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Abstract— Given sparse multi-dimensional data (e.g., (user,
movie, time; rating) for movie recommendations), how can we
discover latent concepts/relations and predict missing values?
Tucker factorization has been widely used to solve such problems
with multi-dimensional data, which are modeled as tensors. How-
ever, most Tucker factorization algorithms regard and estimate
missing entries as zeros, which triggers a highly inaccurate
decomposition. Moreover, few methods focusing on an accuracy
exhibit limited scalability since they require huge memory and
heavy computational costs while updating factor matrices.

In this paper, we propose P-TUCKER, a scalable Tucker
factorization method for sparse tensors. P-TUCKER performs
alternating least squares with a row-wise update rule in a fully
parallel way, which significantly reduces memory requirements
for updating factor matrices. Furthermore, we offer two variants
of P-TUCKER: a caching algorithm P-TUCKER-CACHE and an
approximation algorithm P-TUCKER-APPROX, both of which
accelerate the update process. Experimental results show that
P-TUCKER exhibits 1.7-14.1× speed-up and 1.4-4.8× less error
compared to the state-of-the-art. In addition, P-TUCKER scales
near linearly with the number of observable entries in a tensor
and number of threads. Thanks to P-TUCKER, we successfully
discover hidden concepts and relations in a large-scale real-world
tensor, while existing methods cannot reveal latent features due
to their limited scalability or low accuracy.

I. INTRODUCTION

Given a large-scale sparse tensor, how can we discover
latent concepts/relations and predict missing entries? How can
we design a time and memory efficient algorithm for analyzing
a given tensor? Various real-world data can be modeled as
tensors or multi-dimensional arrays (e.g., (user, movie, time;
rating) for movie recommendations). Many real-world tensors
are sparse and partially observable, i.e., composed of a vast
number of missing entries and a relatively small number
of observable entries. Examples of such data include item
ratings [1], social network [2], and web search logs [3] where
most entries are missing. Tensor factorization has been used
effectively for analyzing tensors [4], [5], [6], [7], [8], [9], [10].
Among tensor factorization methods [11], Tucker factorization
has received much interest since it is a generalized form of
other factorization methods like CANDECOMP/PARAFAC
(CP) decomposition, and it allows us to examine not only
latent factors but also relations hidden in tensors.

While many algorithms have been developed for Tucker fac-
torization [12], [13], [14], [15], most methods produce highly
inaccurate factorizations since they assume and predict missing
entries as zeros, and the values of whose missing entries

TABLE I: Scalability summary of our proposed method P-TUCKER
and competitors. A check-mark of a method indicates that the
algorithm is scalable with a particular aspect. P-TUCKER is the only
method scalable with all aspects of tensor scale, factorization speed,
memory requirement, and accuracy of decomposition; on the other
hand, competitors have limited scalability for some aspects.

Method Scale Speed Memory Accuracy

TUCKER-WOPT [18] X
TUCKER-CSF [20] X X

S-HOTSCAN [17] X X X

P-TUCKER X X X X

are unknown. Moreover, existing methods focusing only on
observed entries exhibit limited scalability since they exploit
tensor operations and singular value decomposition (SVD),
leading to heavy memory and computational requirements. In
particular, tensor operations generate huge intermediate data
for large-scale tensors, which is a problem called intermediate
data explosion [16]. A few Tucker algorithms [17], [18], [19],
[20] have been developed to address the above problems,
but they fail to solve the scalability and accuracy issues
at the same time. In summary, the major challenges for
decomposing sparse tensors are 1) how to handle missing
entries for an accurate and scalable factorization, and 2) how
to avoid intermediate data explosion and high computational
costs caused by tensor operations and SVD.

In this paper, we propose P-TUCKER, a scalable Tucker
factorization method for sparse tensors. P-TUCKER performs
alternating least squares (ALS) with a row-wise update rule,
which focuses only on observed entries of a tensor. The
row-wise updates considerably reduce the amount of memory
required for updating factor matrices, enabling P-TUCKER to
avoid the intermediate data explosion problem. Besides, to
speed up the update procedure, we provide its time-optimized
versions: a caching method P-TUCKER-CACHE and an ap-
proximation method P-TUCKER-APPROX. P-TUCKER fully
employs multi-core parallelism by carefully allocating rows
of a factor matrix to each thread considering independence
and fairness. Table I summarizes a comparison of P-TUCKER
and competitors with regard to various aspects.

Our main contributions are the following:

• Algorithm. We propose P-TUCKER, a scalable Tucker
factorization method for sparse tensors. The key ideas
of P-TUCKER include 1) row-wise updates of factor



matrices, 2) careful parallelization, and 3) time-optimized
variants: P-TUCKER-CACHE and P-TUCKER-APPROX.

• Theory. We theoretically derive a row-wise update rule
of factor matrices, and prove the correctness and conver-
gence of it. Moreover, we analyze the time and memory
complexities of P-TUCKER and other methods, as sum-
marized in Table III.

• Performance. P-TUCKER provides the best performance
across all aspects: tensor scale, factorization speed, mem-
ory requirement, and accuracy of decomposition. Experi-
mental results demonstrate that P-TUCKER achieves 1.7-
14.1× speed-up with 1.4-4.8× less error for large-scale
tensors, as summarized in Figures 6, 7, and 11.

The code of P-TUCKER and datasets used in this paper
are available at https://datalab.snu.ac.kr/ptucker/ for repro-
ducibility. The rest of this paper is organized as follows. Sec-
tion II explains preliminaries on a tensor, its operations, and
its factorization methods. Section III describes our proposed
method P-TUCKER. Section IV presents experimental results
of P-TUCKER and other methods. Section V describes our
discovery results on the MovieLens dataset. After introducing
related works in Section VI, we conclude in Section VII.

II. PRELIMINARIES

We describe the preliminaries of a tensor in Section II-A,
its operations in Section II-B, and its factorization methods in
Section II-C. Notations are summarized in Table II.
A. Tensor

Tensors, or multi-dimensional arrays, are a generalization
of vectors (1-order tensors) and matrices (2-order tensors) to
higher orders. As a matrix has rows and columns, an N -order
tensor has N modes; their lengths (also called dimensionali-
ties) are denoted by I1 through IN , respectively. We denote
tensors by boldface Euler script letters (e.g., X), matrices by
boldface capitals (e.g., A), and vectors by boldface lowercases
(e.g., a). An entry of a tensor is denoted by the symbolic name
of the tensor with its indices in subscript. For example, ai1j1
indicates the (i1, j1)th entry of A, and X(i1,...,iN ) denotes the
(i1, ..., iN )th entry of X. The i1th row of A is denoted by
ai1:, and the i2th column of A is denoted by a:i2 .

B. Tensor Operations

We review some tensor operations used for Tucker factor-
ization. More tensor operations are summarized in [11].

Definition 1 (Frobenius Norm): Given an N-order tensor
X (∈ RI1×...×IN ), the Frobenius norm ||X|| of X is given
by ||X|| =

√∑
∀(i1,...,iN )∈X X2

(i1,...,iN ).

Definition 2 (Matricization/Unfolding): Matricization
transforms a tensor into a matrix. The mode-n matricization
of a tensor X ∈ RI1×I2×···×IN is denoted as X(n). The
mapping from an element (i1, ..., iN ) of X to an element
(in, j) of X(n) is given as follows:

j = 1 +

N∑
k=1,k 6=n

[
(ik − 1)

k−1∏
m=1,m 6=n

Im

]
. (1)

TABLE II: Table of symbols.

