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Abstract
How can we accelerate large language models
(LLMs) without sacrificing accuracy? The slow in-
ference speed of LLMs hinders us to benefit from
their remarkable performance in diverse applica-
tions. This is mainly because numerous sublay-
ers are stacked together in LLMs. Sublayer prun-
ing compresses and expedites LLMs via removing
unnecessary sublayers. However, existing sublayer
pruning algorithms are limited in accuracy since
they naively select sublayers to prune, overlooking
the different characteristics of each sublayer.
In this paper, we propose SPRINT (Sublayer
PRuning wIth LateNcy and Tunability Informa-
tion), an accurate sublayer pruning method for
LLMs. SPRINT accurately selects a target sub-
layer to prune by considering 1) the amount of
latency reduction after pruning and 2) the tun-
ability of sublayers. SPRINT iteratively prunes re-
dundant sublayers and swiftly tunes the param-
eters of remaining sublayers. Experiments show
that SPRINT achieves the best accuracy-speedup
trade-off, exhibiting up to 23.88%p higher accuracy
on zero-shot commonsense reasoning benchmarks
compared to existing pruning algorithms.

1 Introduction
How can we accelerate large language models (LLMs) with-
out sacrificing accuracy? Recent LLMs have shown im-
pressive performance across various tasks such as translation,
code completion, and personal assistant [Brown et al., 2020;
Zhang et al., 2022; Team et al., 2023; Chowdhery et al., 2023;
Touvron et al., 2023a; Touvron et al., 2023b; Research et al.,
2024]. The vast number of parameters in LLMs enables the
remarkable capabilities, but slows down the inference speed
of LLMs, limiting their practical deployments. Hence, accel-
erating LLMs is essential to fully leverage their benefits.

Pruning compresses and expedites neural network mod-
els via removing unnecessary parameters [Park et al., 2024b;
Lee et al., 2021]. LLMs consist of multi-head attention
(MHA) and multi-layer perceptron (MLP) sublayers stacked
alternatingly. Sublayer pruning identifies unimportant sublay-
ers, and removes them [Song et al., 2024; Men et al., 2024;

Zhong et al., 2024]. Note that sublayers are sequentially
calculated unlike smaller units such as attention heads or
neurons which are processed in parallel [Ma et al., 2023;
Ashkboos et al., 2024]. Thus, sublayer pruning algorithms
display better accuracy-speedup trade-off than finer-grained
ones since removing parallelizable computations prevents
GPUs from fully utilizing their computational capability.

The core objective of sublayer pruning is to accurately
identify the sublayers to prune. However, existing sublayer
pruning algorithms face challenges in preserving the accu-
racy of a pruned LLM since they fail to consider the char-
acteristics of each sublayer. Figure 1 illustrates the results
of different schemes to prune sublayers of an LLM. All the
schemes prune less important sublayers to reduce the la-
tency of the model by 300ms. Figure 1(a) summarizes the
attributes of each sublayer, and (b) shows how each scheme
evaluates the importance of each sublayer. Pairwise selec-
tion algorithms [Song et al., 2024; Men et al., 2024] prune
MHA and MLP sublayers in pairs, to reduce the number of
importance evaluations for identifying the targets. Those al-
gorithms face challenges in preserving the accuracy of the
pruned LLM since MHA sublayers induce less accuracy drop
than MLP sublayers do when pruned. Individual selection al-
gorithms [Zhong et al., 2024], which evaluate and prune each
sublayer separately, still fail to achieve the best accuracy for
the following two reasons. First, they overlook the latency
difference between MHA and MLP sublayers. They prioritize
MHA sublayers for removal due to their seemingly lower im-
pact on accuracy. However, removing a single MLP sublayer
provides equivalent latency reduction to removing two MHA
sublayers, and they do not consider this effect for accelerat-
ing LLMs. Second, they disregard the fact that the accuracy
drop caused by pruning is changed after tuning. They select
sublayers solely based on the damage before tuning, failing to
find sublayers that cause lower damage after tuning. To over-
come these limitations, a pruning algorithm needs to consider
both the latency and tunability of each sublayer.

