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ABSTRACT

How can we accurately recommend actions for users to control
their devices at home? Action recommendation for smart home has
attracted increasing attention due to its potential impact on the
markets of Internet of Things (IoT). However, designing an effective
action recommender system is challenging because it requires han-
dling context correlations, considering both queried contexts and
previous histories of users, and dealing with capricious intentions
in history. In this work, we propose SmartSense, an accurate action
recommendation method for smart home. For individual action,
SmartSense summarizes its device control and temporal contexts
in a self-attentive manner, to reflect the importance of the cor-
relation between them. SmartSense then summarizes sequences
considering queried contexts in a query-attentive manner to extract
the query-related patterns from the sequential actions. SmartSense
also transfers the commonsense knowledge from routine data to bet-
ter handle intentions in action sequences. As a result, SmartSense
addresses all three main challenges of action recommendation for
smart home, and achieves the state-of-the-art performance giving
up to 9.8% higher mAP@1 than the best competitor.
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Figure 1: Historical and contextual dependency patterns

of SmartThings users. (a) Frequent previous device control

rankings of two different device controls. The next device

controls are affected by previous ones. (b) Frequent device

control rankings according to two different given hours.

Temporal contexts affect users’ device controls.
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Figure 2: An example of sequential device controls per-

formed by a SmartThings user. While the user is control-

ling the laundry-related devices (washer and dryer), other

devices (TV and water purifier) are also controlled since the

running times of the laundry-related devices are long. A se-

quence of actions contains capricious intentions.

1 INTRODUCTION

How can we accurately recommend actions for users to control
their devices at home? Action recommendation for smart home
has attracted increasing attention in data mining and machine
learning communities due to its potential impact on the markets
of virtual assistants [28] and the Internet of Things (IoT) [47]. The
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Table 1: SmartSense addresses all three challenges of action

recommendation for smart home, while competitors miss

one or more of the challenges.

Method
Challenges Context

correlations
Context-aware
personalization

Capricious
intentions

FMC [31], TransRec [7],
Caser [36], SASRec [16],
BERT4Rec [34]

SIAR [29] "

CA-RNN [25] " "

SmartSense(proposed) " " "

problem is to predict future actions (e.g. device controls) of users
and recommend the next action. It is of great value, as an accurate
recommendation keeps users safe when they forget a critical action
(e.g. shutting off a gas valve), and reduces the hassles of users when
performing a cumbersome action (e.g. arming an alarm).

Action recommendation for smart home entails three main chal-
lenges. First, the complicated correlations of multiple contexts such
as day of the week, hour affect users’ device controls. For instance,
laundry-related controls are highly affected by the correlation of
day of the week and hour since people usually do laundry on week-
end during the day. Second, both the sequential pattern of user
actions and queried contextual information affects the future user
actions. Figure 1a shows the frequency rankings of previously per-
formed device controls in two different cases from SmartThings
users, where SmartThings is a smart home system with 62 million
active users worldwide. As shown in the figure, the next actions
of people depend on the previous ones. For instance, people often
perform various controls on air conditioners before setting the
temperature, while they frequently control blinds and windows
before opening the blinds. Figure 1b shows the frequency rankings
of device controls depending on two different contexts. As shown in
the figure, the device controls are affected by the current temporal
contexts. For instance, people often control air conditioners before
dawn since the proper temperature is an important factor for sleep-
ing, while they frequently control blinds during the day because
controlling the amount of sunlight entering the room is important
for living. Figure 1 shows that both previous history and the current
context are crucial when predicting users’ current device controls.
Third, users’ action sequences contain capricious intentions. For
example, if a user performs a series of actions: TV off, blind off,
and light off, then we assume that the user wants to sleep. How-
ever, users do not always do their actions with only one intention.
Figure 2 shows an example of an action sequence performed by
a SmartThings user. As shown in the figure, a user controls a TV
and a water purifier that are not related to laundry while doing
laundry-related actions such as controlling a washer and a dryer.
Capricious intentions lead to a degraded performance of recom-
mendation models since they are trained to treat the actions in a
sequence as highly related actions.

Sequential recommender systems [7, 13, 16, 19, 20, 31, 34, 36, 45]
exploit sequential patterns of user actions to predict the future
user actions. However, they have not addressed any of the three
aforementioned main challenges. Context-aware recommender sys-
tems [25, 29] utilize the contextual information to predict the future

user actions. However, they have not considered both queried con-
texts and previous histories, and have not dealt with capricious
intentions in the histories. Thus, there is room for improvement of
designing an effective model because the previous works failed to
address such challenges.

In this work, we propose SmartSense, a novel approach for
action recommendation for smart home. We design SmartSense
with the following main ideas. First, SmartSense encodes indi-
vidual action with a device control and its temporal contexts by a
context-aware action encoder to consider their complicated corre-
lation. Second, SmartSense encodes an action sequence and the
current context by a context-attentive sequence encoder to consider
both personalization and the contextual information. Third, Smart-
Sense transfers the knowledge from routines of various users to
handle capricious intentions in action sequences. With these ideas,
SmartSense accurately recommends next actions that users would
prefer.

Table 1 compares our proposed SmartSense with other methods
in various perspectives. SmartSense is the only method that han-
dles all the three challenges of action recommendation for smart
home: context correlations, context-aware personalization, and
capricious intentions.
• Method.We propose SmartSense, an accurate method for ac-
tion recommendation for smart home. SmartSense correlates a
device control and its temporal contexts to capture their corre-
lation. SmartSense then summarizes a session’s history while
capturing highly related actions to the current contexts. Further-
more, SmartSense deals with capricious intentions by transfer-
ring commonsense knowledge from routine data.

