing systems’, ACM,
pp. 1361–1370.

Lim, Y., Kang, U. and Faloutsos, C. (2014), ‘Slashburn: Graph compression and mining beyond
caveman communities’, IEEE Trans. Knowl. Data Eng. 26(12), 3077–3089.
URL: http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2320716

Mishra, A. and Bhattacharya, A. (2011), Finding the bias and prestige of nodes in networks
based on trust scores, in ‘Proceedings of the 20th international conference on World wide
web’, ACM, pp. 567–576.

Ng, A. Y., Zheng, A. X. and Jordan, M. I. (2001), Stable algorithms for link analysis, in
‘Proceedings of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval’, ACM, pp. 258–266.

Page, L., Brin, S., Motwani, R. and Winograd, T. (1999), ‘The pagerank citation ranking:
bringing order to the web.’.

Saad, Y. (2003), Iterative methods for sparse linear systems, Vol. 82, siam.
Shahriari, M. and Jalili, M. (2014), ‘Ranking nodes in signed social networks’, Social Network

Analysis and Mining 4(1), 1–12.
Shin, K., Jung, J., Lee, S. and Kang, U. (2015), Bear: Block elimination approach for random

walk with restart on large graphs, in ‘Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data’, ACM, pp. 1571–1585.

Song, D. and Meyer, D. A. (2015), Recommending positive links in signed social networks by
optimizing a generalized auc., in ‘AAAI’, pp. 290–296.

Strang, G. (2006), Linear Algebra and Its Applications, Thomson, Brooks/Cole.
URL: https://books.google.ie/books?id=q9CaAAAACAAJ

Szell, M., Lambiotte, R. and Thurner, S. (2010), ‘Multirelational organization of large-scale
social networks in an online world’, Proceedings of the National Academy of Sciences
107(31), 13636–13641.

Taylor, M. E. (2006), Measure theory and integration, American Mathematical Soc.
Tong, H., Faloutsos, C., Gallagher, B. and Eliassi-Rad, T. (2007), Fast best-effort pattern

matching in large attributed graphs, in ‘Proceedings of the 13th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining’, ACM, pp. 737–746.

Tong, H., Faloutsos, C. and Pan, J.-Y. (2008), ‘Random walk with restart: fast solutions and
applications’, Knowledge and Information Systems 14(3), 327–346.

Van Loan, C. F. (1996), ‘Matrix computations (johns hopkins studies in mathematical sci-
ences)’.

Wu, Z., Aggarwal, C. C. and Sun, J. (2016), The troll-trust model for ranking in signed
networks, in ‘Proceedings of the Ninth ACM International Conference on Web Search and
Data Mining’, ACM, pp. 447–456.

Yang, B., Cheung, W. K. and Liu, J. (2007), ‘Community mining from signed social networks’,
Knowledge and Data Engineering, IEEE Transactions on 19(10), 1333–1348.

Yoon, M., Jin, W. and Kang, U. (2018), Fast and accurate random walk with restart on
dynamic graphs with guarantees, in ‘Proceedings of the 2018 World Wide Web Conference
on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018’, pp. 409–418.

Yoon, M., Jung, J. and Kang, U. (2018), Tpa: Fast, scalable, and accurate method for ap-
proximate random walk with restart on billion scale graphs, in ‘34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018’.



Random Walk Based Ranking in Signed Social Networks: Model and Algorithms 35

(a) Step 1 (b) Step 2 (c) Step 3

Fig. 14. Node reordering based on hub-and-spoke method when dtne = 1 where
dtne indicates the number of selected hubs at each step, and t is the hub selection
ratio (0 < t < 1). Red nodes are hubs; blue nodes are spokes that belong to
the disconnected components; green colored are nodes that belong to the giant
connected component. At Step 1 in (a), the method disconnects a hub node, and
assigns node ids as shown in (b). The hub node gets the highest id (14), the spoke
nodes get the lowest ids (1 ∼ 7), and the GCC gets the middle ids (8 ∼ 13). The
next iteration starts on the GCC in (b), and the node ids are assigned as in (c)