We propose SPRINT (Sublayer PRuning wIth LateNcy
and Tunability Information), an accurate sublayer pruning
method for LLMs. SPRINT preserves the accuracy of the
pruned models via accurately selecting a sublayer to remove.
As shown in Figure 1(b), SPRINT considers the amount of
latency reduction after pruning and accuracy drop after tun-
ing. Moreover, we minimize the cost of SPRINT by 1) ac-
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Figure 1: (a) Comparison of different schemes in pruning for large language models, given the characteristics of each sublayer. Each scheme
prunes the least important sublayers judged by its own importance measure. (b) Among all schemes, SPRINT achieves the best accuracy
under the same latency constraint by considering both latency and tunability.

tivation checkpointing to mitigate the repetitive computa-
tions, and 2) fast candidate selection to reduce the number of
time-intensive tuning. We verify the effectiveness of SPRINT
with extensive experiments. SPRINT accelerates Llama-2
and Llama-3 models, achieving up to 23.88%p higher accu-
racy on zero-shot commonsense reasoning benchmarks than
baselines, and shows the best accuracy-speedup trade-off.

We summarize our main contributions as follows:

• Algorithm. We propose SPRINT, an accurate sublayer
pruning method for LLMs. SPRINT accurately identi-
fies less important sublayers in a model by the following
four effective techniques: 1) latency-aware importance
scoring, 2) tunability-aware sensitivity evaluation, 3) ac-
tivation checkpointing, and 4) fast candidate selection.

• Experiments. We demonstrate that SPRINT achieves
the state-of-the-art performance on commonsense rea-
soning benchmarks. SPRINT accelerates Llama-2 and
Llama-3 models, achieving up to 23.88%p higher accu-
racy on zero-shot commonsense reasoning benchmarks,
showing the most favorable accuracy-speedup trade-off.

• Analysis. We analyze the pruning patterns of the mod-
els pruned by SPRINT. We derive the findings that MLP
and lower sublayers in an LLM serve as a critical com-
ponent of LLM’s capabilities, while MHA and upper
sublayers contribute less to accuracy.

The rest of this paper is organized as follows. We first de-
fine LLM acceleration problem and provide backgrounds. We
then propose SPRINT, our pruning method. After presenting
experimental results, we conclude. Our source code is avail-
able at https://github.com/snudm-starlab/SPRINT.

2 Preliminary

2.1 Problem Definition

Problem 1 (LLM Acceleration Problem). Given a pretrained
large language model F , a sample dataset D, and a latency
upper bound τ , the problem is to find an accurate model F̂
whose latency does not exceed τ . □

2.2 Transformer Architecture
Recent LLMs [Touvron et al., 2023b; Dubey et al., 2024]
have a Transformer-based architecture [Vaswani et al., 2017]
which consists of multi-head attention (MHA) and multi-
layer perceptron (MLP) sublayers stacked alternatingly. A
Transformer model F with S sublayers refines an input se-
quence vector x as in Equation (1).

F (x) = G
((
◦Ss=1(f

(s) + I)
)(
E(x)

))
(1)

G is a generator module, E is an embedding look-up table, I
represents a residual connection, and ◦ is the composition of
functions. f (s) denotes the sth sublayer function which is ei-
ther a self-attention network in an MHA sublayer when s is an
odd number, or a feed-forward network in an MLP sublayer
when s is an even number. We decompose f (s) into output
projection W (s) and remainder h(s)(·) as in Equation (2).

f (s)(X(s)) = W (s)h(s)(X(s)) (2)

X(s) is an input matrix for the sth sublayer, where X(1) =

E(x). Given an intermediate activation Z(s) = h(s)(X(s)),
f (s) is a linear transformation function with regard to Z(s).

2.3 Sublayer Pruning
Sublayer pruning [Song et al., 2024; Men et al., 2024;
Zhong et al., 2024] accelerates LLMs via pruning unneces-
sary sublayers in them. Sublayer pruning algorithms measure
an importance score η for each sublayer, and eliminate those
with the lowest scores. The importance scoring leverages sen-
sitivity ζ which represents the performance difference of a
model before and after the pruning. It is crucial to accurately
score the importance of sublayers since the accuracy of the
model heavily depends on which sublayers are pruned.