• Experiment. Extensive experiments on real-world datasets show
that SmartSense provides state-of-the-art performance with up
to 9.8% higher mAP@1 in action recommendation for smart home
compared to the best competitors (see Table 4).

• Case study. We show in case studies that SmartSense success-
fully recommends actions taking into account the context corre-
lations and context-aware personalization (see Figures 5 and 6).

• Real-world dataset. We open-source the dataset from Smart-
Things which is a worldwide Internet of Things (IoT) platform
with 62 million users. This is the first dataset for studying action
recommendation in smart home. We provide sequential device
control histories from four countries and device routine data
from three territories (see Section 4.1). The datasets are available
at https://github.com/snudatalab/SmartSense.

2 RELATEDWORKS

2.1 Sequential Recommendation

Given a sequence of user behaviors, sequential recommendation
aims to recommend items to users by modeling sequential depen-
dencies of the user behaviors [38]; it is different from traditional rec-
ommendation systems [14, 21, 27, 33], whichmodel interactions in a
static way to capture only the general preference of users and items.
On early works, FPMC [31] combines first-order Markov chains
(MCs) and Matrix Factorization [21, 33] to model both sequential
behaviors and general interests of users. Besides the first-orderMCs,
higher-order MCs [7, 8] have been studied to consider previous
items in a sequence. In recent years, deep neural networks such as

https://github.com/snudatalab/SmartSense
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Figure 3: The overall architecture of SmartSense. Given session 𝑢’th sequence S𝑢 and the current temporal context (𝑐 (1)𝑢,𝑡 , 𝑐
(2)
𝑢,𝑡 ),

SmartSense predicts the probability ŷ𝑢,𝑡 of session 𝑢’s device control at time 𝑡 . SmartSense consists of context-aware ac-

tion encoder (Section 3.4), context-attentive sequence encoder (Section 3.5), and commonsense knowledge transfer module

(Section 3.6), where each encoder follows the structure of queried transformer encoder (Section 3.3). Context-aware action en-

coder interprets an individual action using the global query vector q𝑐 . Context-attentive sequence encoder then summarizes

the encoded sequence information using the current context. Commonsense knowledge transfer module regularizes device

embeddings with routine data. SmartSense estimates the probability of the next device control using the summarized vector.

Recurrent Neural Networks (RNN) [4, 11], Convolutional Neural
Networks (CNN) [22], and Transformers [37] have been adopted in
sequential recommendation to address the complicated non-linear
patterns in user behaviors. For instance, GRU4Rec [10] used Gated
Recurrent Unit (GRU) [4] to model sequential patterns for session
based recommendation. GRU4Rec+ [9] boosted the performance
of GRU4Rec for top-k sequential recommendation by improving
the loss function. Caser [36] employed CNN to capture sequential
patterns from both time-axis and feature-axis of sequences. SAS-
Rec [16] and BERT4Rec [34] utilized unidirectional Transformers
and bidirectional Transformers, respectively, to capture sequential
patterns in sequences while considering the importance of corre-
lations between behaviors. Advanced techniques such as memory
networks [3, 12], translation learning [7], hierarchical attention
mechanisms [43], graph neural networks [2, 26, 39], and contrastive
learning [45] have been adopted to sequential recommendation.
However, such sequential recommender systems fail to achieve
high performance in action recommendation for smart home since
they do not handle contextual information and capricious inten-
tions in sequences which should not be neglected for an accurate
action recommendation.

2.2 Context-aware Recommendation

Context-aware recommendation aims to capture user prefer-
ences by considering contextual attributes such as time and tem-
perature as well as interaction information between users and
items [1, 23]. Early works on context-aware recommendation [32,
41] adopted Factorization Machines (FMs) [30], which model all cor-
relations between variables, to capture the significant correlations
between contexts. Recent works leverage deep neural networks and
advanced technologies such as attention mechanisms [40] to model

higher-order interactions and generate more meaningful represen-
tations of contexts. In recent years, context-aware sequential rec-
ommendation, which considers sequential patterns as well as con-
textual information, has been studied. For instance, CA-RNN [25]
employs context-specific transition matrix to represent contextual
information, and adopts RNN to capture sequential pattern in a
history. Analogously, SIAR [29] utilizes stacked RNN to consider
temporal dynamics of both contexts and actions. However, such
context-aware recommender systems are still not suitable for action
recommendation for smart home since they do not simultaneously
consider both queried contexts and histories, or unravel the capri-
cious intentions in histories.

2.3 Transformer

Transformer [37] is a deep learningmodel adopting self-attention
mechanism which differentially weights the significance of each
part of the input data to handle sequential tasks. The main advan-
tages of Transformer are that it effectively learns the correlations
between the input variables and effectively represents the sequen-
tial pattern of data. Transformer has attracted increasing attention
in natural language processing [5], computer vision [6], stock pre-
diction [44], and recommender systems [16, 34] due to its superior
performance. The self-attention mechanism of Transformer enables
us to successfully capture significant correlations between a device
control and contexts, and effectively represent sequential patterns
resulting in accurate action recommendation for smart home.

3 PROPOSED METHOD

We define the problem of action recommendation for smart home
and propose SmartSense, an accurate method to solve the defined
problem.
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3.1 Action Recommendation for Smart Home

Action recommendation aims to recommend actions to users to
help them control their devices at home. We describe the problem
definition of action recommendation for smart home as follows.

Problem 1 (Action recommendation for smart home). For
each session 𝑢, we are given a sequence of history S𝑢 = [𝑥𝑢,1, . . . ,
𝑥𝑢,(𝑡−1) ], where 𝑥𝑢,𝑖 = (𝑑 (1)

𝑢,𝑖
, 𝑑

(2)
𝑢,𝑖

, 𝑐
(1)
𝑢,𝑖

, 𝑐
(2)
𝑢,𝑖

) is a quadruplet of in-
dices of 𝑖’th device, device control, day of week, and hour, respectively.
Given a previous sequence S𝑢 , and the current temporal contexts 𝑐 (1)𝑢,𝑡

and 𝑐 (2)𝑢,𝑡 , the goal is to accurately predict the current device 𝑑 (1)𝑢,𝑡 and

its control 𝑑 (2)𝑢,𝑡 .