Symbol Definition

X input tensor (∈ RI1×...×IN )
G core tensor (∈ RJ1×...×JN )
N order of X

In, Jn dimensionality of the nth mode of X and G

A(n) nth factor matrix (∈ RIn×Jn)

a
(n)
injn

(in, jn)th entry of A(n)

Ω set of observable entries of X
Ω

(n)
in

set of observable entries whose nth mode’s index is in
|Ω|, |G| number of observable entries of X and G
λ regularization parameter for factor matrices
‖X‖ Frobenius norm of tensor X
T number of threads
α an entry (i1, ..., iN ) of input tensor X
β an entry (j1, ..., jN ) of core tensor G

Pres cache table (∈ R|Ω|×|G|)
p truncation rate

Note that all indices of a tensor and a matrix begin from 1.
Definition 3 (n-Mode Product): n-mode product enables

multiplications between a tensor and a matrix. The n-
mode product of a tensor X ∈ RI1×I2×···×IN with
a matrix U ∈ RJn×In is denoted by X ×n U (∈
RI1×···×In−1×Jn×In+1×···×IN ). Element-wise, we have

(X×n U)i1···in−1jnin+1···iN =

In∑
in=1

(X(i1i2···iN )ujnin). (2)

C. Tensor Factorization Methods

Fig. 1: Tucker factorization for a 3-way tensor.

Our proposed method P-TUCKER is based on Tucker factor-
ization, one of the most popular decomposition methods. More
details about other factorization algorithms are summarized in
Section VI and [11].

Definition 4 (Tucker Factorization): Given an N-order ten-
sor X (∈ RI1×...×IN ), Tucker factorization approximates X by
a core tensor G (∈ RJ1×...×JN ) and factor matrices {A(n) ∈
RIn×Jn |n = 1...N}. Figure 1 illustrates a Tucker factorization
result for a 3-way tensor. Core tensor G is assumed to be
smaller and denser than the input tensor X, and factor matrices
A(n) to be normally orthogonal. Regarding interpretations of
factorization results, each factor matrix A(n) represents the
latent features of the object related to the nth mode of X,
and each element of a core tensor G indicates the weights of
the relations composed of columns of factor matrices. Tucker
factorization with tensor operations is presented as follows:

min
G,A(1),...,A(N)

||X− G×1 A
(1) · · · ×N A(N)||. (3)

Note that the loss function (3) is calculated by all entries
of X, and whole missing values of X are regarded as zeros.

https://datalab.snu.ac.kr/ptucker/


Concurrently, an element-wise expression is given as follows:

X(i1,...,iN ) ≈
∑

∀(j1,...,jN )∈G

G(j1,...,jN )

N∏
n=1

a
(n)
injn

. (4)

Equation (4) is used to predict values of missing entries after
G,A(1), ...,A(N) are found. We define the reconstruction error
of Tucker factorization of X by the following rule. Note that
Ω is the set of observable entries of X.√√√√√ ∑
∀(i1,...,iN )∈Ω

X(i1,...,iN ) −
∑

∀(j1,...,jN )∈G
G(j1,...,jN )

N∏
n=1

a
(n)
injn

2

(5)

Definition 5 (Sparse Tucker Factorization): Given a tensor
X (∈ RI1×...×IN ) with observable entries Ω, the goal of sparse
Tucker factorization of X is to find factor matrices A(n) (∈
RIn×Jn , n = 1, · · · , N) and a core tensor G (∈ RJ1×...×JN ),
which minimize (6).

L(G,A(1), ...,A(N)) =

∑
∀(i1,...,iN )∈Ω

X(i1,...,iN ) −
∑

∀(j1,...,jN )∈G

G(j1,...,jN )

N∏
n=1

a
(n)
injn

2

+ λ

N∑
n=1

‖A(n)‖
2

(6)

Note that the loss function (6) only depends on observable
entries of X, and L2 regularization is used in (6) to prevent
overfitting, which has been generally utilized in machine
learning problems [21], [22], [23].

Definition 6 (Alternating Least Squares): To minimize the
loss functions (3) and (6), an alternating least squares (ALS)
technique is widely used [11], [14], which updates a factor
matrix or a core tensor while keeping all others fixed.

Algorithm 1: Tucker-ALS
Input : Tensor X ∈ RI1×I2×···×IN , and

core tensor dimensionality J1, ..., JN .
Output: Updated factor matrices A(n) ∈ RIn×Jn

(n = 1, ..., N), and
updated core tensor G ∈ RJ1×J2×···×JN .

1 initialize all factor matrices A(n)

2 repeat
3 for n = 1...N do
4 Y← X×1 A(1)T · · · ×n−1 A(n−1)T ×n+1

A(n+1)T · · · ×N A(N)T

5 A(n) ← Jn leading left singular vectors of Y(n)

6 until the max. iteration or reconstruction error converges;
7 G← X×1 A(1)T · · · ×N A(N)T

Algorithm 1 describes a conventional Tucker factorization
based on the ALS, which is called the higher-order orthogonal
iteration (HOOI) (see [11] for details). The computational
and memory bottleneck of Algorithm 1 is updating factor
matrices A(n) (lines 4-5), which requires tensor operations
and SVD. Specifically, Algorithm 1 requires storing a full-
dense matrix Y(n), and the amount of memory needed
for storing Y(n) is O(In

∏
m 6=n Jm). The required memory

grows rapidly when the order, the dimensionality, or the

rank of a tensor increase, and ultimately causes intermedi-
ate data explosion [16]. Moreover, Algorithm 1 computes
SVD for a given Y(n), where the complexity of exact SVD
is O(min(In

∏
m 6=n J

2
m, I

2
n

∏
m 6=n Jm)). The computational

costs for SVD increase rapidly as well for a large-scale tensor.
Notice that Algorithm 1 assumes missing entries of X as zeros
during the update process (lines 4-5), and core tensor G (line
7) is uniquely determined and relatively easy to be computed
by an input tensor and factor matrices.

In summary, applying the naive Tucker-ALS algorithm on
sparse tensors generates severe accuracy and scalability issues.
Therefore, Algorithm 1 needs to be revised to focus only on
observed entries and scale for large-scale tensors at the same
time. In that case, an alternative ALS approach is applicable
to Algorithm 1, which is utilized for partially observable
matrices [23] and CP factorizations [24]. The alternative ALS
approach is discussed in Section III.

Definition 7 (Intermediate Data): We define intermediate
data as memory requirements for updating A(n) (lines 4-5
in Algorithm 1), excluding memory space for storing X, G,
and A(n). The size of intermediate data plays a critical role in
determining which Tucker factorization algorithms are space-
efficient, as we will discuss in Section III-E2.

III. PROPOSED METHOD

We describe P-TUCKER, our proposed Tucker factorization
algorithm for sparse tensors. As described in Definition 6,
the computational and memory bottleneck of the standard
Tucker-ALS algorithm occurs while updating factor matrices.
Therefore, it is imperative to update them efficiently in order
to maximize scalability of the algorithm. However, there are
several challenges in designing an optimized algorithm for
updating factor matrices.

1) Exploit the characteristic of sparse tensors. Sparse
tensors are composed of a vast number of missing entries
and a small number of observable entries. How can we
exploit the sparsity of given tensors to design an accurate
and scalable algorithm for updating factor matrices?

2) Maximize scalability. The aforementioned Tucker-ALS
algorithm suffers from intermediate data explosion and
high computational costs while updating factor matrices.
How can we formulate efficient algorithms for updating
factor matrices in terms of time and memory?

3) Parallelization. It is crucial to avoid race conditions
and adjust workloads between threads to thoroughly
employ multi-core parallelism. How can we apply data
parallelism on updating factor matrices in order to scale
up linearly with respect to the number of threads?

To overcome the above challenges, we suggest the following
main ideas, which we describe in later subsections.

1) Row-wise update rule fully exploits the sparsity of a
given tensor and enhances the accuracy of a factorization
(Figure 3 and Section III-B).

2) P-TUCKER-CACHE and P-TUCKER-APPROX accel-
erate the update process by caching intermediate calcula-
tions and truncating “noisy” entries from a core tensor,



while P-TUCKER itself provides a memory-optimized
algorithm by default (Section III-C).