2.4 Fast In-compression Tuning
Pruning causes the accuracy loss by repeatedly removing pa-
rameters from a model. To mitigate the accuracy degradation,
tuning the pruned model is essential so that the inference re-
sults are similar to those of the uncompressed model [Park
et al., 2024a; Park et al., 2024b]. The objective of the tuning

https://github.com/snudm-starlab/SPRINT
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Figure 2: An illustration of the overall process of SPRINT. Given a pretrained LLM and a latency constraint, SPRINT iteratively identifies
and prunes the least important sublayer until the pruned model satisfies the latency constraint. SPRINT accurately selects the sublayer to
prune by considering the latency and tunability information of sublayers.

is to align the output of the sth sublayer in the pruned model
with that in the unpruned model, as described in Equation (3).

arg min
Ŵ

(s)
∥(X̂

(s)
+ Ŵ

(s)
Ẑ

(s)
)−X(s+1)∥2F , (3)

where X̂
(s)

, Ŵ
(s)

, and Ẑ
(s)

are the input, output projec-
tion, and intermediate representation of the sth sublayer in the

pruned model, respectively. X̂
(s+1)

= X̂
(s)

+ Ŵ
(s)

Ẑ
(s)

is
the output of sth sublayer in the pruned model, while X(s+1)

is the output of the sth sublayer in the unpruned model.
Note that solving Equation (3) does not require time-

consuming stochastic gradient descents as in previous
works [Hu et al., 2022; Xu et al., 2024]. Instead, the
equation is efficiently solved incorporating PyTorch’s solver

(torch.linalg.lstsq) once X̂
(s)

, Ẑ
(s)

, and X(s+1) are com-
puted. Thus, fast in-compression tuning is computationally
affordable for iterative pruning algorithms.

3 Proposed Method
3.1 Overview
We address the following challenges to prune sublayers in
LLMs minimizing the loss of accuracy.

C1. Latency Difference of Sublayers. Existing works ig-
nore the latency difference of MHA and MLP sublayers.
How can we compare the importance of sublayers with
different latencies to effectively accelerate LLMs?

C2. Ignoring the Impact of Tuning. Existing works ignore
the impact of tuning when selecting sublayers to prune,
resulting in misselection. How can we incorporate the
impact of tuning to accurately select sublayers to prune?

C3. Expensive Computational Cost. Sublayer pruning is
computationally expensive since it repeatedly measures
the importance scores of all sublayers at each iteration.
How can we enhance the efficiency of sublayer pruning?

Algorithm 1 Overall process of SPRINT

Input: An LLM F , a calibration dataset D, a latency con-
straint τ , number α of checkpoints, and number β of can-
didates

Output: A pruned LLM F̂

1: Initialize F̂ as F
2: Initialize a dictionary Q of α checkpoints
3: Measure latencies T = {t(MHA), t(MLP )}
4: while latency(F̂ ) > τ do
5: C,Q ← fast candidate selection(F̂ ,D, T , β,Q)

▷ Select a set C of candidates (Section 3.4)
6: f∗ ← tunability aware target selection(C, F̂ ,D, T ,Q)

▷ Find the least important sublayer f∗ (Section 3.3)
7: Remove f∗ from F̂ and apply tuning
8: end while
9: return F̂

We propose SPRINT to address these challenges. The main
ideas of SPRINT are as follows.
I1. Latency-aware Importance Scoring. We consider the

amount of latency reduction after pruning each sublayer
to precisely identify unimportant sublayers.

I2. Tunability-aware Sensitivity Evaluation. We accu-
rately select sublayers to prune by measuring their sen-
sitivity after tuning.

I3. Avoiding Unnecessary Computations. We propose ac-
tivation checkpointing and fast candidate selection to
avoid the unnecessary computations.