Note that we aim to predict only the device control 𝑑 (2)𝑢,𝑡 , since
𝑑
(2)
𝑢,𝑡 also contains the information of the target device 𝑑

(1)
𝑢,𝑡 . To

address the problem, a method should carefully handle device con-
trols and their temporal contexts in the previous sequence, and
effectively reflect the current temporal context in the prediction.
Sequential recommendation methods [7, 16, 31, 34, 36] utilize only
sequences of device controls without considering any contextual
information. Context-aware recommendation methods [25, 29] con-
sider temporal contexts in the previous sequence, or deal with the
current temporal context. However, they are still unsatisfactory to
action recommendation for smart home since they do not consider
capricious intentions in the previous sequence.

3.2 Overview

We address the following challenges to achieve a high perfor-
mance of smart home recommendation.
C1. Considering the correlations of contexts.The complicated

correlations between a device control and various contexts
such as day of week and hour affect a user’s future device
control. How can we find meaningful correlations in the device
control and the various contexts?

C2. Considering both history and the current context. Both
a user’s past actions and the current context are crucial for
predicting the user’s current action. How can we personalize
the prediction while considering the current contexts?

C3. Handling capricious intentions.Capricious intentionsmake
us difficult to learn distant representations for actions with
different intentions, which leads to a degraded performance.
How can we learn representations of actions such that similar
intentions are close to each other and different intentions are
distant?

To address the aforementioned challenges, we propose Smart-
Sense with the following main ideas.
I1. Context-aware action encoder (Sections 3.3 and 3.4). We

encode a device control and its temporal contexts in a self-
attentive manner to capture significant correlations between
them.

I2. Context-attentive sequence encoder (Sections 3.3 and 3.5).
We encode a sequence of actions in a self-attentive way to cap-
ture the correlations between the actions. We then summarize
the sequence by a query-attention mechanism to consider the
current context in personalization.

Self-attention module

Input

Queried 
Transformer 

Encoder

Output

-layers

Given matrix 

Query-attention module

Transformer

Transformer

Given query

Figure 4: The queried transformer encoder (QTE) of Smart-

Sense. Given a set of input vectors and a query vector, QTE

summarizes the input vectors into a single output vector

while considering the correlations of the input vectors and

their relation to the query.

I3. Commonsense knowledge transfer (Section 3.6).We trans-
fer commonsense knowledge from routine data. Each routine
is intentionally defined by a user, as an explicit sequence of
actions. As a result, the knowledge transfer from the routine
data enables us to learn more meaningful representations of
actions.

Figure 3 shows the overall structure of SmartSense, which con-
sists of context-aware action encoder, context-attentive sequence
encoder, and common sense knowledge transfermodule. The context-
aware action encoder encodes an action of each time step, and then
the sequence encoder predicts the current action of the session
based on encoded previous actions and the current context. The
commonsense knowledge transfer module regularizes device em-
beddings to capture hidden relationships between them.

3.3 Queried Transformer Encoder

The aim of action recommendation for smart home is to predict
a current device control given a previous history and a current
context. To achieve the goal, we divide the task into two subtasks:
1) encoding individual action, and 2) encoding the sequential his-
tory with the current context. The two subtasks require the two
common functionalities as follows. First, we need to consider the
correlations between given variables since multiple variables are
intricately related. Second, we need to consider the significance of
each variable because the importance of each variable is different.
Then, how can we design a model to embody the two functionali-
ties? We propose a queried transformer encoder (QTE), which is
used for both two subtasks: action encoding and sequence encod-
ing. Our main ideas of QTE are 1) correlating given variables in a
self-attentive manner, and 2) capturing significant variables for a
query by a query-attentive mechanism. QTE is defined as follows:

h = 𝑓 (X, q), (1)

where h ∈ R𝑑 is the summarized vector, 𝑓 (·) is QTE, X ∈ R𝑘×𝑑 is
the input matrix, 𝑘 is the number of input vectors, 𝑑 is the dimen-
sionality of the input vectors, q ∈ R𝑑′ is the query vector, and 𝑑 ′ is
the dimensionality of the query vector. x𝑘 ∈ R𝑑 denotes the 𝑘’th
row of X representing the 𝑘’th input vector. Figure 4 depicts the
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structure of QTE. QTE consists of self-attention module and query-
attention module which correspond to functionalities of correlating
given variables and capturing significant variables, respectively. We
describe the self-attention module and the query-attention module
in detail.

Self-attention module. The goal of self-attention module is to
correlate given variables. We employ transformer encoder [37] for
the self-attention module since it represents all pair-wise correla-
tions between the given variables by learning different query, key,
and value weight matrices for each variable. Given an input matrix
X, we obtain query, key, and value matrices as follows:

Q = XW𝑄 ,K = XW𝐾 ,V = XW𝑉 , (2)

where Q,K,V ∈ R𝑘×𝑑 are query, key, and value matrices, respec-
tively; W𝑄 ,W𝐾 ,W𝑉 ∈ R𝑑×𝑑 are learnable weight matrices for
query, key, and value, respectively. We compute the transformed
matrix as follows:

X̄ = AV where A = softmax
(
QK⊤
√
𝑑

)
. (3)