3) Careful distribution of work assures that each thread
has independent tasks and balanced workloads when P-
TUCKER updates factor matrices. (Section III-D).

We first suggest an overview of how P-TUCKER factor-
izes sparse tensors using Tucker method in Section III-A.
After that, we describe details of our main ideas in Sec-
tions III-B∼III-D, and we offer a theoretical analysis of P-
TUCKER in Section III-E.
A. Overview

P-TUCKER provides an efficient Tucker factorization algo-
rithm for sparse tensors.

Fig. 2: An overview of P-TUCKER. After initialization, P-TUCKER
updates factor matrices in a fully-parallel way. When the reconstruc-
tion error converges, P-TUCKER performs QR decomposition to make
factor matrices orthogonal and updates a core tensor.

Figure 2 and Algorithm 2 describe the main process of P-
TUCKER. First, P-TUCKER initializes all A(n) and G with
random real values between 0 and 1 (step 1 and line 1). After
that, P-TUCKER updates factor matrices (steps 2-3 and line 3)
by Algorithm 3 explained in Section III-B. When all factor
matrices are updated, P-TUCKER measures reconstruction
error using (5) (step 4 and line 4). In case of P-TUCKER-
APPROX (step 5 and lines 5-6), P-TUCKER-APPROX removes
“noisy” entries of G by Algorithm 4 explained in Section III-C.
P-TUCKER stops iterations if the error converges or the
maximum iteration is reached (line 7). Finally, P-TUCKER
performs QR decomposition on all A(n) to make them or-
thogonal and updates G (step 6 and lines 8-11). Specifically,
QR decomposition [25] on each A(n) is defined as follows:

A(n) = Q(n)R(n), n = 1...N (7)
where Q(n) ∈ RIn×Jn is column-wise orthonormal and
R(n) ∈ RJn×Jn is upper-triangular. Therefore, by substitut-
ing Q(n) for A(n), P-TUCKER succeeds in making factor ma-
trices orthogonal. Core tensor G must be updated accordingly
in order to maintain the same reconstruction error. According
to [26], the update rule of core tensor G is given as follows:

G← G×1 R
(1) · · · ×N R(N). (8)

Algorithm 2: P-TUCKER for Sparse Tensors
Input : Tensor X ∈ RI1×I2×···×IN ,

core tensor dimensionality J1, ..., JN , and
truncation rate p (P-TUCKER-APPROX only).

Output: Updated factor matrices
A(n) ∈ RIn×Jn(n = 1, ..., N),
and updated core tensor G ∈ RJ1×J2×···×JN .

1 initialize factor matrices A(n) (n = 1, ..., N) and core tensor G
2 repeat
3 update factor matrices A(n) (n = 1, ..., N) by Algorithm 3
4 calculate reconstruction error using (5)
5 if P-TUCKER-APPROX then . G Truncation
6 remove “noisy” entries of G by Algorithm 4

7 until the maximum iteration or ‖X−X′‖ converges;
8 for n = 1...N do
9 A(n) → Q(n)R(n) . QR decomposition

10 A(n) ← Q(n) . Orthogonalize A(n)

11 G← G×n R(n) . Update core tensor G

B. Row-wise Updates of Factor Matrices

P-TUCKER updates factor matrices in a row-wise manner
based on ALS, where an update rule for a row is computed
by only observed entries of a tensor. From a high-level point
of view, as most ALS methods do, P-TUCKER updates a
factor matrix at a time while maintaining all others fixed.
However, when all other matrices are fixed, there are several
approaches [24] for updating a single factor matrix. Among
them, P-TUCKER selects a row-wise update method; a key
benefit of the row-wise update is that all rows of a factor
matrix are independent of each other in terms of minimizing
the loss function (6). This property enables applying multi-core
parallelism on updating factor matrices. Given a row of a factor
matrix, an update rule is derived by computing a gradient with
respect to the given row and setting it as zero, which minimizes
the loss function (6). The update rule for the inth row of the
nth factor matrix A(n) (see Figure 4) is given as follows; the
proof of Equation (9) is in Theorem 1.

[a
(n)
in1, ..., a

(n)
inJn

]← arg min
[a

(n)
in1,...,a

(n)
inJn

]

L(G,A(1), ...,A(N))

= c
(n)
in: × [B

(n)
in

+ λIJn ]−1

(9)

where B
(n)
in

is a Jn × Jn matrix whose (j1, j2)th entry is∑
∀(i1,...,iN )∈Ω

(n)
in

δ
(n)
(i1,...,iN )(j1)δ

(n)
(i1,...,iN )(j2), (10)

c
(n)
in: is a length Jn vector whose jth entry is∑

∀(i1,...,iN )∈Ω
(n)
in

X(i1,...,iN )δ
(n)
(i1,...,iN )(j), (11)

δ
(n)
(i1,...,iN ) is a length Jn vector whose jth entry is∑

∀(j1...jn=j...jN )∈G

G(j1...jn=j...jN )

∏
k 6=n

a
(k)
ikjk

, (12)

Ω
(n)
in

indicates the subset of Ω whose nth mode’s index is
in, λ is a regularization parameter, and IJn is a Jn × Jn
identity matrix. As shown in Figure 4, the update rule for



Fig. 3: An overview of updating factor matrices. P-TUCKER performs a row-wise ALS which updates each row of a factor matrix A(n) while
keeping all the others fixed. Since all rows of a factor matrix are independent of each other in terms of minimizing the loss function (6),
P-TUCKER fully exploits multi-core parallelism to update all rows of A(n). First, all rows are carefully distributed to all threads to achieve
a uniform workload among them. After that, all threads update their allocated rows in a fully parallel way. In a single thread, the allocated
rows are updated in a sequential way. Finally, P-TUCKER aggregates all updated rows from all threads to update A(n). P-TUCKER iterates
this update procedure for all factor matrices one by one.

Fig. 4: An illustration of an update rule for a row of a factor matrix. P-
TUCKER requires three intermediate data B

(n)
in

, c(n)
in: , and δ(n)

(i1,...,iN )

for updating the inth row of A(n). Note that λ is a regularization
parameter, and IJn is a Jn × Jn identity matrix.

the inth row of A(n) requires three intermediate data B
(n)
in

,
c

(n)
in: , and δ(n)

(i1,...,iN ). Those data are computed by the subset of

observable entries Ω
(n)
in

. Thus, computational costs of updating
factor matrices are proportional to the number of observable
entries, which lets P-TUCKER fully exploit the sparsity of
given tensors. Moreover, P-TUCKER predicts missing values
of a tensor using (4), not as zeros. Equation (4) is computed by
updated factor matrices and a core tensor, and they are learned
by observed entries of a tensor. Hence, P-TUCKER not only
enhances the accuracy of factorizations, but also reflects the
latent-characteristics of observed entries of a tensor. Note that
a matrix [B

(n)
in

+ λIJn ] is positive-definite and invertible, and
a proof of the update rule is summarized in Section III-E1.

Algorithm 3 describes how P-TUCKER updates factor ma-
trices. First, in case of P-TUCKER-CACHE (lines 1-4), it
computes the values of all entries in a cache table Pres
(∈ R|Ω|×|G|) which caches intermediate multiplication results
generated while updating factor matrices. This memoization
technique allows P-TUCKER-CACHE to be a time-efficient

Algorithm 3: P-TUCKER for Updating Factor Matrices
Input : Tensor X ∈ RI1×I2×···×IN ,

factor matrices A(n) ∈ RIn×Jn (n = 1, ..., N),
core tensor G ∈ RJ1×J2×···×JN , and
cache table Pres ∈ R|Ω|×|G| (P-TUCKER-CACHE only).