Algorithm 1 and Figure 2 show the overall process of
SPRINT. Given a pretrained LLM F and a latency constraint
τ , SPRINT returns the pruned LLM F̂ satisfying the latency
constraint. SPRINT initializes α activation checkpoints Q to
store reusable activations (line 2, details in Section 3.4). Then,
SPRINT measures the amounts T of latency reduction result-
ing from the removal of sublayers (line 3) for latency-aware
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importance scoring (details in Section 3.2). SPRINT repeats
the iterative process of 1) scoring the importance of sublayers
and 2) removing the least important one (lines 4-8) until the
latency constraint is met. For each iteration, SPRINT first se-
lects β candidate sublayers C to prune by scoring the pseudo-
importance of each sublayer (line 5, see Section 3.4), and up-
dates the checkpointsQ. SPRINT then scores the importance
of each candidate in C with tunability-aware sensitivity eval-
uation (line 6, details in Section 3.3). Based on the impor-
tance scores, SPRINT prunes the least important sublayer f∗

and tunes the remaining model (line 7). SPRINT returns the
pruned model F̂ (line 9) which satisfies the constraint.

3.2 Latency-aware Importance Scoring
Observation. How can we identify the most appropriate
sublayer to prune for accelerating LLMs with minimal ac-
curacy loss? Existing works [Song et al., 2024; Zhong et al.,
2024; Men et al., 2024] measure the importance of sublay-
ers without considering the latency difference of sublayers.
Figure 3(a) shows the latencies of Llama-3 8B models after
pruning different numbers of MHA and MLP sublayers. As
shown in the figure, pruning an MHA sublayer yields over
three times greater latency reduction than pruning an MLP
sublayer; thus, it is beneficial to prune an MHA sublayer in-
stead of an MLP sublayer if they cause the same damage.
Therefore, it is essential to consider latency when selecting
sublayers to prune.
Our solution. We incorporate the latencies of sublayers
into our importance scoring process and assign lower impor-
tance scores for the sublayers with higher latencies to pro-
mote pruning the high-latency sublayers. The importance η(s)
of the sth sublayer is defined as follows:

η(s) = ζ(s)/t(s), (4)

where ζ(s) is the sensitivity of the sth sublayer which approx-
imates the amount of accuracy degradation after pruning it.
t(s) is the amount of reduced latency through pruning the sth
sublayer. Hence, η(s) reflects the cost-effectiveness of the sth
sublayer in contributing to accuracy. As shown in Figure 3(a),
sublayers of the same type offer almost the same degree of
latency reduction; t(s) is either t(MHA) or t(MLP ) depend-
ing on the sublayer’s type. SPRINT measures t(MHA) and
t(MLP ) by comparing the latencies of unpruned and partially
pruned models before starting its iterative pruning process.

3.3 Tunability-aware Sensitivity Evaluation
Observation. How can we accurately estimate the sensi-
tivities of sublayers? Sublayer pruning algorithms measure
sensitivities to approximately estimate the accuracy loss af-
ter pruning each sublayer. The lost accuracy is recovered via
tuning, and each sublayer has a different capability for recov-
ering. However, existing works [Men et al., 2024; Song et al.,
2024; Zhong et al., 2024] ignore the effect of tuning when es-
timating the sensitivities. Figure 3(b) compares the ranking in
accuracy degradation after pruning each sublayer before and
after tuning. As shown in the figure, the index of the peak sub-
layer that evokes the lowest damage is changed after tuning.
This indicates that pruning sublayers with the lowest sensi-
tivity without considering the effect of tuning removes useful
sublayers that exhibit low accuracy degradation after tuning.
Therefore, sublayer pruning algorithms must account for the
effect of tuning by prioritizing the removal of sublayers that
result in minimal accuracy drop after tuning.

Our solution. SPRINT compares the activations of the
original model and the pruned model after tuning to measure
the sensitivities of sublayers. SPRINT exploits the fast in-
compression tuning [Park et al., 2024a] in Section 2.4 to ef-
ficiently incorporate tunability information into the sublayer
selection process. Figure 3(c) shows the sensitivity measure-
ment process of SPRINT for the sth sublayer which we call
as the evaluation target. SPRINT finds the closest MLP sub-
layer (dth sublayer in the Figure 3(c)) above the evaluation
target. After that, SPRINT measures the sensitivity ζ(s) of
the sth sublayer by computing the normalized distance be-

tween outputs X(d+1) and X̂
(d+1)

t of the MLP sublayer be-
fore and after pruning, respectively, as in Equation (5). We ex-

ploit X̂
(d+1)

t obtained by fast in-compression tuning to take
the tunability into account.

