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Abstract Given a real world graph, how can we find a large subgraph whose
partition quality is much better than the original? How can we use a partition
of that subgraph to discover a high quality global partition? Although graph
partitioning especially with balanced sizes has received attentions in various
applications, it is known NP-hard, and also known that there is no good cut
at a large scale for real graphs.

In this paper, we propose a novel approach for graph partitioning. Our
first focus is on finding a large subgraph with high quality partitions, in terms
of conductance. Despite the difficulty of the task for the whole graph, we ob-
serve that there is a large connected subgraph whose partition quality is much
better than the original. Our proposed method MTP finds such a subgraph

This work was supported by the National Research Foundation of Korea(NRF) funded by
the Ministry of Science, ICT and Future Planning (NRF-2015K1A3A1A14021055), and IT
R&D program of MSIP/IITP [10044970, Development of Core Technology for Human-like
Self-taught Learning based on Symbolic Approach]. This work was also funded by Institute
for Information communications Technology Promotion (IITP) grant funded by the Korea
government (MSIP) (No.R0190-15-2012, ”High Performance Big Data Analytics Platform
Performance Acceleration Technologies Development”). The ICT at Seoul National Univer-
sity provides research facilities for this study. The Institute of Engineering Research at Seoul
National University provided research facilities for this work.

Y. Lim
Seoul National University
E-mail: yongsub@snu.ac.kr

W. Lee
KAIST
E-mail: mochagold@gmail.com

H. Choi
KAIST
E-mail: hojinc@kaist.ac.kr

U Kang (corresponding author)
Seoul National University
E-mail: ukang@snu.ac.kr



2 Yongsub Lim et al.

by removing “hub” nodes with large degrees, and taking the remaining giant
connected component. Further, we extend MTP to gbMTP (Global Balanced
MTP) for discovering a global balanced partition. gbMTP attaches the ex-
cluded nodes in MTP to the partition found by MTP in a greedy way. In
experiments, we demonstrate that MTP finds a subgraph of a large size with
low conductance graph partitions, compared with competing methods. We
also show that the competitors cannot find connected subgraphs while our
method does, by construction. This improvement in partition quality for the
subgraph is especially noticeable for large scale cuts—for a balanced partition,
down to 14% of the original conductance with the subgraph size 70% of the
total. As a result, the found subgraph has clear partitions at almost all scales
compared with the original. Moreover, gbMTP generally discovers global bal-
anced partitions whose conductance are lower than those found by METIS,
the state-of-the-art graph partitioning method.

Keywords Graph partition · Balanced graph partition · Conductance

1 Introduction

In a real world graph, how can we choose a large subset of nodes for which
high quality partitions exist compared with the whole graph? How can we
find a high quality global balanced partition? Graph partitioning has become
an important task due to its wide applications in the real world, including
community detection [14], load balancing in distributed systems [52], VLSI
design [45], and image segmentation in computer vision [46]. The problem is
conceptually well-described and involves grouping nodes so that a group has
many internal edges and few external edges, which is usually evaluated by the
number of edges across the groups. Especially, in practice, enforcing groups
to have balanced sizes is often required. This constraint, however, makes the
problem NP-hard, and thus various approaches have been proposed in wide
research areas including data mining, computer vision, and theory [46,39,23,
53,56]. Despite such extensive studies, there have been also negative results on
graph partitioning targeted at all the nodes for real graphs: e.g., it is difficult
to find a good cut at a large scale in real world graphs [30].