Output: Updated factor matrices A(n) ∈ RIn×Jn (n = 1, ..., N).
1 if P-TUCKER-CACHE then . Precompute Pres
2 for α = ∀(i1, ..., iN ) ∈ Ω do . In parallel
3 for β = ∀(j1, ..., jN ) ∈ G do
4 Pres[α][β]← Gβ

∏N
k=1 a

(k)
ikjk

5 for n = 1...N do . nth factor matrix
6 for in = 1...In do . inth row, in parallel

7 for α = ∀(i1, ..., iN ) ∈ Ω
(n)
in

do
8 for β = ∀(j1, ..., jN ) ∈ G do . Compute δ
9 if P-TUCKER then

10 δ
(n)
α (jn)← δ

(n)
α (jn) + Gβ

∏
k 6=n a

(k)
ikjk

11 if P-TUCKER-CACHE then
12 δ

(n)
α (jn)← δ

(n)
α (jn) +

Pres[α][β]

a
(n)
injn

13 calculate B
(n)
in

and c
(n)
in: using (10) and (11)

14 find the inverse matrix of [B
(n)
in

+ λIJn ]

15 update [a
(n)
in1, · · · , a

(n)
inJn

] using (9)

16 if P-TUCKER-CACHE then . Update Pres
17 for α = ∀(i1, ..., iN ) ∈ Ω do . In parallel
18 for β = ∀(j1, ..., jN ) ∈ G do
19 Pres[α][β]← Pres[α][β]

(a,old)
(n)
injn

× (a, new)
(n)
injn

algorithm. Next, P-TUCKER chooses a row a
(n)
in: of a factor

matrix A(n) to update (lines 5-6). After that, P-TUCKER

computes B
(n)
in

and c
(n)
in: required for updating a row a

(n)
in:

(lines 7-13). P-TUCKER performs matrix inverse operation
on [B

(n)
in

+ λIJn ] (line 14) and updates a row a
(n)
in: by the

multiplication of c(n)
in: and [B

(n)
in

+ λIJn ]−1 (line 15). In case



of P-TUCKER-CACHE, it recalculates Pres using the existing
and updated A(n) (lines 16-19) whenever A(n) is updated.
Note that α and β indicate an entry of X and G, respectively.

C. Variants: P-TUCKER-CACHE and P-TUCKER-APPROX

As discussed in Section III-B, P-TUCKER requires three in-
termediate data: B(n)

in
, c(n)

in: , and δ(n)
(i1,...,iN ) whose memory re-

quirements are O(J2
n). Considering the memory complexity of

the naive Tucker-ALS, which is O(In
∏
m6=n Jm), P-TUCKER

successfully provides a memory-optimized algorithm. We can
further optimize P-TUCKER in terms of time by a caching al-
gorithm (P-TUCKER-CACHE) and an approximation algorithm
(P-TUCKER-APPROX).

The crucial difference between P-TUCKER and P-TUCKER-
CACHE lies in the computation of the intermediate vector δ
(lines 9-12 in Algorithm 3). In case of P-TUCKER, updating
δ requires N times of multiplications for a given entry pair
(α, β) (line 10), which takes O(N). However, if we cache the
results of those multiplications for all entry pairs, the update
only takes O(1) (line 12). This trade-off distinguishes P-
TUCKER-CACHE and P-TUCKER. P-TUCKER-CACHE accel-
erates intermediate calculations by the memoization technique
with the cache table Pres. Meanwhile, P-TUCKER requires
only small vectors c

(n)
in: and δ

(n)
(i1,...,iN ) (∈ RJn ) and a small

matrix B
(n)
in

(∈ RJn×Jn ) as intermediate data. Note that when
a

(n)
injn

is 0 (lines 12 and 19), P-TUCKER-CACHE conducts the
multiplications as P-TUCKER does (line 10).

The main intuition of P-TUCKER-APPROX is that there exist
“noisy” entries in a core tensor G, and we can accelerate the
update process by truncating these “noisy” entries of G. Then,
how can we determine whether an entry of G is “noisy” or
not? A naive approach could be treating an entry (j1, ..., jN ) ∈
G with small G(j1,...,jN ) value as ”noisy” like the truncated
SVD [27]. However, in this case, small-value entries are not
always negligible since their contributions to minimizing the
error (5) can be larger than that of large-value ones. Hence,
we propose more precise criterion which regards an entry β =
(j1, ..., jN ) ∈ G with a high R(β) value as “noisy”. R(β)
indicates a partial reconstruction error produced by an entry β,
derived from the sum of terms only related to β in (5). Given
an entry β = (j1, ..., jN ) ∈ G, R(β) is given as follows:

Fig. 5: Distribution of partial reconstruction error R(β) and ac-
cumulation of relative reconstruction error produced by an entry
β = (j1, ..., jN ) of a core tensor G. Note that 20% “noisy“ entries
of G generate 80% of total reconstruction error.

Algorithm 4: Removing noisy entries of a core tensor G

in P-TUCKER-APPROX

Input : Tensor X ∈ RI1×I2×···×IN ,
factor matrices A(n) ∈ RIn×Jn(n = 1, ..., N),
core tensor G ∈ RJ1×J2×···×JN , and
truncation rate p (0 < p < 1).

Output: Truncated core tensor G′ ∈ RJ1×J2×···×JN .
1 for β = ∀(j1, ..., jN ) ∈ G do
2 compute a partial reconstruction error R(β) by (13)

3 sort R(β) in descending order with their indices
4 remove p|G| entries in G, whose R(β) value are ranked within

top-p|G| among all R(β) values.

∑
∀α∈Ω

((
Xα −

∑
∀γ∈G

Gγ

N∏
n=1

a
(n)
injn

)2

−
(
Xα −

∑
∀γ 6=β

Gγ

N∏
n=1

a
(n)
injn

)2
)

=

∑
∀α∈Ω

(Gβ

N∏
n=1

a
(n)
injn

)

−2Xα + Gβ

N∏
n=1

a
(n)
injn

+ 2
∑
∀γ 6=β

Gγ

N∏
n=1

a
(n)
injn

.
(13)

Note that we use α, β, and γ symbols to simplify the
equation. R(β) suggests a more precise guideline of “noisy”
entries since R(β) is a part of (5), while the naive approach
assumes the error based on the value G(j1,...,jN ). Figure 5
illustrates a distribution of R(β) and a cumulative function of
relative reconstruction error on the latest MovieLens dataset
(J = 10). As expected by our intuition, only 20% entries of G
generate about 80% of total reconstruction error. Algorithm 4
describes how P-TUCKER-APPROX truncates “noisy” entries
in G. It first computes R(β) (lines 1-2) for all entries in G,
and sort R(β) in descending order (line 3) as well as their
indices. Finally, it truncates top-p|G| “noisy” entries of G

(line 4). P-TUCKER-APPROX performs Algorithm 4 for each
iteration (lines 3-6 in Algorithm 2), which reduces the number
of non-zeros in G step-by-step. Therefore, the elapsed time
per iteration also decreases since the time complexity of P-
TUCKER-APPROX depends on the number of non-zeros |G|.
Practically, we note that P-TUCKER-APPROX may require few
iterations to run faster than P-TUCKER due to overheads from
calculating R(β), which is computed for all iterations.

With the above optimizations, P-TUCKER becomes the
most time and memory efficient method in theoretical and
experimental perspectives (see Table III).

D. Careful Distribution of Work

There are three sections where multi-core parallelization
is applicable in Algorithms 2 and 3. The first section (lines
2-4 and 17-19 in Algorithm 3) is for P-TUCKER-CACHE
when it computes and updates the cache table Pres. The
second section (lines 6-15 in Algorithm 3) is for updating
factor matrices, and the last section (line 4 in Algorithm 2)
is for measuring the reconstruction error. For each section, P-
TUCKER carefully distributes tasks to threads while maintain-
ing the independence between them. Furthermore, P-TUCKER
utilizes a dynamic scheduling method [28] to assure that
each thread has balanced workloads, which directly affects
the performance (see Section IV-D). The details of how P-
TUCKER parallelizes each section are as follows. Note that T



indicates the number of threads used for parallelization.
• Section 1: Computing and Updating Cache Table
Pres (Only for P-TUCKER-CACHE). All rows of Pres
are independent of each other when they are computed
or updated. Thus, P-TUCKER distributes all rows equally
over T threads, and each thread computes or updates
allocated rows independently using static scheduling.