ζ(s) = ||X(d+1) − X̂
(d+1)

t ||F /||X(d+1)||F , (5)

Note that we use outputs of only MLP sublayers, since an
MLP sublayer has three times more number of parameters
than that of an MHA sublayer, and thus has a stronger tun-
ing capability than MHA. For fast in-compression tuning,

SPRINT finds Ŵ
(d)

t that minimizes the distance between the

output X̂
(d+1)

= (X̂
(d)

+ Ŵ
(d)

Ẑ
(d)

) after pruning and the
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output X(d+1) before pruning, as in Equation (3). Ŵ
(d)

and

Ẑ
(d)

are the weight of the out projection and the intermedi-
ate activation of the dth sublayer after pruning, respectively.

Note that each row of Ŵ
(d)

forms an independent subprob-
lem and we tune the weights in only c% of rows to avoid over-
fitting. We select the rows with abundant outliers, which rep-
resent larger activations than others, to maximize the impact
of tuning with the given percentage of rows. We exploit the
sum of the outlier-aware weight-wise scores [Sun et al., 2023;
Yin et al., 2024] of weights in each row for selection. We save
the tuned weights of each sublayer during the importance
scoring process and apply the tuned weights corresponding
to the pruning of the least important sublayer.

3.4 Avoiding Unnecessary Computations
Observation 1. How can we minimize the computation for
measuring the sensitivities of sublayers? Pruning a sublayer
does not affect the sensitivity of other sublayers whose clos-
est upper MLP sublayers are located below the pruned one.
For instance, as shown in Figure 4(a), ζ(1) to ζ(3) do not need
to be reevaluated if f (5) is pruned in the previous iteration.
However, naively computing the sensitivities of all sublayers
at each iteration entails redundant computation for sensitivi-
ties which are already obtained in the previous iteration.

Our solution 1 (Activation Checkpointing). We propose
activation checkpointing to prevent unnecessary recomputa-
tions. Before starting the iterations, SPRINT places check-
points between sublayers. At each iteration, SPRINT stores
the activations at the checkpoints. SPRINT reuses the sensi-
tivities from the previous iteration for each sublayer f whose
closest upper MLP sublayer is beneath the pruned sublayer,
since the sensitivity of f is not changed after pruning. Then,
SPRINT updates the sensitivities of the remaining sublayers
using the stored activation. For example, assume we pruned
f (5) at iteration 1, as shown in Figure 4(b). Note that SPRINT
reuses ζ(1) to ζ(3) from the iteration 1 in the iteration 2 since
they are not changed. Then, SPRINT loads the stored acti-
vation X(4) and starts updating the sensitivities from f (4).

The checkpoints are uniformly placed, and the number α of
checkpoints controls the trade-off between the memory usage
and the time consumption during pruning.

Observation 2. How can we minimize the cost of sensitiv-
ity measurement? SPRINT performs an in-compression tun-
ing to evaluate the sensitivity of each sublayer. Naively com-
puting the sensitivities of all sublayers as illustrated in Fig-
ure 4(c-i) leads to excessive number of tunings at each itera-
tion, making the sensitivity measurement too expensive.

Our solution 2 (Fast Candidate Selection). We propose
fast candidate selection to selectively measure the sensi-
tivities, minimizing the number of tuning in the sensitiv-
ity measurement. Instead of evaluating tunability-aware sen-
sitivities for all sublayers, SPRINT first selects the candi-
dates of the least sensitive sublayers swiftly without tuning.
Then, SPRINT measures the tunability-aware sensitivity only
for the candidate sublayers. For example, in Figure 4(c-ii),
SPRINT first finds two candidates without tuning and then
selects the sublayer to prune with the tunability-aware evalu-
ation, reducing the number of tunings from 6 to 2. This pro-
cess can be viewed as reducing the computational costs by
approximately finding the sublayer to prune.

To instantly select the candidate sublayers, SPRINT mea-
sures the pseudo-importance of each sublayer.The pseudo-
sensitivity ζ̃(s) of sth sublayer is the normalized distance be-

tween outputs X(d+1) and X̂
(d+1)

of the MLP sublayer be-

fore and after pruning, respectively. Note that X̂
(d+1)

is ob-

tained without tuning, unlike X̂
(d+1)

t in Equation (5). The
pseudo-importance η̃(s) of the sth sublayer is ζ̃(s)/t(s), where
t(s) is the latency of the sublayer. SPRINT selects β sublayers
with the least pseudo-importance scores, where β is a hyper-
parameter representing the number of candidates. A higher β
leads to the more accurate search for the sublayer to prune
while requiring a higher computational cost.