A. Appendix

A.1. Details of the Hub-and-Spoke Reordering Method

SlashBurn (Kang and Faloutsos, 2011; Lim et al., 2014) is a node reordering
algorithm which concentrates non-zero entries of the adjacency matrix of a given
graph based on the hub-and-spoke structure. Let n be the number of nodes in
a graph, and t be the hub selection ratio whose range is between 0 and 1 where
dtne indicates the number of nodes selected by SlashBurn as hubs. For each
iteration, SlashBurn disconnects dtne high degree nodes, called hub nodes, from
the graph; then the graph is split into the giant connected component (GCC)
and the disconnected components. The nodes in the disconnected components
are called spokes, and each disconnected component forms a block in |H|11 (or
T11) in Figure 6. Then, SlashBurn reorders nodes such that the hub nodes get
the highest ids, the spokes get the lowest ids, and the nodes in the GCC get
the ids in the middle. SlashBurn repeats this procedure on the GCC recursively
until the size of GCC becomes smaller than dtne. After SlashBurn is done, the
reordered adjacency matrix contains a large and sparse block diagonal matrix
in the upper left area, as shown in Figure 6. Figure 14 depicts the procedure of
SlashBurn when dtne = 1.

A.2. Properties and Lemmas

A.2.1. Sum of Positive and Negative SRWR Scores

Property 3. Consider the recursive equation p = (1 − c)|Ã|>p + cq where

p = r+ + r− and |Ã|> is a column stochastic matrix. Then 1>p =
∑
i pi = 1.

Proof. By multiplying both sides by 1>, the equation is represented as follows:

p = (1− c)|Ã|>p + cq⇔ 1>p = (1− c)1>|Ã|>p + c1>q

Note that 1>|Ã|> = (|Ã|1)>, and |Ã| is a row stochastic matrix; thus, (|Ã|1)> =
1>. Hence, the above equation is represented as follows:

1>p = (1− c)1>|Ã|>p + c1>q⇔ 1>p = (1− c)1>p + c⇔ 1>p = 1
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A.2.2. Analysis on Number of Iterations of SRWR-Iter

Lemma 3. Suppose h = [r+; r−]>, and h(k) is the result of k-th iteration in
SRWR-Iter. Let δ(k) denote the error ‖h(k)−h(k−1)‖1. Then δ(k) ≤ 2(1− c)k,
and the estimated number T of iterations for convergence is log1−c

ε
2 where ε is

an error tolerance, and c is the restart probability.

Proof. According to Equation (4), δ(k) is represented as follows:

δ(k) = ‖h(k) − h(k−1)‖1 = (1− c)‖B̃>(h(k−1) − h(k−2))‖1
≤ (1− c)‖B̃>‖1‖h(k−1) − h(k−2)‖1
= (1− c)‖h(k−1) − h(k−2)‖1 = (1− c)δ(k−1)

Note that ‖B̃>‖1 = 1 since B̃> is column stochastic as described in Theorem 1.
Hence, δ(k) ≤ (1 − c)δ(k−2) ≤ · · · ≤ (1 − c)kδ(1). Since δ(1) = ‖h(1) − h(0)‖1 ≤
‖h(1)‖1 + ‖h(0)‖1 = 2, δ(k) ≤ 2(1− c)k. Note that when δ(k) ≤ ε, the iteration of
SRWR-Iter is terminated. Thus, for k ≤ log1−c

ε
2 , the iteration is terminated,

and the number T of iterations for convergence is estimated at log1−c
ε
2 .

A.2.3. Time Complexity of Sparse Matrix Multiplication

Lemma 4 (Sparse Matrix Multiplication (Saad, 2003)). Suppose that A and B
are p× q and q × r sparse matrices, respectively, and A has nnz(A) non-zeros.
Calculating C = AB using sparse matrix multiplication requires O(nnz(A)r).

A.3. Complexity Analysis of Proposed Methods for SRWR

We analyze the complexity of our proposed methods SRWR-Iter and SRWR-
Pre in terms of time and space. The space and time complexities of SRWR-Iter
are presented in Lemma 5, and those of SRWR-Pre are in Lemmas 6, 7, and 8,
respectively.