• Section 2: Updating Factor Matrices. All rows of A(n)

are independent of each other regarding minimizing the
loss function (6). Therefore, P-TUCKER distributes all
rows uniformly to each thread, and updates them in
parallel. Since |Ω(n)

in
| differs for each row, the workload

of each thread may vary considerably. Thus, P-TUCKER
employs dynamic scheduling in this part.

• Section 3: Calculating Reconstruction Error. All ob-
servable entries are independent of each other in measur-
ing the reconstruction error. Thus, P-TUCKER distributes
them evenly over T threads, and each thread computes
the error separately using static scheduling. At the end,
P-TUCKER aggregates the partial error from each thread.

E. Theoretical Analysis

1) Convergence Analysis: We theoretically prove the cor-
rectness and the convergence of P-TUCKER.

Theorem 1 (Correctness of P-TUCKER): The proposed
row-wise update rule (14) minimizes the loss function (6)
regarding the updated parameters.

arg min
[a

(n)
in1,...,a

(n)
inJn

]

L(G,A(1), ...,A(N)) = c
(n)
in: × [B

(n)
in

+ λIJn ]−1

(14)
Proof:

∂L

∂a
(n)
injn

= 0, ∀jn, 1 ≤ jn ≤ Jn

⇔
∑

∀α∈Ω
(n)
in

((
Xα−

∑
∀β∈G

Gβ

N∏
n=1

a
(n)
injn

)
×
(
−δ(n)

α (jn)

))
+λa

(n)
injn

= 0

⇔ [a
(n)
in1, ..., a

(n)
inJn

]

( ∑
∀α∈Ω

(n)
in

(
δ
(n)T
α δ

(n)
α

)
+λIJn

)
=

∑
∀α∈Ω

(n)
in

(
Xαδ

(n)
α

)

⇔ [a
(n)
in1, ..., a

(n)
inJn

] = c
(n)
in: × [B

(n)
in

+ λIJn ]−1

Note that the full proof of Theorem 1 is in the supplemen-
tary material of P-TUCKER [29].

Theorem 2 (Convergence of P-TUCKER): P-TUCKER
converges since (6) is bounded and decreases monotonically.

Proof: According to Theorem 1, the loss function (6)
never increases since every update in P-TUCKER minimizes
it, and (6) is bounded by 0. Thus, P-TUCKER converges.

2) Complexity Analysis: We analyze time and memory
complexities of P-TUCKER and its variants. For simplicity, we
assume I1 = ... = IN = I and J1 = ... = JN = J . Table III
summarizes the time and memory complexities of P-TUCKER
and other methods. As expected in Section III-C, P-TUCKER
presents the best memory complexity among all algorithms.
While P-TUCKER-CACHE shows better time complexity than

TABLE III: Complexity analysis of P-TUCKER and other methods
with respect to time and memory. The optimal complexities are in
bold. P-TUCKER and its variants exhibit the best time and mem-
ory complexity among all methods. Note that memory complexity
indicates the space requirement for intermediate data.

Algorithm Time Complexity Memory
(per iteration) Complexity

P-TUCKER O(NIJ3 +N2|Ω|JN ) O(TJ2)
P-TUCKER-CACHE O(NIJ3 +N |Ω|JN ) O(|Ω|JN )
P-TUCKER-APPROX O(NIJ3 + N2|Ω||G|) O(JN )

TUCKER-WOPT [18] O(N
∑k=N
k=0 (IN−kJk)) O(IN−1J)

TUCKER-CSF [20] O(NJN−1(|Ω|+ J2(N−1))) O(IJN−1)
S-HOTSCAN [17] O(NJN +N |Ω|JN ) O(JN−1)

that of P-TUCKER, P-TUCKER-APPROX exhibits the best time
complexity thanks to the reduced number of non-zeros in G.
Note that we calculate time complexities per iteration (lines
3-6 in Algorithm 2), and we focus on memory complexities
of intermediate data, not of all variables.

Theorem 3 (Time complexity of P-TUCKER): The time
complexity of P-TUCKER is O(NIJ3 +N2|Ω|JN ).

Proof: Given the inth row of A(n) (lines 5-6) in Algo-
rithm 3 , computing δ(n)

α (jn) (line 10) takes O(N |Ω(n)
in
|JN ).

Updating B
(n)
in

and c
(n)
in: (line 13) takes O(|Ω(n)

in
|J2) since δ(n)

α

is already calculated. Inverting [B
(n)
in

+ λIJn ] (line 14) takes
O(J3), and updating a row (line 15) takes O(J2). Thus, the
time complexity of updating the inth row of A(n) (lines 7-
15) is O(J3 + N |Ω(n)

in
|JN ). Iterating it for all rows of A(n)

takes O(IJ3 + N |Ω|JN ). Finally, updating all A(n) takes
O(NIJ3+N2|Ω|JN ). According to (5), reconstruction (line 4
in Algorithm 2) takes O(N |Ω|JN ). Thus, the time complexity
of P-TUCKER is O(NIJ3 +N2|Ω|JN ).

Theorem 4 (Memory complexity of P-TUCKER): The
memory complexity of P-TUCKER is O(TJ2).

Proof: The intermediate data of P-TUCKER consist of
two vectors δ(n)

α and c
(n)
in: (∈ RJ ) , and two matrices B

(n)
in

and [B
(n)
in

+ λIJn ]−1 (∈ RJ×J ). Memory spaces for those
variables are released after updating the inth row of A(n).
Thus, they are not accumulated during the iterations. Since
each thread has their own intermediate data, the total memory
complexity of P-TUCKER is O(TJ2).

Theorem 5 (Time complexity of P-TUCKER-CACHE):
The time complexity of P-TUCKER-CACHE is
O(NIJ3 +N |Ω|JN ).

Proof: In Algorithm 3, computing δ (line 12) takes
O(N |Ω|JN ) by the caching method. Precomputing and updat-
ing Pres (lines 2-4 and 17-19) also take O(N |Ω|JN ). Since
all the other parts of P-TUCKER-CACHE are equal to those
of P-TUCKER, the time complexity of P-TUCKER-CACHE is
O(NIJ3 +N |Ω|JN ).

Theorem 6 (Memory complexity of P-TUCKER-CACHE):
The memory complexity of P-TUCKER-CACHE is O(|Ω|JN ).

Proof: The cache table Pres requires O(|Ω|JN ) memory
space, which is much larger than that of other intermediate
data (see Theorem 4). Thus, the memory complexity of P-
TUCKER-CACHE is O(|Ω|JN ).

Theorem 7 (Time complexity of P-TUCKER-APPROX):



The time complexity of P-TUCKER-APPROX is
O(NIJ3 +N2|Ω||G|).

Proof: Refer to the supplementary material [29].
Theorem 8 (Memory complexity of P-TUCKER-APPROX):

The memory complexity of P-TUCKER-APPROX is O(JN ).
Proof: Refer to the supplementary material [29].

IV. EXPERIMENTS

We present experimental results to answer the following
questions.

1) Data Scalability (Section IV-B). How well do P-
TUCKER and competitors scale up with respect to the
following aspects of a given tensor: 1) the order, 2) the
dimensionality, 3) the number of observable entries, and
4) the rank?

2) Effectiveness of P-TUCKER-CACHE and P-TUCKER-
APPROX (Section IV-C). How successfully do P-
TUCKER-CACHE and P-TUCKER-APPROX suggest the
trade-offs between time-memory and time-accuracy, re-
spectively?