In this paper, we deal with two problems. First, we find a large subset of
nodes that has high quality partitions compared with the whole graphs. It can
be understood to identify a large portion of the total for which the problem
has a much better solution than for the total. This approach also has various
applications like community detection in social networks where communities
clearly exist but are hidden or blurred due to other structural properties of the
networks. Second, we find a global balanced partition by extending the first
partitioning result for a subset of nodes. To measure quality of a partition, we
use conductance [56,30,22,44], a widely used measure described in Section 2.
Conceptually, the conductance measures how clearly a group is separated from
the other part, and thus especially considers bipartitioning which is used as a
basic building block for more general multi-way graph partitioning.
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Our main idea is simple and intuitive: remove problematic nodes, which
we will define soon, and work with the remaining well-handled nodes. For the
purpose of graph partitioning, there are two sorts of problematic nodes: 1)
large degree nodes called hub nodes which increase interdependency between
groups, and 2) spokes attached only to the hub nodes which do not contribute
to homogeneity within any group. From this idea, we propose MTP (Minus
Top-k Partition) which removes hub nodes and computes a partition only for
the remaining giant connected component. As a result, conductance of the
resulting partition is much lower than that for the whole graph while the size
of the giant connected component (GCC) remains significant—remarkable for
partitions at large scales like a balanced partition. MTP is also efficient in
terms of time and space. Excluding the partitioning step, the time and space
complexities are linear on a graph size. Empirically, using the state-of-the-art
graph partitioning method METIS, we show that MTP has a linear running
time on a graph size.

Furthermore, based on a result of MTP, we devise gbMTP for global
balanced partitioning. It attaches the hubs and the spokes excluded in MTP
to a balanced partition of a subgraph found by MTP in a greedy way. Our
empirical studies show that in general, gbMTP discovers a global balanced
partition with lower conductance than that found by METIS. Additionally,
we show that gbMTP works better than METIS for `-way partitioning for
most datasets in terms of not only conductance but also the normalized cut.

Fig. 1 summarizes our results. Fig. 1a shows the result for CondMat graph
data where a subset of nodes found by MTP has a balanced partition whose
conductance is lower than that for the whole graph, and also than that found by
competing methods. Fig. 1b compares MTP and the competitors for all graph
data used in our paper; note that MTP consistently outperforms the others.
Fig. 1c shows that subsets1 found by MTP reduce conductance, compared
with the whole graph, at all size scales. Fig. 1d shows the performance of
gbMTP on Advogato graph data. It discovers a global balanced partition
with lower conductance than that by METIS which corresponds to k = 0 in
the plot.

Our main contributions are summarized as follows.

– New Problem: We consider the new problem of finding a large subgraph
which has much higher quality partitions compared with the original graph.
To solve the problem, we develop MTP which removes hub nodes and takes
the remaining giant connected component.

– Extension: We propose gbMTP to find a global balanced partition by
extending MTP. It starts with a partial solution which is a balanced par-
tition for the subgraph found by MTP, and enlarges it by attaching the
nodes excluded by MTP in a greedy way.

– Performance: We show that as more hubs and the corresponding spokes
are removed, conductance of a balanced partition for the remaining giant
component gets much lower—down to 14% of the original while the GCC

1 We use subset to indicate a set of nodes in a graph, and subsets for its plural.
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Fig. 1: Our proposed MTP and gbMTP methods outperform competitors.
Here, |V | denotes the number of nodes in the original graph; φ denotes con-
ductance of a balanced partition by METIS in (a) and (b); φ denotes conduc-
tance of a balanced partition by gbMTP in (d). (a) Performance of MTP for
CondMat graph data, compared with other competitors described in Section 5.
For a balanced partition, the subset found by MTP has significantly lower
conductance than the whole graph and also lower than for subsets found by
the competitors. (b) Ratio of subset size vs. ratio of conductance for a bal-
anced partition for each graph and each method. Each point chosen is the one
having the minimum conductance among the results with a subset size ratio
at least 0.7 in Fig. 7. Note that for all graphs, MTP finds a large subset
whose conductance for a balanced partition is effectively reduced compared
with that for the whole graph. In contrast, the competitors fail to find such
subsets. (c) NCP plot for Flickr data showing that the subset found by
MTP has imbalanced partitions at various size scales with lower conductance
than does the whole graph. Here, n = |V |. Details of the NCP plot is explained
in Section 2.1. (d) Performance of gbMTP for Advogato graph data. Note that
k = 0 corresponds to METIS (the red dashed line). On the whole range of k,
gbMTP outperforms METIS.
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Table 1: Symbol table.