4 Experiments
We perform experiments to answer the following questions.
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Figure 5: Accuracy-speedup trade-off curves of SPRINT and competitors. SPRINT shows the best trade-off among all the methods.

Q1. Accuracy. How accurate is SPRINT compared to base-
lines with the similar acceleration level?

Q2. Pruning Efficiency. How fast does SPRINT prune
LLMs compared to baselines?

Q3. Ablation Study. Does each main idea of SPRINT con-
tribute to the performance?

Q4. Pruning Pattern Analysis. Which sublayers are impor-
tant to maintain the accuracy of LLMs?

4.1 Experimental Setup
Setup. We use Llama-2 [Touvron et al., 2023b] and Llama-
3 [Dubey et al., 2024] model families as pruning targets.
We randomly sample 128 token sequences of length 2048
from Wikitext2 [Merity et al., 2016] dataset for sensitiv-
ity measurement and tuning. We use NVIDIA A100 80GB
GPU for all experiments. We report zero-shot reasoning ac-
curacies on ARC-Challenge, ARC-Easy [Clark et al., 2018],
BoolQ [Clark et al., 2019], HellaSwag [Zellers et al., 2019],
and PIQA [Bisk et al., 2020] benchmarks. We measure the
latencies to generate 512 tokens from 1024 input tokens [Lin
et al., 2024b] and report speedups of pruned models.

Baselines. We compare SPRINT with three sublayer prun-
ing algorithms: ShortGPT [Men et al., 2024], SLEB [Song
et al., 2024], and BlockPruner [Zhong et al., 2024]. Short-
GPT and SLEB utilize the pairwise selection scheme while
BlockPruner selects pruning targets individually as illus-
trated in Figure 1. We also include four fine-grained prun-
ing algorithms as baselines for comprehensive analysis:
SparseGPT [Frantar and Alistarh, 2023], Wanda [Sun et

al., 2023], SliceGPT [Ashkboos et al., 2024], and LLM-
Pruner [Ma et al., 2023]. These algorithms prune LLMs in
parallelizable units smaller than sublayers such as channels or
attention heads, resulting in insufficiently accelerated models.
Hyperparameters. We use random seeds from 0 to 2 and
report the average values. We set the checkpointing hyperpa-
rameter α to 8 and the candidate hyperparameter β to 5 for
all models.

4.2 Accuracy
Figure 5 shows the accuracies of SPRINT and baselines
across various inference speedup settings. As shown in the
figure, SPRINT achieves the best trade-off curve among all
the methods, and significantly outperforms the competitors
under 40% speedup setting with the maximum accuracy gap
of 23.88%p. It is notable that SPRINT achieves the best per-
formance among all the algorithms on challenging multiple-
choice benchmarks, such as ARC-Challenge, ARC-Easy, and
HellaSwag, across all models of various sizes.

4.3 Pruning Efficiency
Figure 6 visualizes compression time and average accuracy
on five commonsense reasoning tasks of the pruned models
generated by SPRINT and competitors with 40% speedup.
We estimate the pruning time of BlockPruner for 70B models
since it takes more than a week to prune them (see Supple-
mentary Material for details). Brown dashed lines in Figure 6
denote the estimated pruning time.

Note that SPRINT offers the best accuracy-pruning time
trade-off across all models. SPRINT prunes the LLM up to
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Figure 6: Pruning time and accuracy trade-off of SPRINT and competitors under 1.4× acceleration. SPRINT is closest to the “Best” point
with the highest accuracy and short pruning time.

Method SPRINT-l SPRINT-t SPRINT-e SPRINT

Acc. (%) 66.96 67.62 69.82 69.82
Time (s) 1070.29 212.00 2147.28 1052.21

Table 1: Performance of SPRINT and its variants for accelerating
Llama-3 8B by 1.4×. See Section 4.4 for details.