3) Effectiveness of Parallelization (Section IV-D). How
well does P-TUCKER scale up with respect to the num-
ber of threads used for parallelization? How much does
the dynamic scheduling accelerate the update process?

4) Real-World Accuracy (Section IV-E). How accurately
do P-TUCKER and other methods factorize real-world
tensors and predict their missing entries?

We describe the datasets and experimental settings in Sec-
tion IV-A, and answer the questions in Sections IV-B to IV-E.
TABLE IV: Summary of real-world and synthetic tensors used for
experiments. M: million, K: thousand.

Name Order Dimensionality |Ω| Rank

Yahoo-music 4 (1M, 625K, 133, 24) 252M 10
MovieLens 4 (138K, 27K, 21, 24) 20M 10

Video (Wave) 4 (112,160,3,32) 160K 3
Image (Lena) 3 (256,256,3) 20K 3

Synthetic 3∼10 100∼10M ∼100M 3∼11

A. Experimental Settings

1) Datasets: We use both real-world and synthetic tensors
to evaluate P-TUCKER and competitors. Table IV summarizes
the tensors we used in experiments, which are available
at https://datalab.snu.ac.kr/ptucker/. For real-world tensors,
we use Yahoo-music1, MovieLens2, Sea-wave video, and
‘Lena’ image. Yahoo-music is music rating data which consist
of (user, music, year-month, hour, rating). MovieLens is movie
rating data which consist of (user, movie, year, hour, rating).
Sea-wave video and ‘Lena’ image are 10%-sampled tensors
from original data. Note that we normalize all values of real-
world tensors to numbers between 0 to 1. We also use 90%
of observed entries as training data and the rest of them
as test data for measuring the accuracy of P-TUCKER and

1https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
2https://grouplens.org/datasets/movielens/

competitors. For synthetic tensors, we create random tensors,
which we describe in Section IV-B.

2) Competitors: We compare P-TUCKER and its variants
with three state-of-the-art Tucker factorization (TF) methods.
Descriptions of all methods are given as follows:

• P-TUCKER (default): the proposed method which min-
imizes intermediate data by a row-wise update rule, used
by default throughout all experiments.

• P-TUCKER-CACHE: the time-optimized variant of P-
TUCKER, which caches intermediate multiplications to
update factor matrices efficiently.

• P-TUCKER-APPROX: the time-optimized variant of P-
TUCKER, which shows a trade-off between time and
accuracy by truncating “noisy” entries of a core tensor.

• TUCKER-WOPT [18]: the accuracy-focused TF method
utilizing a nonlinear conjugate gradient algorithm for
updating factor matrices and a core tensor.

• TUCKER-CSF [20]: the speed-focused TF algorithm
which accelerates a tensor-times-matrix chain (TTMc) by
a compressed sparse fiber (CSF) structure.

• S-HOTSCAN [17]: the TF method designed for large-scale
tensors, which avoids intermediate data explosion [16] by
on-the-fly computation.

Notice that other Tucker methods (e.g., [19], [30]) are ex-
cluded since they present similar or limited scalability com-
pared to that of competitors mentioned above.

3) Environment: P-TUCKER is implemented in C with
OPENMP and ARMADILLO libraries utilized for paralleliza-
tion and linear algebra operations. From a practical viewpoint,
P-TUCKER does not automatically choose which optimiza-
tions to be used. Hence, users ought to select a method from
P-TUCKER and its variations in advance. For competitors,
we use the original implementations provided by the authors
(S-HOTSCAN

3, TUCKER-CSF4, and TUCKER-WOPT5). We
run experiments on a single machine with 20 cores/20 threads,
equipped with an Intel Xeon E5-2630 v4 2.2GHz CPU and
512GB RAM. The default values for P-TUCKER parameters
λ and T are set to 0.01 and 20, respectively; for P-TUCKER-
APPROX, the truncation rate per iteration is set to 0.2; for
TUCKER-CSF, we set the number of CSF allocations to 1
and choose a LAPACK SVD routine. We set the maximum
running time per iteration to 2 hours and the maximum number
of iterations to 20. In reporting running times, we use average
elapsed time per iteration instead of total running time in order
to confirm the theoretical complexities (see Table III), which
are analyzed per iteration.

B. Data Scalability

We evaluate the data scalability of P-TUCKER and other
methods using both synthetic and real-world tensors.

3https://github.com/jinohoh/WSDM17 shot
4https://github.com/ShadenSmith/splatt
5http://www.lair.irb.hr/ikopriva/Data/PhD Students/mfilipovic/

https://datalab.snu.ac.kr/ptucker/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
https://grouplens.org/datasets/movielens/
https://github.com/jinohoh/WSDM17_shot
https://github.com/ShadenSmith/splatt
http://www.lair.irb.hr/ikopriva/Data/PhD_Students/mfilipovic/
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Fig. 6: The scalability of P-TUCKER and competitors for large-scale synthetic tensors. O.O.M.: out of memory. P-TUCKER exhibits 7.1-14.1x
speed up compared to the state-of-the-art with respect to all aspects. Notice that TUCKER-WOPT presents O.O.M. in most cases due to their
limited scalability, and P-TUCKER indicates the default memory-optimized version, not P-TUCKER-CACHE or P-TUCKER-APPROX.

1) Synthetic Data: We generate random tensors of size I1 =
I2 = ...=IN with real-valued entries between 0 and 1, varying
the following aspects: tensor order, tensor dimensionality, the
number of observable entries, and tensor rank. We assume that
the core tensor G is of size J1 =J2 = ...=JN .

Order. We increase the order N of an input tensor from 3
to 10, while fixing In=102, |Ω|=103, and Jn=3. As shown
in Figure 6(a), P-TUCKER exhibits the fastest running time
with respect to the order. Although S-HOTSCAN and TUCKER-
CSF can decompose up to the highest-order tensor, they run
11× and 7.1× slower than P-TUCKER, respectively. TUCKER-
WOPT runs 60000× (when N = 4) slower than P-TUCKER
and shows O.O.M. (out of memory error) when N ≥ 5.
The enormous speed-gap between P-TUCKER and TUCKER-
WOPT is explained by their time complexities. The speed of
TUCKER-WOPT mainly depends on the dimensionality term
IN , while P-TUCKER relies on the rank term JN where
I >> J .

Dimensionality. We increase the dimensionality In of an in-
put tensor from 102 to 107, while setting N=3, |Ω|=10×In,
and Jn=10. As shown in Figure 6(b), P-TUCKER consistently
runs faster than other methods across all dimensionality.
TUCKER-WOPT runs 20000× (when In = 103) slower than
P-TUCKER and presents O.O.M. when In ≥ 104. The speed-
gap between P-TUCKER and TUCKER-WOPT is also described
in a similar way to that of the order case. Though S-HOTSCAN

and TUCKER-CSF scale up to the largest tensor as well, they
run 13.8× and 10.7× slower than P-TUCKER, respectively.

Number of Observable Entries. We increase the number
|Ω| of observable entries from 103 to 107, while fixing N=3,
In=107, and Jn=10. As shown in Figure 6(c), P-TUCKER,
S-HOTSCAN, and TUCKER-CSF scale up to the largest ten-
sor, while TUCKER-WOPT shows O.O.M. for all tensors.
P-TUCKER presents the fastest factorization speed across
all |Ω| and runs 14.1× and 44.3× faster than S-HOTSCAN

and TUCKER-CSF on the largest tensor with |Ω| = 107,
respectively. Note that P-TUCKER scales near linearly with
respect to the number of observable entries.