Symbol Definition

G a graph
V a set of nodes in the whole graph
Vsubset a set of nodes in the subset
n the number of nodes of the whole graph
m the number of edges of the whole graph
k the number of hub nodes removed
φ conductance of a balanced partition for the

whole graph
φsubset conductance of a balanced partition for the

subset

size remains 70% of the total. We also show that the found subset has
partitions with lower conductance than the whole graph at all size scales, in
addition to the balanced case. The running time of MTP with the state-of-
the-art graph partitioning method METIS is linear on a graph size. Lastly,
in general, gbMTP generally discovers a global balanced partition whose
quality is better than that by METIS.

The codes and data used in this paper are available at
http://kdmlab.org/mtpj. The rest of the paper is organized as fol-
lows. In Section 2, we give brief preliminaries and discuss related work. We
describe the proposed method MTP based on our main idea and discuss
complexities of MTP in Section 3. In Section 4, we present gbMTP which
is an extension of MTP to compute a global balanced partition. After
presenting experimental results including comparisons of MTP and gbMTP
with other competitors in Section 5, we conclude in Section 6.

Table 1 lists the symbols used in this paper.

2 Background

2.1 Preliminaries

Graph Conductance Conductance is a metric widely used to evaluate the qual-
ity of a graph partition [22,44]. Roughly, this is related to how fast a random
walker starting in one group can move to another group. Thus, as connectivity
of a group gets internally stronger and externally weaker, its conductance gets
lower. Given a graph G = (V,E), the formal definition of conductance ϕ(A)
for A ⊆ V is as follows.

ϕ(A) =
cut(A)

min
{
vol(A), vol(Ā)

} ,
where cut(A) = |{(u, v) ∈ E : u ∈ A, v ∈ Ā}| and vol(A) =

∑
u∈A deg(u). Note

that ϕ gets smaller as not only the number cut(A) of cross edges tends to be
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Fig. 2: Example of an NCP plot. This plot shows conductance changes of
partitions into two groups at various scales. Recent work [30] reports that
NCP plots of real world graphs exhibit V-shapes with the minimum at a small
group size of 10 ∼ 100.

small but also two groups tend to have similar volumes. However, minimizing
ϕ over A ⊂ V is known to be NP-hard [22]. This minimum value is called
the graph conductance of G. Recent work reports that conductance shows the
best performance in finding ground-truth communities [56].

Network Community Profile (NCP) Plot [30] Given a graph, an NCP plot is
a plot showing change of conductance over community sizes. Concretely, the
x-axis corresponds to the community size and the y-axis to the corresponding
conductance. In the original paper [30], drawing the NCP plot in a log-log scale,
the authors observed the pattern that NCP plots of real world graphs form
V-shapes where the valleys are found around community sizes of 10 ∼ 100.
This states the important structural property of real world graphs that only at
a small scale, a good partition exists. Fig. 2 shows an example of the NCP plot
for Epinions graph data2. The point at x and y implies that y is conductance
for a partition of two groups with sizes x and n− x where x ≤ bn/2c.

METIS METIS is a graph partitioning method based on multilevel `-way
partitioning algorithms [23]. The overall sequence of METIS consists of three
phases: coarsening, initial-partitioning, and refining. In the coarsening phase,
a graph is coarsened by aggregating nodes. Starting with the original graph
G0 = (V0, E0), for every iteration, nodes in Vi are coalesced to form ‘larger’
nodes, resulting in Vi+1 of a smaller size than Vi. In the initial-partitioning
phase, `-way partitioning of GT is computed, where T is the number of itera-
tions in the first phase. Among several `-way partitioning algorithms [13,18],
METIS adopts a multilevel recursive bisection algorithm [23]. In the refining

2 http://snap.stanford.edu/data/index.html
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phase, graph GT is projected to the original graph G0 by passing through
GT−1, GT−2, ...G1 with refinement. A simplified version of Kernighan-Lin par-
titioning algorithm [24] which incrementally swaps nodes to reduce cross edges
of the partitioning was used for the refinement [16,17]. Recently, METIS has
been improved in performance especially for power-law graphs [1].