X̄ ∈ R𝑘×𝑑 is the transformed matrix,A ∈ R𝑘×𝑘 is an attention score
matrix for all pairs between the variables, and softmax(·) indicates
the row-wise softmax function. We then adopt a position-wise feed
forward network (FNN) and residual connections as follows, to
impose nonlinearity in the transformation and enable it to learn an
identity function if needed:

H = Trans(X) = X + X̄ + FNN(X + X̄), (4)

where H ∈ R𝑘×𝑑 is the hidden representation matrix of the input
variables, Trans(·) is the transformer, FNN(·) is a 2-layered position-
wise feed forward networkwith the structureR𝑑 → R4𝑑 → R𝑑 . We
adopt multi-head attention in Q, K, and V because the multi-head
attention shows better performance than a single-head attention in
various works such as recommender systems [34], natural language
processing [5], and computer vision [17]. We also adopt dropout
and layer normalization after the attention and FNN to improve
the generalization performance. We stack the transformer layer
(Equation 4) 𝐿 times to represent the complicated relationships
between the input variables.

Query-attention module. We have the hidden representation
matrix H ∈ R𝑘×𝑑 and a query vector q ∈ R𝑑′ . We denote 𝑖’th row
vector in H as h𝑖 ∈ R𝑑 , and each h𝑖 corresponds to the hidden
representation vector of x𝑖 . The goal of query-attention module
is to summarize the hidden representation matrix H into a single
vector h ∈ R𝑑 while capturing significant variables depending on
the query vector q. In other words, we need to give more weight
to information relevant to the query since the input variables do
not equally contribute to the result. We propose a query-attention
module as follows:

h = QueryAtt(H, q) =
𝑘∑
𝑖=1

𝛼𝑖h𝑖 , where

𝛼𝑖 =
exp(𝛽𝑖 )∑𝑘
𝑗=1 exp

(
𝛽 𝑗
) , 𝛽𝑖 = q⊤ tanh

(
W𝐻h𝑖 + b𝐻

)
.

(5)

h ∈ R𝑑 is the summarized vector, H ∈ R𝑘×𝑑 is the hidden represen-
tation matrix, q ∈ R𝑑′ is the query vector, h𝑖 ∈ R𝑑 is 𝑖’th row vector

ofH, 𝛼𝑖 , 𝛽𝑖 ∈ R are a normalized and an unnormalized scores for h𝑖 ,
respectively,W𝐻 ∈ R𝑑′×𝑑 and b𝐻 ∈ R𝑑′ are learnable parameters,
and tanh(·) is the hyperbolic-tangent function. We first apply a
linear projection using the trainable parameters W𝐻 and b𝐻 to h𝑖 ,
to transform it into the space of the query vector q. The hyperbolic
tangent function makes the transformed vector give element-wise
weights to the query vector q. Finally, we perform the weighted
sum of the hidden vectors while considering the importance of each
hidden vector h𝑖 . As a result, we obtain the summarized vector h
while considering the correlations between the input vectors of X
using the self-attention module, and capturing the significant input
vectors depending on the query vector q using the query-attention
module.

3.4 Context-aware Action Encoder

The objective of the context-aware action encoder is to encode
the information of an individual action. To effectively encode each
action, the encoder requires two functionalities as follows. First, it is
necessary to correlate a device control and its temporal contexts. For
instance, assume one opens a blind on Monday morning. We need
to correlate opening the blind with morning since the correlation
is more important than each of them. Second, it is required to
give more weight to the significant information in an action. For
example, suppose a user turns on an air conditioner on Monday
night. In the action, turning on the air conditioner is more important
than the other information because the user is likely to turn off the
air conditioner in the future. Then, how can we consider the two
functionalities when encoding an action?

For 𝑖’th action in session 𝑢, we have a quadruplet of indices
(𝑑 (1)
𝑢,𝑖

, 𝑑
(2)
𝑢,𝑖

, 𝑐
(1)
𝑢,𝑖

, 𝑐
(2)
𝑢,𝑖

), where each of them are indices of device, de-
vice control, day of week, and hour, respectively. We firstly gain
each embedding vectors e(1)

𝑢,𝑖
, e(2)
𝑢,𝑖

, z(1)
𝑢,𝑖

, z(2)
𝑢,𝑖

∈ R𝑑 for the given in-
dices which correspond to the embedding vectors of 𝑑 (1)

𝑢,𝑖
, 𝑑 (2)
𝑢,𝑖

, 𝑐 (1)
𝑢,𝑖

,
and 𝑐 (2)

𝑢,𝑖
, respectively. To embody the aforementioned functionali-

ties, we propose to employ the queried transformer encoder (QTE)
for the context-aware action encoder as follows:

h𝑢,𝑖 = 𝑓𝑐 (X𝑢,𝑖 , qc), (6)

where h𝑢,𝑖 ∈ R𝑑 is the hidden representation vector of 𝑖’th action in
session 𝑢, 𝑓𝑐 (·) is the context-aware action encoder, X𝑢,𝑖 ∈ R4×𝑑 =

[e(1)
𝑢,𝑖

, e(2)
𝑢,𝑖

, z(1)
𝑢,𝑖

, z(2)
𝑢,𝑖

]⊤ is a matrix of stacked vectors, and q𝑐 ∈ R𝑑 is
a trainable global query vector. The context-aware action encoder
𝑓𝑐 uses the structure of QTE. We use the same query vector q𝑐
for all actions in the all sessions because we aim to learn global
representations for the significance of device controls and temporal
contexts. As a result, for 𝑖’th action of session 𝑢, we obtain the
encoded vector h𝑢,𝑖 which considers the correlations between the
device control and the temporal contexts, and gives more weight
to the significant information.

3.5 Context-attentive Sequence Encoder

The objective of the context-attentive sequence encoder is to
encode a sequence while considering the sequential patterns and
the current context. It is important to consider the correlations
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Table 2: Statistics of Log Datasets.