A.3.1. Space and Time Complexities of SRWR-Iter

Lemma 5 (Space and Time Complexities of SRWR-Iter). Let n and m
denote the number of nodes and edges of a signed network, respectively. Then the
space complexity of Algorithm 2 is O(n+m). The time complexity of Algorithm 2
is O(T (n + m)) where the number T of iterations is log1−c

ε
2 , c is the restart

probability, and ε is an error tolerance.

Proof. The space complexity for Ã+ and Ã− is O(m) if we exploit a sparse
matrix format such as compressed column storage to save the matrices. We
need O(n) for SRWR score vectors r+ and r−. Thus, the space complexity is
O(n + m). One iteration in Algorithm 2 takes O(n + m) time due to sparse
matrix vector multiplications and vector additions where the time complexity
of a sparse matrix vector multiplication is linear to the number of non-zeros of
a matrix (Duff et al., 1989). Hence, the total time complexity is O(T (n + m))
where the number T of iterations is log1−c

ε
2 which is proved in Lemma 3.

A.3.2. Space and Time Complexities of SRWR-Pre

Lemma 6 (Space Complexity of SRWR-Pre). The space complexity of the
preprocessed matrices from SRWR-Pre is O(n2

2 + m) where n2 is the number
of hubs and m is the number of edges in the graph.



Random Walk Based Ranking in Signed Social Networks: Model and Algorithms 37

Table 7. Space complexity of each preprocessed matrix from Algorithm 3. Note
that m is the number of edges of the input graph; n2 is the number of hubs, and
n1i is the number of nodes in i-th block where b blocks in |H|11 (or T11) are
identified by the hub-and-spoke reordering method.

Matrix Space Complexity

Ã−, |H|12, |H|21, T12, and T21 O(m)

|H|−1
11 , and T−1

11 O(
∑b
i=1 n

2
1i) = O(m)

L−1
|H|, U−1

|H|, L−1
T , and U−1

T O(n2
2)

Proof. The space complexity of each preprocessed matrix is summarized in Ta-
ble 7. Ã−, |H|12, |H|21, T12, and T21 are sparse matrices, and constructed from
the input graph; hence, the space complexity is bounded by the number of edges
(i.e., O(m)). Note that |H| and T have the same sparsity pattern; hence, |H|11
and T11 identified by (Kang and Faloutsos, 2011; Lim et al., 2014) have the

same b blocks. The i-th block in |H|−1
11 (or T−1

11 ) contains n2
1i non-zeros; there-

fore, |H|−1
11 and T−1

11 require O(
∑b
i=1 n

2
1i) space, respectively. Since the dimension

of L−1
|H|, U−1

|H|, L−1
T , and U−1

T is n2, they require O(n2
2) space.

Note that the blocks in |H|11 (or T11) are discovered by the reordering
method (Kang and Faloutsos, 2011; Lim et al., 2014) as briefly described in Ap-

pendix A.1. In real-world graphs,
∑b
i=1 n

2
1i can be bounded by O(m) as shown

in (Shin et al., 2015). Hence, we assume that the space complexity of |H|−1
11 and

T−1
11 is O(m) for simplicity.

Lemma 7 (Time Complexity of Preprocessing Phase in SRWR-Pre).
The preprocessing phase in Algorithm 3 takes O(T (m+n log n)+n3

2+mn2) where
T = dn2

tn e is the number of iterations, and t is the hub selection ratio in the hub-
and-spoke reordering method (Kang and Faloutsos, 2011; Lim et al., 2014).