2.2 Related Work

There have been a number of studies on graph partitioning, including
METIS [23], spectral clustering [46], cross-association [7], co-clustering [10],
and label propagation [52,42]. Despite different objective functions, they ex-
plicitly or implicitly share a common concept of partitioned groups: many
intra-edges and few inter-edges.

Overlapping Graph Partitioning Often, the problem allows or requires over-
lapping. For example, in community detection for social networks, it may be
more natural that people belong to several communities. For overlapping graph
partitioning, in recent years various methods have been proposed, including
an axiom based method [5], a probabilistic model based method [15], a ma-
trix factorization based method [57], line grouping [11,2], and a link-space
transformation method [31].

Balanced Graph Partitioning One issue frequently encountered in practice for
graph partitioning is about balancing sizes of partitioned groups. To han-
dle this size constraint, researchers have proposed various metrics such as
normalized cut [46], ratio cut [53], and conductance [22]. In general, directly
optimizing such metrics is NP-hard, and thus many approximate algorithms
and heuristics have been developed [53,46,28]. However, since they were not
designed for strict balancing, optimizing those metrics often results in quite
imbalanced partitioning. More strictly balanced partitioning has been also
studied theoretically [4,48] and empirically [23,43,6]. The more general prob-
lem of size-constrained graph partitioning has been also studied in various
fields [26,33,32,38]. Recently, a number of methods to tackle the problem
for graph streams have been developed [50,51,49,41]. To be more practical,
Xu et al. studied dynamically changed partitioning for graphs processed on
a vertex-centric graph processing system like Pregel [54]. Also Xu et al. pro-
posed a graph partitioning method for a system with heterogeneous machines
on their computing power [55].

Difficulty of Finding Good Partition at Large Scale Despite numerous graph
partitioning methods, it has been shown in several studies [8,30] that it is
difficult to find a good cut at a large scale for real graphs. One reason is that
the degree distribution of real world graphs is heavy-tailed [12,3], implying
the existence of hub nodes that may seriously contribute to a large number of
cross edges. Rather than finding a good cut in real graphs, researches aimed
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at finding and evaluating ground-truth communities have been also done with
various approaches [56,40,58,25,9].

Exploiting Hub Nodes Recently, to analyze graph structure, there have been
several studies that exploit the characteristic of the existence of hub nodes.
Siganos et al. [47] proposed a method to group hub nodes first and recur-
sively attach the remaining nodes, resulting in a hierarchical grouping model
of a graph. In another study [9], the authors observed that the assortativ-
ity coefficient of ground-truth communities can be different from that of the
whole graph, and proposed edge-weighting methods to decrease the influence
of disassortative edges (e.g., hub-spoke edges), leading to finding communities
with high similarity to the ground-truth. Other work [20,34], sharing a basic
idea with our work, was done on graph compression. They proposed a node
ordering method called SlashBurn that places hub nodes in front, and discon-
nected nodes appearing due to hub removal in back. Their method regards
that hub nodes are few but play a considerably important role in graph struc-
ture, and thus specially handle such a property of the hubs. Besides, it is also
applied to other related tasks including graph summarization [27] and graph
visualization [36,37,21]. However, they focused on quickly shattering graphs
by removing the hub nodes, and there was no discussion about graph parti-
tioning after their removal. In this paper, whose preliminary version appeared
in [35], we follow such a basic idea to analyze a graph having a heavy-tailed
degree distribution. In addition to developing MTP, a method to discover a
subgraph with a high quality partition in [35], here we propose gbMTP to find
a high quality global partition for the whole graph, and conduct experiments
to evaluate gbMTP. Precisely, we show that removing hub nodes remarkably
decreases conductance values of partitions of the remaining graph, and attach-
ing the removed nodes in a greedy way results in a global balanced partition
whose quality is better than that by METIS.