Name Region Time period (Y-M-D) # Sessions # Instances # Devices # Device controls
KR Korea 2021-11-20 ∼ 2021-12-20 12,992 285,409 38 272
US USA 2022-02-22 ∼ 2022-03-21 4,764 67,882 40 268
SP Spain 2022-02-28 ∼ 2022-03-30 1,506 15,665 34 234
FR France 2022-02-27 ∼ 2022-03-25 388 4,423 33 222

Table 3: Statistics of Routine Datasets.

Name Region # Routines # Devices
AP Asia-Pacific 17,773 36
NA North America 26,241 35
EU Europe 23,781 28

between actions to capture the meaning of the sequence. For in-
stance, locking the door comes after closing the window if the user
wants to go out. This example shows that the meaning of sequence
changes even if only one action changes. It is also critical to be
aware of the current context to predict the next action. For example,
assume a user has turned off the light. After that, the user is likely
to open the blind to brighten up the room at daytime, while is likely
to close the blind to sleep at night. Then, how can we consider
sequential patterns and the current contexts simultaneously when
encoding the sequence?

For each session 𝑢, we have a set of vectors [h𝑢,1, ..., h𝑢,(𝑡−1) ],
where h𝑢,𝑖 ∈ R𝑑 is the hidden representation vector of 𝑖’th action in
the session; note that h𝑢,1, ..., h𝑢,(𝑡−1) are from the context-aware
action encoder. To encode the session 𝑢, we propose to utilize
the queried transformer encoder (QTE) for the context-attentive
sequence encoder as follows:

s𝑢,𝑡 = 𝑓𝑠 (H𝑢 + P, concat(z(1)𝑢,𝑡 , z
(2)
𝑢,𝑡 )), (7)

where s𝑢,𝑡 ∈ R𝑑 is the encoded vector for the current time 𝑡 ,
𝑓𝑠 (·) is the context-attentive sequence encoder, H𝑢 ∈ R(𝑡−1)×𝑑 =

[h𝑢,1, . . . h𝑢,(𝑡−1) ]⊤ is a matrix of stacked vectors, P ∈ R(𝑡−1)×𝑑 is
a positional embedding matrix, concat(·) is the concatenation, and
z(1)𝑢,𝑡 , z

(2)
𝑢,𝑡 ∈ R𝑑 correspond to the embedding vectors of the current

temporal contexts 𝑐 (1)𝑢,𝑡 , 𝑐
(2)
𝑢,𝑡 where 𝑐 (1)𝑢,𝑡 and 𝑐

(2)
𝑢,𝑡 are day of week

and hour at the current time 𝑡 , respectively. The context-attentive
sequence encoder 𝑓𝑠 uses the structure of QTE. The positional em-
bedding matrix P allows us to identify the position of the input
variable, which leads us to learn sequential patterns. We define
the P as a trainable matrix as in previous works [34, 37] for better
generalization performance.

After obtaining s𝑢,𝑡 , we compute the probabilities of device con-
trols as follows:

ŷ𝑢,𝑡 = softmax(E s𝑢,𝑡 ), (8)
where ŷ𝑢,𝑡 ∈ R𝑁𝑑 is the predicted probabilities of device controls
at the current time 𝑡 for user 𝑢, softmax(·) is the softmax function,
E ∈ R𝑁𝑑×𝑑 is the matrix of device controls for the prediction, and
𝑁𝑑 is the number of device controls.

3.6 Commonsense Knowledge Transfer

The aim of commonsense knowledge transfer module is to refine
the embedding vectors based on the intention of actions. As shown
in Figure 2, histories of actions often contain capricious intentions.

This misleads the model to learn false relationship between two
unrelated actions which co-occurred in the same sequence but are
performed for different purposes. To solve this problem, we utilize
the routine data that include massive routines of multiple users.
Routine data are collections of frequently used device patterns trig-
gered by various contextual backgrounds. Devices of each routine
share the common intention since users submit routines to conve-
niently execute multiple actions for specific tasks such as doing the
laundry or cooling off the room. Our idea is to adopt transfer learn-
ing mechanism, which is widely used in various domain adaptation
tasks [15, 24, 35, 42, 46], to utilize the knowledge of the routine
data. Specifically, we perform regularization such that similarities
between devices in the same routine to be high while those not in
the same routine to be low. Thus, regularization from the routine
data makes embedding vectors of related devices sharing the same
intention to be closer to each other.

Let 𝑖’th routine instance R𝑖 be [𝑑1, 𝑑2 . . . , 𝑑𝑟 ], where 𝑑 𝑗 is 𝑗 ’th
device of the instance. Let e𝑗 ∈ R𝑑 be the embedding vector of
device 𝑑 𝑗 . Note that the commonsense knowledge transfer module
shares the device embeddings with the context-aware action en-
coder and the context-attentive sequence encoder. We define the
regularization loss to minimize as follows:

L𝑟𝑒𝑔 = −
∑
𝑖

∑
𝑑 𝑗 ∈R𝑖

©­«log
(
𝜎 (e⊤𝑗 e𝑗+1)

)
+

∑
𝑑𝑘 ∈𝑝 (R𝑖 )

log
(
𝜎 (−e⊤𝑗 e𝑘 )

)ª®¬ ,
(9)

where 𝜎 (·) is the sigmoid function and 𝑝 (R𝑖 ) is the negative sam-
ples of R𝑖 . For each device 𝑑 𝑗 , we randomly select a set of negative
devices of size𝑚, which are not in routine R𝑖 .