Rank. We increase the rank Jn from 3 to 11 with an
increment of 2, while fixing N=3, In=106, and |Ω|=107. As
shown in Figure 6(d), P-TUCKER, S-HOTSCAN, and TUCKER-
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Fig. 7: The scalability of P-TUCKER and competitors on real-
world tensors. P-TUCKER and P-TUCKER-APPROX show the fastest
running time across all datasets. An empty bar indicates that the
corresponding method shows O.O.M. while factorizing the dataset.

CSF successfully factorize input tensors for all ranks. P-
TUCKER is the fastest in all cases; in particular, P-TUCKER
runs 12.9× and 13.0× faster than S-HOTSCAN and TUCKER-
CSF when Jn = 11, respectively. TUCKER-WOPT causes
O.O.M. errors for all ranks.

2) Real-world Data: We measure the average running time
per iteration of P-TUCKER and other methods on the real-
world datasets introduced in Section IV-A1. Due to the large
scale of real-world tensors, TUCKER-WOPT shows O.O.M. for
two of them, which are set to blanks as shown in Figure 7.
Notice that P-TUCKER and P-TUCKER-APPROX succeed in
decomposing the large-scale real-world tensors and run 1.7−
275× faster than competitors.

C. P-TUCKER-CACHE and P-TUCKER-APPROX

To investigate the effectiveness of P-TUCKER-CACHE, we
vary the tensor order N from 6 to 10, while fixing In=102,
|Ω| = 103, and Jn = 3. Figure 8 shows the running time
and memory usage of P-TUCKER and P-TUCKER-CACHE.
P-TUCKER uses 29.5× less memory than P-TUCKER-CACHE
for the largest order N = 10. However, P-TUCKER-CACHE
runs up to 1.7× faster than P-TUCKER, where the gap
between the running times grows as tensor order N grows
since running times of P-TUCKER-CACHE and P-TUCKER
are mainly proportional to N and N2, respectively.

In the case of P-TUCKER-APPROX, we measure per-
iteration time and full running time until convergence. Fig-
ures 9(a) and 9(b) illustrate the effectiveness of P-TUCKER-
APPROX for the MovieLens dataset (Jn = 5). P-TUCKER-
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Fig. 8: Comparison results of P-TUCKER and P-TUCKER-CACHE. P-
TUCKER-CACHE runs up to 1.7× faster than P-TUCKER for higher-
order tensors, while P-TUCKER decomposes the highest-order tensor
with 29.5× less memory than P-TUCKER-CACHE.
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Fig. 9: Comparison results of P-TUCKER and P-TUCKER-APPROX.
P-TUCKER-APPROX gets faster at every iteration and eventually
runs quicker than P-TUCKER (when iteration ≥ 3). Furthermore,
P-TUCKER-APPROX converges 1.7× faster than P-TUCKER with
almost the same accuracy.

APPROX gets faster than P-TUCKER when iteration ≥ 3 and
converges 1.7× earlier than P-TUCKER. Moreover, the recon-
struction error of P-TUCKER-APPROX is almost the same as
that of P-TUCKER. Note that one iteration corresponds to lines
3-6 in Algorithm 2.

D. Effectiveness of Parallelization

We measure the speed-ups (Time1/T imeT where TimeT
is the running time using T threads) and memory requirements
of P-TUCKER by increasing the number of threads from 1 to
20, while fixing N = 3, In = 106, and |Ω|= 107. Figure 10
shows near-linear speed up and memory requirements of P-
TUCKER regarding the number of threads. The linear speed-
up implies that our parallelization works successfully, and the
linearity of memory usage demonstrates that our theoretical
memory complexity of P-TUCKER matches the empirical
result well. In addition, in order to verify the speed-up of
dynamic scheduling, we compare P-TUCKER with a naive
parallelization which does not consider workload distributions.
For the MovieLens dataset (Jn = 10), the running time of
P-TUCKER (367.5s) is 1.5× faster than that of the naive
approach (552.7s), which demonstrates the effectiveness of
dynamic scheduling.
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Fig. 10: The parallelization scalability of P-TUCKER. Notice that the
speed of P-TUCKER increases linearly in terms of the number of
threads, and the memory requirements of P-TUCKER also scale near
linearly with regard to the number of threads.

E. Real-World Accuracy

We evaluate the accuracy of P-TUCKER and other meth-
ods on the real-world tensors. The evaluation metrics are
reconstruction error and test root mean square error (RMSE);
the former describes how precisely a method factorizes a
given tensor, and the latter indicates how accurately a method
estimates missing entries of a tensor, which is widely used
by recommender systems. As shown in Figure 11, P-TUCKER
factorizes the tensors with 1.4-4.8× less reconstruction error
and predicts missing entries of given tensors with 1.4-4.3×
less test RMSE compared to the state-of-the-art. In particu-
lar, P-TUCKER exhibits 1.4-2.6× higher accuracy than that
of TUCKER-WOPT, which also focuses on observed entries
during factorizations. In Figure 11, we present S-HOTSCAN

and TUCKER-CSF with the same bar since they have similar
accuracy, and the methods have low accuracies as they try to
estimate missing entries as zeros. An omitted bar indicates that
the corresponding method shows O.O.M. while decomposing
the dataset.
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Fig. 11: The accuracy of P-TUCKER and competitors on the real-
world tensors. P-TUCKER achieves 1.4-4.8× higher accuracy com-
pared to that of existing methods. An empty bar indicates that the
corresponding method shows O.O.M. while factorizing the dataset.

V. DISCOVERY

We present discoveries on the latest MovieLens dataset
introduced in Section IV-A. Existing methods cannot detect
meaningful concepts or relations owing to their limited scala-
bility or low accuracy. For instance, S-HOTSCAN and TUCKER-
CSF produce factor matrices mostly filled with zeros, which
trigger highly inaccurate clustering. In contrast, P-TUCKER
successfully reveals the hidden concepts and relations such as
a ‘Thriller’ concept, and a relation between a ‘Drama’ concept
and hours (see Tables V and VI).

Concept Discovery. Our intuition for concept discovery is
that each row of factor matrices represents latent features of



the row. Thus, we can apply K-means clustering algorithm [31]
on factor matrices to discover hidden concepts. In the case of
movie-associated factor matrix, each row represents a latent
feature of a movie. Therefore, by analyzing the clustered rows,
P-TUCKER excavates diverse movie genres, such as ‘Thriller’,
‘Comedy’, and ‘Drama’, and all the movies belonging to those
genres are closely related (see Table V).

Relation Discovery. Core tensor G plays an important
role in discovering relations. An entry (j1, ..., jN ) of G is
associated with the jnth column of A(n), and it implies
that those columns are related to each other with a strength
G(j1,...,jN ). Hence, examining large values in G gives us clues
to find strong relations in a given tensor. For instance, P-
TUCKER succeeds in revealing relations between year and
hour attributes such as (2015, 2pm) by investigating the top−3
largest value of a core tensor. In a similar way, P-TUCKER
finds strong relations between movie, year, and hour attributes,
as summarized in Table VI.

VI. RELATED WORK

We review related works on CP and Tucker factorizations,
and applications of Tucker decomposition.

CP Decomposition (CPD). Many algorithms have been
developed for scalable CPD. GigaTensor [16] is the first
distributed CP method running on the MapReduce framework.
Park et al. [32] propose a distributed algorithm, DBTF, for fast
and scalable Boolean CPD. In [33], Papalexakis et al. present
a sampling-based, parallelizable method named ParCube for
sparse CPD. AdaTM [34] is an adaptive tensor memoization
algorithm for CPD of sparse tensors, which automatically
tunes algorithm parameters. Kaya and Uçar [35] propose
distributed memory CPD methods based on hypergraph parti-
tioning of sparse tensors. Those algorithms are based on the
ALS similarly to the conventional Tucker-ALS.