Proof. We only consider the main factors of the time complexity of Algorithm 3
in this proof. The hub-and-spoke reordering method takes O(T (m + n log n))
time (line 1) where T is dn2

tn e which is proved in (Kang and Faloutsos, 2011; Lim

et al., 2014). Computing the Schur complement of |H|11 takes O(n2
2 + mn2)

because it takes O(mn2) to compute P1 = |H|−1
11 |H|12 and P2 = |H|21P1 by

Lemma 4, and O(n2
2) to compute |H|22−P2 (line 6). It takes O(n3

2) to compute

the inverse of the LU factors (line 8). Note that computing |H|−1
11 (line 4) requires

O(
∑b
i=1 n

3
1i) time where it takes n3

1i to obtain the inverse of i-th block. In real-
world networks, the size n1i of each block is much smaller than the number n2 of

hubs; thus, we assume that
∑b
i=1 n

3
1i � n3

2 (Shin et al., 2015). Hence, the time
complexity of preprocessing |H| is O(T (m+n log n) +n3

2 +mn2). Note that the
time complexity of preprocessing T is included into that of preprocessing |H|
since T and |H| have the same sparsity pattern.

Lemma 8 (Time Complexity of Query Phase in SRWR-Pre). The query
phase in Algorithm 4 takes O(n2

2 + n+m) time.

Proof. We only consider the main factors of the time complexity of Algorithm 4
in this proof. It takes O(n2

2 + m) to compute p2 since it takes O(n2 + m) to
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compute q̃2 = q2−|H|21(|H|−1
11 q1), and O(n2

2) to compute U−1
|H|(L

−1
|H|q̃2) (line 2).

It takes O(n) time to concatenate the partitioned vectors (lines 4 and 8) and
compute r+ and r (lines 9 and 10). Hence, the total time complexity of the query
phase is O(n2

2 + n+m).

A.4. Detailed Limitations of Existing Random Walk Based
Ranking Models in Signed Networks

In this section, we describe the detailed limitation of existing random walk based
ranking models which are briefly described in Section 1.

– Random Walk with Restart (RWR): We perform RWR on a given signed
network after taking absolute edge weights to obtain r as follows:

r = (1− c)|Ã|
>

r + cq

where |Ã| is the row-normalized matrix of the absolute adjacency matrix in
the signed network. RWR does not properly consider negative edges for r.

– Modified Random Walk with Restart (M-RWR) (Shahriari and Jalili, 2014):
M-RWR applies RWR separately on both a positive subgraph and a negative
subgraph; thus, it obtains r+ on the positive subgraph and r− on the negative
subgraph, and then, computes r = r+−r−. The detailed equations for M-RWR
are as follows:

r+ = (1− c)B̃>+r+ + cq and r− = (1− c)B̃>−r− + cq

where B̃+ is the row-normalized matrix of the adjacency matrix containing

only positive edges, and B̃− is that of the absolute adjacency matrix containing
only negative edges. The main limitation of M-RWR is that it does not consider
relationships between positive and negative edges due to the separation as
shown in the above equations.

– Modified Personalized SALSA (M-PSALSA) (Ng et al., 2001): Andrew et
al. made a modification on SALSA2 by introducing the random jump into
it, called Personalized SALSA (PSALSA). As similar to M-RWR, we apply
PSALSA separately on both positive and negative subgraphs, and consider
authorities on the positive subgraph as r+, and those scores on the negative
subgraph as r−. M-PSALSA also has the same limitation with M-RWR.

– Personalized Signed Spectral Rank (PSR) (Kunegis et al., 2009): Kunegis et
al. proposed PSR which is a variant of PageRank by constructing the following
matrix similar to Google matrix:

MPSR = (1− c)D−1A> + ces1
>

where A is the signed adjacency matrix, D is the diagonal out-degree matrix,
and es is the s-th unit vector. Then, PSR computes the left eigenvector of
MPSR, which induces a relative trustworthy score vector r including positive
and negative values. Although PSR is able to produce r, the equation for PSR
is heuristic because MPSR is not a column stochastic matrix. Also, how the
random surfer based on the equation interprets negative edges is veiled.

2 SALSA (Lempel and Moran, 2001) is a normalized version of HITS (Kleinberg, 1999b).
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A.5. Detailed Description of Evaluation Metrics

We describe the details of metrics used in the link prediction and the troll identi-
fication tasks. The metrics for the sign prediction task is described in Section 5.5.