3 Proposed Method

3.1 Motivation

One well-known characteristic of many real world graphs is that the degree
distribution is heavy-tailed. This is distinct from a random graph with an
exponential degree distribution. This implies that there exist hub nodes having
very large degrees. In graph partitioning, particularly that with balancing,
these hub nodes become seriously problematic: due to their diverse neighbors,
assigning them to one group would greatly increase interdependency between
groups.

Recent work shows that real world graphs are easily shattered by removing
hub nodes [20]. Concretely, removing the hub nodes results in a giant connected
component of a significant size, and many disconnected components of very
small sizes. Although the giant connected component has a structure of hub
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Fig. 3: Comparison of degree distributions of the original graph and GCC after
removing k hub nodes for Epinions graph data. Here, k is set to 1% of the
total nodes in the original graph. Note that in the original graph, there exist
hub nodes with extremely large degrees while in the reduced graph, there are
no such nodes.

𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 …

Disconnected Components

Giant Connected Component

𝐷𝐷𝑛𝑛

Group A Group B

𝒌𝒌 Hub Nodes𝐻𝐻1 𝐻𝐻2 𝐻𝐻𝑘𝑘…

Fig. 4: Illustration of our main idea. We envision a graph consisting of three
parts: hub nodes, the giant connected component and disconnected compo-
nents appearing after hub nodes are removed. The dashed lines represent the
edges removed with removal of hubs. Note that after removing the hub nodes,
the corresponding giant connected component has a much clearer partition.

nodes similar to the whole graph, we observe that there is no hub node with
an extremely large degree, as shown in Fig. 3. This observation motivated us
to exploit the hubs and disconnected components for high quality partitions.
Below, we explain our method, called Minus Top-k Partition (MTP), to find
a large subset of nodes for which high quality partitions exist.
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3.2 Minus Top-k Partition (MTP)

The main idea of MTP is to envision a graph as a collection of three parts:
hub nodes, spokes only attached to the hub nodes, and the remaining part.
Here, the spokes correspond to disconnected components and the remainders
correspond to the giant connected component (GCC) after removing the hub
nodes. Let [n] = {1, . . . , n} and G(U) is the induced subgraph of U ⊆ V . If we
remove the set H of hub nodes from a graph, the graph is divided into a set
of p connected components CCSET = {CCi ⊂ V \H : i ∈ [p]}, satisfying

– CC1, . . . , CCp are mutually disjoint sets.
– For every i ∈ [p] and any pair (u, v) ∈ (CCi)

2, there is a path between u
and v in G(CCi).

– For every pair (i, j) ∈ [p]2 and any pair (u, v) ∈ CCi × CCj , there is no
path between u and v in G(V \H).

Then, GCC and spokes are formally defined as follows:

GCC = argmax
CC∈CCSET

|CC|,

SPOKES = V \(H ∪GCC).

The hub nodes become a major obstacle in finding a good partition because
their diverse connectivity makes partitioned groups have high interdependency.
Our approach is to exclude those problematic nodes and take the remaining
giant connected component as a subgraph for which we hope to obtain a high
quality partition (see Fig. 4).

MTP first finds and removes the top-k hub nodes from a graph. As a result,
the graph is shattered into a number of connected components as described
above. Next, MTP finds the GCC among them, which can be done using a
standard graph traversal algorithm like the breadth first search (BFS). Last, it
computes a partition (A,B) for the GCC, and then outputs (A,B). Although
any partitioning method can be applied, in this paper we use METIS, which
is considered the state-of-the-art graph partitioning method [30]. Algorithm 1
describes the whole MTP procedure.

MTP is simple, intuitive, and easily implementable. As described in Sec-
tion 5, MTP discovers a SubsetPartition, a partition of a subgraph, with
low conductance. Moreover, we compare MTP with other baseline methods to
demonstrate non-triviality of our results. We will see that the baseline meth-
ods are not effective in reducing conductance, or that they choose a subgraph
consisting of many small connected components for which a partition is not
very meaningful.