3.7 Objective Function

We train SmartSense to minimize the cross-entropy loss and
the regularization loss as follows:

L(X,Y) = − 1
𝑛

∑
𝑢

∑
𝑖

y𝑢,𝑡 (𝑖) log ŷ𝑢,𝑡 (𝑖) + L𝑟𝑒𝑔, (10)

where X ∈ R𝑛×𝑙×4 is an input tensor, and Y ∈ R𝑛×𝑁𝑑 is a matrix
of the ground-truth label; 𝑛 and 𝑙 are the numbers of sessions and
time steps, respectively, and 𝑁𝑑 is the number of device controls.
y𝑢,𝑡 ∈ R𝑁𝑑 is the one-hot vector of the ground-truth label for
session𝑢, and y𝑢,𝑡 (𝑖) ∈ R is the 𝑖’th element in the vector. Similarly,
ŷ𝑢,𝑡 ∈ R is the predicted probability for session 𝑢.

4 EXPERIMENTS

We perform experiments to answer the following questions:
Q1. Accuracy. Does SmartSense show higher accuracy in action

recommendation for smart home than baselines?
Q2. Ablation study. How do main ideas of SmartSense help

improving the performance of recommendation?
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Q3. Case study. Does SmartSense capture meaningful correla-
tions from each action? How do the recommendation results
of SmartSense change according to given contexts?

Q4. Embedding space analysis. Does SmartSense successfully
learn useful embedding vectors of contexts and devices?

4.1 Experimental Setup

We introduce our experimental setup: datasets, baselines, evalu-
ation metrics, experimental process, and the hyperparameters.

Datasets. We use real-world SmartThings datasets collected by
Samsung from various regions to evaluate the performance. There
are four log datasets and three routine datasets. Log datasets con-
tain histories of device controls executed by users of Bixby. These
are used to generate sequential instances for general sequential
recommendation. As explained in Section 3.6, routine datasets are
collections of frequently used device patterns triggered by various
contextual backgrounds. Those instances are submitted by users
of SmartThings. These datasets are used to gain commonsense
knowledge in the corresponding log datasets.

Tables 2 and 3 show the statistics of log datasets and routine
datasets, respectively. In the routine datasets, AP and NA corre-
spond to KR and US in log datasets, respectively. EU corresponds
to SP and FR in log datasets.

Baselines. We compare SmartSense with existing methods of
sequential recommendation and context-aware recommendation.

• POP recommends device controls based on their popularity.
• FMC [31] uses two item embeddings to build an item transition
matrix which predicts next device control.

• TransRec [7] represents relationships between consecutive items
as a vector operation to perform sequential recommendation.

• Caser [36] employs CNN [22] in both time-axis and feature-axis
to capture temporal dynamics in a sequential recommendation.

• SASRec [16] uses time-growing directional transformer encoder
to consider sequential patterns of user actions.

• BERT4Rec [34] utilizes BERT architecture [5] into sequential
recommendation.

• SIAR [29] stacks RNN layers of contexts and actions to consider
temporal dynamics of both contexts and actions.

• CA-RNN [25] uses context-specific transition matrix in RNN
cell to consider context-dependent features in a sequential rec-
ommendation.

Note that these baselines are not aware of commonsense knowledge
of action recommendation for smart home. Thus, baseline methods
use only log datasets during evaluation.

Evaluation metrics.We evaluate the performance of compet-
ing models with two evaluation metrics: hit ratio (HR@𝑘) and
mean average precision (mAP@𝑘). Both metrics compare the rec-
ommendation list of the model with the ground truth value. For
the 𝑘 size of recommendation list, HR@𝑘 treats every item in them
equally important, while mAP@𝑘 treats higher-ranked items more
importantly. We vary 𝑘 in {1, 3, 5} for all datasets.

Experimental process. For each session in a log dataset, we
create sequential instances with a window of length 10. The first
nine events of the window are input of the sequential recommenda-
tion model. Each input event is a pair of a temporal context and a

device control information. Temporal context of an event is a com-
bination of a day of week and hour based on the event’s timestamp.
The hour in a context is one of the 8 time ranges of 3 hours length:
0-3, 3-6, 6-9, 9-12, 12-15, 15-18, 18-21, and 21-24. Device control
information is composed of a device and its control. The device
control of the last event is the ground truth for the window. We
randomly split sequential instances into a training, a validation,
and a test sets in 7:1:2 ratio. We train the model until the validation
accuracy is maximized, and report the test accuracy.

Hyperparameters. All models are trained with Adam opti-
mizer [18] with learning rate 0.001 and 𝑙2 regularization coefficient
0.00001. For fair comparison, we set the size of embedding vectors
to 50 and the size of mini batch 1024 for all models. For both the
context-aware action encoder and the context-attentive sequence
encoder, we set the numbers of both transformer layers and the
heads as 2. We set the dropout ratio to 0.1, and the size of negative
samples𝑚 = 5 for the commonsense knowledge transfer module.

4.2 Recommendation Accuracy (Q1)

We measure the accuracy of SmartSense and baselines in four
real world datasets. Table 4 shows the result in terms of mAP. Note
that SmartSense consistently outperforms baselines in all cases.
Table 5 shows the result in terms of HR@k. Note that SmartSense
shows the best performance in most cases, for various 𝑘 . These
results show that SmartSense is an accurate method for action
recommendation for smart home.