40.01 times faster and achieves up to 6.21%p higher accuracy
than BlockPruner. SPRINT further outperforms other meth-
ods with similar pruning times by larger margins.

4.4 Ablation Study
To prove the effectiveness of each main idea, we compare
SPRINT with its three variants: SPRINT-l, SPRINT-t, and
SPRINT-e. SPRINT-l is SPRINT without latency-aware im-
portance scoring; it prunes the sublayer with the lowest sensi-
tivity without considering the latency. SPRINT-t is SPRINT
without tunability-aware sensitivity evaluation, measuring the
sensitivity of each sublayer by directly comparing its output
before and after pruning. SPRINT-e is SPRINT without acti-
vation checkpointing and fast candidate selection, calculating
the importance scores of all sublayers without storing activa-
tions for each step of iterative pruning process.

Table 1 summarizes the performance of SPRINT and its
variants when accelerating the Llama-3 8B by 40%. SPRINT
and SPRINT-e outperform other variants in terms of accu-
racy, proving that both latency-aware importance scoring and
tunability-aware sensitivity evaluation contribute to the ac-
curacy. SPRINT is twice faster than SPRINT-e, confirming
the effectiveness of activation checkpointing and fast candi-
date selection for the pruning cost. In summary, all three main
ideas of SPRINT contributes to the performance.

4.5 Pruning Pattern Analysis
Figure 7 depicts the pruning patterns of SPRINT on Llama
models. Orange, blue, and gray squares represent MHA,
MLP, and pruned sublayers, respectively. We observe two
main patterns related to the type and position of sublayers.
First, SPRINT prunes more MHA sublayers than MLP sub-
layers in general; MLP sublayers are pruned only in 70B
models. Second, SPRINT prunes sublayers located mainly in
the upper-middle parts of models. These two patterns show
that MLP sublayers and sublayers located near the bottom
significantly contribute to the capability of LLMs. Moreover,
as more extensive pruning occurs in the upper layers as ob-
served by the second pattern, sensitivities of lower layers of-
ten do not need to be updated. Thus, our proposed activation
checkpointing aligns well with the LLM’s characteristics.

Figure 7: Pruning patterns of SPRINT on Llama models (best
viewed in color). SPRINT primarily prunes MHA sublayers located
between the middle and upper parts of the model.

5 Related Work
We review techniques for accelerating LLMs: quantization,
knowledge distillation, and dynamic inference. Quantiza-
tion [Piao et al., 2022; Frantar et al., 2023; Lee et al., 2023;
Lin et al., 2024a; Shao et al., 2024; Kim et al., 2025b;
Kim et al., 2025a] reduces the bit-width of weights and ac-
tivations in them; it accelerates computation by leveraging
hardwares designed for low-bit operations. Quantization is
compatible with pruning; unifying both methods achieves
greater acceleration [Frantar and Alistarh, 2023].

Knowledge distillation (KD) [Ko et al., 2024; Yoo et al.,
2019; Cho and Kang, 2022; Liu et al., 2024; Kim et al., 2021;
Jeon et al., 2023; Jang et al., 2023] improves the accuracy of
compressed models by transferring knowledge from uncom-
pressed models. KD is also compatible with pruning, by ef-
fectively compensating for the error induced by pruning.

Dynamic inference [Schuster et al., 2022; Varshney et al.,
2023; Raposo et al., 2024; Fu et al., 2024] accelerates LLMs
via dynamically adjusting the amount of computations based
on the input. Dynamic inference exhibits minimal accuracy
degradation since it determines the amount of computations
according to the importance of inputs. However, they have
a significant drawback in that their efficiency is diminished
when multiple inputs requiring different computations are
fed [Song et al., 2024]. In contrast, sublayer pruning consis-
tently preserves efficiency regardless of the number of inputs.

6 Conclusion
We propose SPRINT, an accurate sublayer pruning method
for accelerating LLMs. SPRINT addresses the inaccurate
sublayer selection problem of existing sublayer pruning
methods by factoring in latency and tunability information.
We propose activation checkpointing and fast candidate se-
lection techniques to shorten the running time of SPRINT. We
demonstrate that SPRINT achieves the best accuracy-speedup
trade-off when pruning Llama-2 and Llama-3 models.
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