3.3 Complexity Analysis

Our proposed method MTP is efficient in terms of time consumption and
space usage. Excluding the partitioning step, the time complexity and the
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Algorithm 1: Minus Top-k Partition (MTP)

Input: Graph G, the number of removed hubs k
Output: SubsetPartition (A,B)

1 Find the top-k high degree nodes in G.
2 Remove them from G.
3 Find the giant connected component (GCC).
4 Partition the GCC into (A,B).

space complexity of MTP are linear on a graph size: O(n + m) and O(n),
respectively. The detailed analysis is given below.

Lemma 1 The time complexity of MTP excluding the partitioning step is
O(n+m).

Proof Without computing a partition, MTP consists of the two main steps: 1)
removing the top-k hub nodes, and 2) identifying the giant connected compo-
nent. Step 1) involves finding the top-k hub nodes which can be done in O(n)
using Hoare’s selection algorithm [19]; Step 2) is done by finding connected
components using a standard graph traversal algorithm like the breath-first
search (BFS), which takes O(n+m). Hence, the total time complexity exclud-
ing the partitioning step becomes O(n+m).

Although we exclude the partitioning step in the analysis since its time com-
plexity varies with algorithms used, we empirically show in Section 5 that
MTP with METIS is fast.

The next lemma states the space complexity of MTP.

Lemma 2 The space complexity of MTP excluding the partitioning step is
O(n).

Proof As we stated, MTP involves the two main computation steps: running
the selection algorithm for the first k largest degree nodes, and running a con-
nected component algorithm. In the first step, computing degrees of nodes re-
quire O(n) space, and Hoare’s selection algorithm require no additional space;
in the second step, finding connected components requires O(n). Combining
all the space requirements, the lemma is proved.

4 Extension of MTP to Global Balanced Partitioning (gbMTP)

In this section, we present gbMTP, a global balanced graph partitioning algo-
rithm based on MTP. The main idea is to use a balanced SubsetPartition
found by MTP as a partial result for the entire graph, and greedily attach the
remaining nodes, i.e. hubs and spokes, leading to a global balanced partition.
Our proposed gbMTP is described in Algorithm 2. The algorithm is divided
into the two parts of attaching step (Lines 3–11) and balancing step (Line
12–18), which are explained in details below.
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Let (A,B) be a balanced SubsetPartition discovered by MTP. In the
attaching step, gbMTP first constructs the ordered set L = V \ (A ∪ B) and
attaches every node u ∈ L to A or B greedily with respect to conductance
change. To complete this step, we define the order in L, which is examined
in Line 3 of Algorithm 2. Let H and S be the hubs and the spokes identified
during the running of MTP; note that A,B,H and S are disjoint sets and V =
A∪B ∪H ∪S. The ordering is determined by the following three rules. First,
H is considered before S: i.e. among the nodes not belonging to the subgraph
found by MTP, the hubs are considered before the spokes. Second, among H,
the nodes are considered in decreasing order on their degrees: i.e. a hub with
a larger degree is considered earlier than that with a smaller degree. Third,
among S, nodes belonging to the same connected component are considered
consecutively and there is no order among connected components: i.e. the
placement of a spoke node in the ordering is determined only by its connected
component. This ordering is chosen because nodes in H affect partitioning
quality more significantly than S. That is, determining the assignments of H
before S is better than the opposite order in a greedy approach since high
degree nodes in H affect the number of cut edges more than nodes in S.
Furthermore, considering S before H is less meaningful because initially S
has edges only to H, not to A ∪ B. Consequently, gbMTP needs to carefully
partition high degree nodes first and then accordingly assign spoke nodes. Note
that L can be constructed during MTP although we separate the computation
of L from MTP in Line 2 of Algorithm 2 for clarity.

Although the attaching step results in a global partition, it does not guar-
antee the partition having balanced sizes. This imbalance is amended in the
balancing step. After the attaching step, let A be smaller than B without
loss of generality. We need to select b(|B| − |A|)/2c number of nodes that are
moved to A. Our approach is to greedily find the best node whose movement
to A results in the smallest conductance, and move it from B to A. Applying
this movement b(|B| − |A|)/2c times, we obtain balanced sizes for A and B.
The problem, however, is that considering all nodes in B as candidates for the
movement may take too long time. To overcome this inefficiency, we restrict
the candidates for the movement to B ∩ L, that is, we do not change the
assignments made by MTP at the initial step.