4.3 Ablation Study (Q2)

We verify the effectiveness of our three main ideas, context-
aware action encoder, context-attentive sequence encoder, and
commonsense knowledge transfer. We compare SmartSense with
SmartSense-𝐴𝑐𝑡 , SmartSense-𝑆𝑒𝑞, SmartSense-𝑅𝑒𝑔, and Smart-
Sense-𝐴𝑙𝑙 . SmartSense-𝐴𝑐𝑡 is a SmartSense without a context-
aware action encoder. This model encodes each pair of a temporal
context and a device control as the mean value of corresponding
embeddings. Thus, the model is not aware of correlations of tempo-
ral context and device control. SmartSense-𝑆𝑒𝑞 is a SmartSense
without a context-attentive sequence encoder. The sequence en-
coder of this model summarizes the output of transformer layers
as a mean value instead of a weighted sum. This is equivalent to
the context-attentive sequence encoder where the given query is a
zero vector instead of the current temporal context embedding. In
this way, the model is not aware of the current temporal context
during prediction. SmartSense-𝑅𝑒𝑔 is a SmartSense without the
regularization from commonsense knowledge transfer module. This
model cannot access information gathered from routine datasets.
SmartSense-𝐴𝑙𝑙 is a SmartSense without any of the main ideas.

Table 6 shows that SmartSense is the most accurate model
among competitors, while SmartSense-𝐴𝑙𝑙 shows the worst ac-
curacy. In summary, all three main ideas are helpful to improve
performance of action recommendation for smart home.
4.4 Case Study (Q3)

We analyze cases to observe how SmartSense deals with context
information.

First, we observe the attention scores of the context-aware action
encoder to find out how SmartSense reacts to the given pair of
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Table 4: MAP@𝑘 of SmartSense and competitors for smart-home recommendation on four real-world datasets. SmartSense

outperforms all competitors in all cases, demonstrating its superiority of action recommendation for smart home. Bold and

underlined values indicate the best and the second-best accuracies, respectively.

mAP@𝑘

Model

Korea USA Spain France

@1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5

POP 0.3416 0.4918 0.5045 0.1886 0.3146 0.3737 0.4973 0.6337 0.6455 0.4949 0.5955 0.6114
FMC [31] 0.5075 0.6391 0.6569 0.4581 0.6082 0.6270 0.4102 0.5953 0.6015 0.4427 0.6330 0.6477
TransRec [7] 0.3854 0.5637 0.5830 0.3351 0.5240 0.5426 0.3819 0.6149 0.6209 0.4255 0.6238 0.6393
Caser [36] 0.5676 0.7064 0.7213 0.5535 0.7051 0.7177 0.7906 0.8548 0.8616 0.7706 0.8249 0.8295
SASRec [16] 0.5763 0.7064 0.7212 0.5657 0.7098 0.7228 0.7929 0.8570 0.8630 0.7740 0.8286 0.8389
BERT4Rec [34] 0.5927 0.7253 0.7393 0.5630 0.7121 0.7254 0.7887 0.8610 0.8662 0.7776 0.8475 0.8507
CA-RNN [25] 0.5703 0.6958 0.7095 0.4860 0.6315 0.6459 0.6748 0.7253 0.7350 0.5141 0.5650 0.5767
SIAR [29] 0.5936 0.7248 0.7381 0.5718 0.7163 0.7288 0.7913 0.8560 0.8628 0.7706 0.8258 0.8311

SmartSense (proposed) 0.6515 0.7650 0.7760 0.6247 0.7541 0.7639 0.8101 0.8707 0.8756 0.7944 0.8544 0.8578

Table 5: HR@𝑘 of SmartSense and competitors for smart-home recommendation on four real-world datasets. SmartSense

outperforms all competitors inmost cases, demonstrating its superiority of action recommendation for smart home. Bold and

underlined values indicate the best and the second-best accuracies, respectively.

HR@𝑘

Model

Korea USA Spain France

@1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5

POP 0.3416 0.6527 0.7095 0.1886 0.4872 0.7493 0.4973 0.7916 0.8426 0.4949 0.7243 0.7955
FMC [31] 0.5075 0.7921 0.8683 0.4581 0.7994 0.8811 0.4102 0.7966 0.8226 0.4427 0.8529 0.9161
TransRec [7] 0.3854 0.7649 0.8478 0.3351 0.7596 0.8405 0.3819 0.8825 0.9085 0.4255 0.8586 0.9247
Caser [36] 0.5676 0.8711 0.9345 0.5535 0.8886 0.9429 0.7906 0.9295 0.9591 0.7706 0.8859 0.9073
SASRec [16] 0.5763 0.8603 0.9240 0.5657 0.8862 0.9420 0.7929 0.9320 0.9682 0.7740 0.8938 0.9377
BERT4Rec [34] 0.5927 0.8825 0.9424 0.5630 0.8932 0.9502 0.7887 0.9461 0.9691 0.7776 0.9303 0.9460

CA-RNN [25] 0.5703 0.8428 0.9020 0.4860 0.8096 0.8718 0.6748 0.7906 0.8324 0.5141 0.6294 0.6814
SIAR [29] 0.5936 0.8800 0.9369 0.5718 0.8918 0.9453 0.7913 0.9314 0.9607 0.7706 0.8893 0.9119

SmartSense (proposed) 0.6515 0.8983 0.9454 0.6247 0.9079 0.9495 0.8101 0.9413 0.9623 0.7944 0.9232 0.9379

Table 6: Ablation study of SmartSense. We report the per-

formances by MAP@𝑘 . Note that SmartSense without at

least one of the three main ideas decreases the performance,

while SmartSense with all the ideas shows the best perfor-

mance.