A.5.1. Link Prediction

– GAUC (Generalized AUC): Song et al. (Song and Meyer, 2015) proposed
GAUC which measures the quality of link prediction in signed networks. An
ideal personalized ranking w.r.t. a seed node s needs to rank nodes with pos-
itive links to s at the top, those with negative links at the bottom, and other
unknown status nodes in the middle of the ranking. For a seed node s, sup-
pose that Ps is the set of positive nodes potentially connected by s, Ns is
that of negative nodes, and Os is that of the other nodes. Then, GAUC of the
personalized ranking w.r.t. s is defined as follows:

GAUCs =
η

|Ps|(|Os|+ |Ns|)

∑
p∈Ps

∑
i∈Os∪Ns

I(rp > ri)


+

1− η
|Ns|(|Os|+ |Ps|)

( ∑
i∈Os∪Ps

∑
n∈Ns

I(ri < rn)

)

where η = |Ps|
|Ps|+|Ns| is the relative ratio of the number of positive edges and

that of negative edges, and I(·) is an indicator function that returns 1 if a given
predicate is true, or 0 otherwise. GAUC will be 1.0 for the perfect ranking list
and 0.5 for a random ranking list (Song and Meyer, 2015).

– AUC (Area Under the Curve): AUC of the personalized ranking scores r w.r.t.
seed node s in signed networks is defined as follows (Song and Meyer, 2015):

AUCs =
1

|Ps||Ns|
∑
p∈Ps

∑
n∈Ns

I(rp > rn)

where Ps is the set of positive nodes potentially connected by s, and Ns

is the set of negative nodes. I(·) is an indicator function that returns 1 if
a given predicate is true, or 0 otherwise. With an ideal ranking list, AUC
should be 1 representing each positive sample is ranked higher than all the
negative samples. For a random ranking, AUC will be 0.5. However, AUC
is not a satisfactory metric for the link prediction task in signed networks
because AUC is designed for two classes (positive and negative) while the link
prediction in signed networks should consider three classes (positive, unknown,
and negative) as described in the above.

A.5.2. Troll Identification

Suppose that we have a personalized ranking R in the ascending order of the
trustworthiness scores w.r.t. a seed node (i.e., a node with a low score is ranked
high) to have the same effect of searching trolls in the bottom of the original
ranking in the descending order of those scores.

– MAP@k (Mean Average Precision): MAP@k is the mean of average precisions,
AP@k, for multiple queries. Suppose that there are l trolls to be captured.
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Then, AP@k is defined as follows:

AP@k =
1

min(l, k)

(∑
t∈T

Precision@t

)
where Precision@t is the precision at the cut-off t. Note that T = {t|I(R[t]) =
1 for 1 ≤ t ≤ k} where R[t] denotes the user ranked at position t in the
ranking R, and I(R[t]) is 1 if R[t] is a troll. For N queries, MAP@k is defined
as follows:

MAP@k =
1

N

(
N∑
i=1

AP@k

)
– NDCG@k (Normalized Discount Cumulative Gain): NDCG is the normalized

value of Discount Cumulative Gain (DCG), which is defined as follows:

DCG@k = rel1 +

k∑
i=2

reli
log2(i)

, and NDCG@k =
DCG@k

IDCG@k

where reli is the user-graded relevance score for the i-th ranked item. Then,
NDCG@k is obtained by normalizing using Ideal DCG(IDCG) which is the
DCG for the ideal order of ranking.

– Precision@k and Recall@k: Precision@k (Recall@k) is the precision (recall) at
the cut-off k in a ranking. Precision@k is the ratio of identified trolls in top-k
ranking, and Recall@k is the ratio of identified trolls in the total trolls.

– MRR (Mean Reciprocal Rank): MRR@k is the mean of the reciprocal rank
(RR) for each the top-k query response. RR is the multiplicative inverse of
the rank of the first correct answer. Hence, for N multiple queries, MRR@k is
defined as follows:

MRR@k =
1

N

N∑
i=1

1

ranki

where ranki is the rank position of the first relevant item in the top-k ranking.
If there is no relevant item in the ranking for the i-th query, the inverse of the
rank, ranki

−1, becomes zero.