In Section 5, we show that gbMTP with a small k outperforms METIS,
the state-of-the-art graph partitioning method. Note that as k gets smaller,
the balancing step of gbMTP finishes more quickly. Especially, we observe
that for some graphs, the improvement of gbMTP over METIS is significant
for the whole range of k used in our experiments.

5 Experiments

In this section, experimental results are used to answer:



MTP: Discovering High Quality Partitions in Real World Graphs 13

Algorithm 2: Global Balanced MTP (gbMTP)

Input: Graph G, the number of removed hubs k
Output: Global Balanced Partition (A,B)

1 (A,B)←MTP (G, k).
2 L← V \ (A ∪B).

// Attaching Step

3 foreach u ∈ L in the order do

4 φ̃A ← Conductance(A ∪ {u}, B).

5 φ̃B ← Conductance(A,B ∪ {u}).
6 if φ̃A < φ̃B then
7 A← A ∪ {u}.
8 else
9 B ← B ∪ {u}.

10 end

11 end
// Balancing Step

// Let A be smaller than B without loss of generality

12 Q← B ∩ L.
13 while ||A| − |B|| > 1 do
14 v ← argminu∈Q Conductance(A ∪ {u}, B).

15 A← A ∪ {v}.
16 B ← B \ {v}.
17 Q← Q \ {v}.
18 end
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Fig. 5: Degree distributions of some graphs described in Table 2. Note that
all the data used, exhibits heavy-tailed degree distributions, which means that
our main assumption of the existence of hub nodes holds. The other graphs
not shown here also show similar patterns.

Q1 How low conductance does a SubsetBalPartition3 by MTP have com-
pared with the whole graph and with other naive methods? (Answers in
Observations 1 and 3)

Q2 How do conductance values of SubsetBalPartitions found by MTP
change over increasing k? (Answer in Observation 2)

3 a balanced partition for a subset of nodes.
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Table 2: Summary of the graphs used in our experiments. The number of
nodes and edges are counted after taking the giant connected component with
removing direction, weights, and self-edges.

Graph Nodes Edges Description

Advogato1 5,054 49,821 Trust network
Oregon22 11,461 32,730 Router connections
CondMat2 21,363 91,286 Collaboration network
Donations3 23,033 877,625 Who donated whom
Enron2 33,695 180,810 Enron email data
Cit-HepPh2 34,401 420,784 Citation network
Slashdot1 51,083 116,573 Reply network
Epinions2 75,877 405,739 Trust network
Wordnet1 142,505 642,207 Word association network
Gowalla2 196,591 950,327 Online social network
Amazon2 334,863 925,872 Co-purchasing network
Flickr4 404,733 2,110,078 Social network in Flickr

1http://konect.uni-koblenz.de 2http://snap.stanford.edu/data/index.html
3http://download.srv.cs.cmu.edu/~mmcgloho/fec/data/fec_data.html
4http://www.flickr.com

Q3 How low conductance do SubsetPartitions by MTP at various size
scales have compared with the whole graph? (Answer in Observation 4)

Q4 How fast is MTP? (Answer in Observation 5)
Q5 How good global balanced partition does gbMTP output? (Answer in Ob-

servation 6)
Q6 How fast is gbMTP? (Answer in Observation 7)
Q7 How good is gbMTP for `-way partitioning? (Answer in Observation 8)

5.1 Settings

To verify our method, we gathered graph data from diverse domains such
as social networks, collaboration networks, internet connections, and word
association. We took only the giant connected component from each graph
and made them have no direction, weight, and self-edges. The statistics and
brief description of the graph data are presented in Table 2. Fig. 5 shows
degree distributions of some of the graphs. All of them follow heavy-tailed
distributions, which means that our assumption of the existence of hub nodes
holds.

For partitioning, we use the METIS library of version 5.1.0 given at http:
//glaros.dtc.umn.edu/gkhome/views/metis.