Model

Korea USA

@1 @3 @5 @1 @3 @5

SmartSense-𝐴𝑐𝑡 0.5925 0.7256 0.7389 0.5802 0.7228 0.7350
SmartSense-𝑆𝑒𝑞 0.6484 0.7631 0.7743 0.6194 0.7489 0.7592
SmartSense-𝑅𝑒𝑔 0.6461 0.7608 0.7721 0.6189 0.7497 0.7600
SmartSense-𝐴𝑙𝑙 0.5941 0.7265 0.7396 0.5752 0.7198 0.7321

SmartSense 0.6515 0.7650 0.7760 0.6247 0.7541 0.7639

temporal context and a device control. Figure 5 visualizes the atten-
tion scores in the last layer of the encoder when the given temporal
context is Monday with the hour of 9 to 12. Each row of the figure
corresponds to a device control at a specific temporal context; the
colors show how much attention the encoder gives to day of the
week, hour, device, and its control information. Note that on the
first row, the attention score between hour and blind is relatively
high since the degree of control for incoming sunlight depends
on the time. The attention score between a computer and hour is
also high, because computers are turned on and off according to
work hours. However, dishwasher and robot cleaner do not have
strong correlations with hour. Both dishwasher and robot cleaner

Attention scores of temporal contexts are 
differently weighted in actions of each device

Figure 5: Attention scores in the context-aware action en-

coder (see Section 4.4 for details).

can be controlled when users are not paying attention to the device,
so they can be controlled at any time. In summary, SmartSense
successfully captures the important correlation from given inputs
with a context-aware action encoder.

Second, we observe how the current temporal context affects
recommendation results. Figure 6 shows top-5 recommendation
results and attention scores of each action in a history depending on
the current temporal context. The attention scores of the sixth and
the seventh actions are high in case (A), while attention scores of
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1. Light: on
2. Light: off
3. TV: on
4. Light: refresh
5. Light: set level

1. Light: off
2. Light: on
3. Light: refresh
4. Light: set level 
5. TV: off

Top-5
recommendations

Case (B) : currently nighttime
(Monday, 0~3)

Case (A) : currently daytime
(Sunday, 15~18)

Mon, 21~24, Light: on

Wed, 15~18, Light: on

Wed, 18~21, Light: off

Wed, 21~24, Light: on

Wed, 21~24, Light: off

Thu, 15~18, Light: on

Fri, 18~21, Light: on

Sat,  0~3,  Light: off

Sat, 21~24, Light: on

In
pu

t h
is

to
ry

SmartSense gives different
attention scores to actions
according to current contexts

Different
best actions

More suitable
actions

(During daytime) 
daytime actions have
large scores

(During nighttime)
nighttime actions have
large scores

Figure 6: Top-5 recommendation lists and attention scores

for each action depending on the current temporal context

(see Section 4.4 for details).

the fifth and the eighth actions are high in case (B). They are actions
with the most similar contexts compared to the current context in
each case. SmartSense recommends turning on a light the most in
case (A) but it recommends turning off a light the most in case (B),
which are device controls of the most attentive actions. This shows
that SmartSense dynamically collects important information from
the input sequence depending on the current temporal context.
Moreover, SmartSense recommends turning on a television in case
(A) but it recommends turning off a television in case (B). In case (A),
it is appropriate to recommend turning on the television because a
user would be active since the given context is daytime. However,
the given context is nighttime in case (B) so it is reasonable to
recommend turning off the television because a user would like
to sleep. This shows that SmartSense understands not only the
difference between contexts but also the hidden meanings of each
context. In summary, SmartSense is aware of the current tempo-
ral context while prediction, so it flexibly generates an accurate
recommendation for the given situation.

4.5 Embedding Space Analysis (Q4)

We observe the embeddings of devices and temporal contexts to
analyze how they reflects the real world.

First, we observe the device embedding space to verify the impact
of commonsense knowledge transfer in the representation learning.
Figure 7 shows that the cosine similarities between embedding
vectors of devices in SmartSense-𝑅𝑒𝑔 (SmartSense without the
commonsense knowledge transfer regularization), and SmartSense.
The standard deviation of cosine similarities in SmartSense is 0.21
while that of SmartSense-𝑅𝑒𝑔 is 0.11, which shows that device em-
bedding vectors in SmartSense-𝑅𝑒𝑔 have more complex patterns
as the regularizations are applied. Furthermore, embedding vectors
of similar devices in SmartSense such as sensors get closer to each
other in SmartSense compared to SmartSense-𝑅𝑒𝑔. This shows
that routine data are useful to find close relationships between
devices due to its task oriented composition.

Second, we visualize the hour embeddings to see whether Smart-
Sense successfully captures the characteristic of temporal contexts.
Figure 8 shows that embeddings of close hours are more similar

Devices Related to Indoor Environmental Quality
(e.g. Air Conditioner, Humidifier, and Blind)

SMARTSENSESMARTSENSE−"#$

Sensors

Electricity and Pipe

Figure 7: Matrix of cosine similarities between different de-

vice embedding vectors in SmartSense-𝑅𝑒𝑔 (left) and Smart-

Sense (right). Device embedding vectors of similar devices

are closer to each other in SmartSense compared to Smart-

Sense-𝑅𝑒𝑔, thanks to the common sense knowledge transfer

from routine data.

Similarity decreases as the
time difference increases

Figure 8: Average cosine similarity between two hour em-

bedding vectors depending on their time difference. Embed-

dings of close hours have similar values. This shows that

embeddings of temporal contexts successfully represent the

real world characteristics of corresponding entities.

to each other compared to farther hours. This shows SmartSense
extracts the crucial contextual information from temporal contexts.

5 CONCLUSION

In this paper, we propose SmartSense, an accurate action rec-
ommendation method for smart home. To reflect the importance of
correlations, SmartSense introduces context-aware action encoder
which captures significant correlations between the device control
and the temporal context. The context-attentive sequence encoder
of SmartSense summarizes users’ sequential pattern and queried
contextual information to consider both personalization and the
current context. Commonsense knowledge transfer in SmartSense
enables the model to successfully consider user intentions. As a
result, SmartSense shows the state-of-the-art accuracy giving up
to 9.8% higher mAP@1 in action recommendation for smart home
than the best competitor in extensive experiments. Through case
studies, we also show that SmartSense successfully captures the
correlations among actions and contexts.
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