Since the above CP methods predict missing entries as
zeros, tensor completion algorithms using CPD have gained
increasing attention in recent years. Tomasi et al. [36] and
Acar et al. [37] first address CPD models for tensor completion
problems. Karlsson et al. [38] discuss parallel formulations of
ALS and CCD++ for tensor completion in the CP format.
Smith et al. [39] explore three optimization algorithms for
high performance, parallel tensor completion: alternating least
squares (ALS), stochastic gradient descent (SGD), and coor-
dinate descent (CCD++). For distributed platforms, Shin et
al. [24] propose CDTF and SALS, which are ALS-based CPD
methods for partially observable tensors; Yang et al. [40] also
offer SGD-based formulations for sparse tensors. Note that
[24] and [39] offer a row-wise parallelization for CPD as P-
TUCKER does for Tucker decomposition.

Tucker Factorization (TF). Several algorithms have been
developed for TF. [12] presents an early work on TF, which
is known as HOSVD. De Lathauwer et al. [13] propose
Tucker-ALS, described in Algorithm 1. As the size of real-
world tensors increases rapidly, there has been a growing
need for scalable TF methods. One major challenge is the
“intermediate data explosion” problem [16]. MET (Memory

TABLE V: Concept discoveries on the MovieLens dataset (J =
8,K = 100). Three notable movie concepts are found by P-TUCKER.

Concept Index Attributes

15535 Inception, 2010, Action|Crime|Sci− Fi
C1: Thriller 4880 Vanilla Sky, 2001, Mystery|Romance

24694 The Imitation Game, 2014, Drama|Thriller
6373 Bruce Almighty, 2003, Drama|Fantasy

C2: Comedy 16680 Home Alone 4, 2002, Children|Comedy
12811 Mamma Mia!, 2008, Musical|Romance
19822 Life of Pi, 2012, Adventure|Drama|IMAX

C3: Drama 11873 Once, 2006, Drama|Musical|Romance
214 Before Sunrise, 1995, Drama|Romance

TABLE VI: Relation discoveries on the MovieLens dataset. Three
notable relations between movie, year, and hour are found by P-
TUCKER.

Relations G Value Details

R1: 1.65× 106 Most preferred hours for drama genre
Drama-Hour 8 am, 4 pm, 1 am, 9 pm, and 6 pm

R2: 1.29× 106 Comedy genre is favored in this period
Comedy-Year (1997, 1998, 1999), (2005, 2006, 2007)

R3: 2.29× 106 Most preferred hour for watching movies
Year-Hour (2015, 2 pm), (2014, 0 am), (2013, 9 pm)

Efficient Tucker) [14] tackles this challenge by adaptively
ordering computations and performing them in a piecemeal
manner. HaTen2 [15] reduces intermediate data by reordering
computations and exploiting the sparsity of real-world tensors
in MapReduce. However, both MET and HaTen2 suffer from
a limitation called M-bottleneck [17] that arises from explicit
materialization of intermediate data. S-HOT [17] avoids M-
bottleneck by employing on-the-fly computation. Kaya and
Uçar [19] discuss a shared and distributed memory paralleliza-
tion of an ALS-based TF for sparse tensors. [41] proposes
optimizations of HOOI for dense tensors on distributed sys-
tems. The above methods depend on SVD for updating factor
matrices, while P-TUCKER utilizes a row-wise update rule.

There are also various accuracy-focused TF methods includ-
ing TUCKER-WOPT [18]. Yang et al. [42] propose another TF
method that automatically finds a concise Tucker representa-
tion of a tensor via an iterative reweighted algorithm. Liu et
al. [30] define the trace norm of a tensor, and present three
convex optimization algorithms for low-rank tensor comple-
tion. Liu et al. [43] propose a core tensor Schatten 1-norm
minimization method with a rank-increasing scheme for tensor
factorization and completion. Note that these algorithms have
limited scalability compared to P-TUCKER since they are not
fully optimized with respect to time and memory.

Applications of Tucker Factorization. Tucker factorization
(TF) has been used for various applications. Sun et al. [3]
apply a 3-way TF to a tensor consisting of (users, queries,
Web pages) to personalize Web search. Bro et al. [44] use TF
for speeding up CPD by compressing a tensor. Sun et al. [45]
propose a framework for content-based network analysis and
visualization. TF is also used for analyzing trends in the
blogosphere [46].



VII. CONCLUSION

We propose P-TUCKER, a scalable Tucker factorization
method for sparse tensors. By using ALS with a row-wise
update rule, and with careful distributions of works for par-
allelization, P-TUCKER successfully offers time and memory
optimized algorithms. P-TUCKER runs 1.7-14.1× faster than
the state-of-the-art with 1.4-4.8× less error, and exhibits near-
linear scalability with respect to the number of observable
entries and threads. We discover hidden concepts and relations
on the latest MovieLens dataset with P-TUCKER, which
cannot be identified by existing methods due to their limited
scalability or low accuracy. Future works include extending
P-TUCKER to distributed platforms, and applying sampling
techniques on observable entries to accelerate decompositions,
while sacrificing little accuracy.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science,
ICT, and Future Planning (NRF-2016M3C4A7952587, PF
Class Heterogeneous High-Performance Computer Develop-
ment). The ICT at Seoul National University provides research
facilities for this study. The Institute of Engineering Research
at Seoul National University provided research facilities for
this work. U Kang is the corresponding author.

REFERENCES

[1] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The yahoo! music
dataset and kdd-cup’11,” in KDD Cup, 2011, pp. 3–18.

[2] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction
using matrix and tensor factorizations,” TKDD, vol. 5, no. 2, pp. 10:1–
10:27, 2011.

[3] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen, “Cubesvd: A novel
approach to personalized web search,” in WWW, 2005, pp. 382–390.

[4] J. Zhang, Y. Han, and J. Jiang, “Tucker decomposition-based tensor
learning for human action recognition,” Multimedia Systems, vol. 22,
no. 3, pp. 343–353, 2016.

[5] X. Zhang, G. Wen, and W. Dai, “A tensor decomposition-based anomaly
detection algorithm for hyperspectral image,” TGRS, vol. 54, no. 10, pp.
5801–5820, 2016.

[6] N. Zheng, Q. Li, S. Liao, and L. Zhang, “Flickr group recommendation
based on tensor decomposition,” in SIGIR, 2010, pp. 737–738.

[7] E. E. Papalexakis, U. Kang, C. Faloutsos, N. D. Sidiropoulos, and
A. Harpale, “Large scale tensor decompositions: Algorithmic develop-
ments and applications,” IEEE Data Eng. Bull., vol. 36, no. 3, 2013.

[8] L. Sael, I. Jeon, and U. Kang, “Scalable tensor mining,” Big Data
Research, vol. 2, no. 2, pp. 82 – 86, 2015, visions on Big Data.

[9] N. Park, B. Jeon, J. Lee, and U. Kang, “Bigtensor: Mining billion-scale
tensor made easy,” in CIKM, 2016.

[10] B. Jeon, I. Jeon, L. Sael, and U. Kang, “Scout: Scalable coupled matrix-
tensor factorization - algorithm and discoveries,” in ICDE, 2016.

[11] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[12] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[13] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “On the best rank-
1 and rank-(R1 , R2, ... , RN) approximation of higher-order tensors,”
SIMAX, vol. 21, no. 4, pp. 1324–1342, 2000.

[14] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect
data mining,” in ICDM, 2008, pp. 363–372.

[15] I. Jeon, E. E. Papalexakis, C. Faloutsos, L. Sael, and U. Kang, “Mining
billion-scale tensors: algorithms and discoveries,” VLDB J., vol. 25,
no. 4, pp. 519–544, 2016.

[16] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
scaling tensor analysis up by 100 times - algorithms and discoveries,”
in KDD, 2012, pp. 316–324.

[17] J. Oh, K. Shin, E. E. Papalexakis, C. Faloutsos, and H. Yu, “S-hot:
Scalable high-order tucker decomposition,” in WSDM, 2017.
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