A.6. Discussion on Relative Trustworthiness Scores of SRWR

In Section 4.1, we define the relative trustworthiness r = r+ − r− where r+ is
for positive SRWR scores, and r− is for negative SRWR ones. We show that r+

and r− are measures, and r is a signed measure using definitions from measure
theory (Taylor, 2006). We first introduce the definition of measure as follows:

Definition 5 (Measure (Taylor, 2006)). A measure µ on a (finite) set Ω with
σ-algebra A is a function µ : A → R≥0 such that

1. (Non-negativity) µ(E) ≥ 0 ∀E ∈ A,

2. (Null empty set) µ(∅) = 0,

3. (Countable additivity) µ(
⋃∞
i=1Ei) =

∑∞
i=1Ei for any sequence of pairwise

disjoint sets, E1, E2, · · · ∈ A

where σ-algebra A on Ω is a collection A ⊆ 2Ω s.t. it is nonempty, and closed un-
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der complements (i.e., E ∈ A ⇒ Ec ∈ A) and countable unions (i.e., E1, E2, · · · ∈
A ⇒

⋃∞
i=1Ei ∈ A). The pair of (Ω,A) is called measurable space. �

In probability theory, σ-algebraA describes all possible events to be measured
as probability. Note that r+ and r− are joint probabilities of nodes and signs,
i.e., r+

u = P (N = u, S = +) and r−u = P (N = u, S = −) where N is a random
variable of nodes, and S is a random variable of the surfer’s sign. Note that N
takes an item from σ-algebra A. The following property shows that r+ and r−

are (non-negative) measures.

Property 4. Suppose Ω is the set V of nodes, and σ-algebra A on Ω is 2Ω.
Let µ+ = P (N,S = +) and µ− = P (N,S = −). Then, both µ+ and µ− are
(non-negative) measures according to Definition 5.

Proof. For any E ∈ A, µ+(E) ≥ 0 and µ+(∅) = 0 are obviously true since
P (N,S = +) is a probability; hence, P (E,S = +) ≥ 0 and P (∅, S = +) = 0. Let
(En)n∈N be a sequence of pairwise disjoint sets where En ∈ A. Since the sets in
the sequence are mutually disjoint, the following holds:

P

(⋃
n∈N

En, S = +

)
=
∑
n∈N

P (En, S = +)

Therefore, µ+ = P (N,S = +) is a measure by Definition 5. Similarly, µ− =
P (N,S = −) is also a measure.

Next, we introduce the definition of signed measure, a generalized version of
measure by allowing it to have negative values.

Definition 6 (Signed Measure (Taylor, 2006)). Given a set Ω and σ-algebra
A, a signed measure on (Ω,A) is a function µ : A → R such that

1. (Real value) µ(E) takes a real value in R,
2. (Null empty set) µ(∅) = 0,
3. (Countable additivity) µ(

⋃∞
i=1Ei) =

∑∞
i=1Ei for any sequence of pairwise

disjoint sets, E1, E2, · · · ∈ A �

Note that Shannon entropy and electric charge are representative examples
of signed measure. Then, the following lemma indicates the difference between
two non-negative measures is a signed measure.

Lemma 9 (Difference Between Two Non-negative Measures (Taylor,
2006)). Suppose we are given non-negative measure µ+ and µ− on the same
measurable space (Ω,A). Then, µ = µ+ − µ− is a signed measure.

Proof. Since µ+ and µ− are non-negative, µ is located between −∞ and ∞.
Also, µ(∅) = µ+(∅)− µ−(∅) = 0. Moreover, µ is countable additive, i.e.,

µ

( ∞⋃
i=1

Ei

)
= µ+

( ∞⋃
i=1

Ei

)
−µ−

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

(
µ+(Ei)− µ−(Ei)

)
=

∞∑
i=1

µ(Ei)

Hence, µ = µ+ − µ− is a signed measure according to Definition 6.

Lemma 9 implies that the relative trustworthiness r = r+ − r− is a signed
measure. The trustworthiness ru measures a degree of trustworthiness between
seed node s and node u: if ru > 0, seed node s is likely to trust node u as much
as ru while if ru < 0, s is likely to distrust u as much as ru.
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