5.2 Performance of MTP

We show how good SubsetBalPartition MTP discovers through extensive
experiments. We examine conductance of SubsetBalPartitions found by
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MTP over the number k of removed hub nodes. To this end, while varying k
from 0 to 0.1n with interval 0.001n, we 1) remove bkc number of hub nodes
from each graph, 2) run METIS to obtain a balanced partition for the giant
connected component, and 3) compute conductance for the partition. Note
that k = 0 implies applying METIS to the whole graph.

Observation 1 (High Quality SubsetBalPartition) Conductance of a
SubsetBalPartition discovered by MTP is effectively lower than that of
a balanced partition for the whole graph.

Observation 2 (Better as k Gets Larger) As the number k of removed
hub nodes gets larger, quality gap between a SubsetBalPartition by MTP
and a global balanced partition gets much significant. The conductance of the
SubsetBalPartition is down to 14% of the global one with subset size 70%
of the total.

Fig. 6 shows changes of conductance of SubsetBalPartitions by MTP
and sizes of the corresponding subsets over the number k of removed hub
nodes. In general, the conductance of the SubsetBalPartitions is smaller
than that for the whole graph. Notably, as k gets larger, the conductance gap
gets much significant, which is consistently exposed by all the used graphs.

We note that size decreases of the subsets are positively correlated with
conductance decreases of the corresponding SubsetBalPartitions. For ex-
ample, the conductance decrease of a SubsetBalPartition is most remark-
able in Oregon2 whose subset size is dramatically reduced over k while Cit-
HepPh graph shows the opposite example. Moreover, for all cases, the conduc-
tance decrease is much significant compared with the subset size decrease.
For example, compared with METIS applied to the whole graph, MTP finds
a subset of a size at least 80% of the total, but conductance of the corre-
sponding SubsetBalPartition becomes less than half of the original.

Next, we demonstrate the non-triviality of MTP by comparing with other
competitors to find a SubsetBalPartition. Below, the competitors that we
consider here are described.

– RndSetMts: Select a random subset of nodes, and apply METIS to that
set.

– MtsDelRnd: Compute a balanced partition for the whole graph using
METIS, and randomly remove the same number of nodes from each group.

– MtsDelHub: Compute a balanced partition for the whole graph using
METIS, and remove the same number of hub nodes from each group.

Observation 3 (Non-triviality of MTP) The competitors for finding a
SubsetBalPartition do not decrease conductance effectively, or they result
in subsets consisting of the giant connected component of an insignificant
size and many disconnected components of very small sizes.

Fig. 7 shows the comparison of the SubsetBalPartitions computed by
MTP and the three competitors described above. Given k, the results of Rnd-
SetMts and MtsDelRnd are computed by running the methods 10 times and
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Fig. 6: MTP finds a large subset of nodes whose conductance for balanced
partition is fairly reduced compared with that for the whole graph. For each
plot, k denotes the number of hub nodes removed; the red dot denotes con-
ductance computed by METIS for the whole graph; the black line denotes the
conductance φsubset of the SubsetBalPartitions; and the blue line denotes
the ratio of subset sizes over n. Note that the red dot also corresponds to the
case of MTP with k = 0. Overall, conductance consistently decreases as k
gets larger, and its amount is larger than the decrease of subset sizes.

taking averages of the 10 conductance values. For all the competitors, we
exclude results if the corresponding subset for which the conductance is com-
puted has a giant connected component of a size less than half of the subset
size since the case is less meaningful to compute a balanced partition.

Overall, MTP results in SubsetBalPartitions with much smaller con-
ductance than those made by competitors, especially as k gets larger (e.g., in
CondMat), MTP is 4.8x better than RndSetMts, 6.1x better than MtsDelRnd,
and 1.9x better than MtsDelHub. Although RndSetMts finds SubsetBalPar-
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Fig. 7: MTP outperforms competitors in terms of conductance of a Subset-
BalPartition. For RndSetMts and MtsDelRnd involving random processes,
each value is computed by the average of results over 10 trials. Note that if
the GCC of a computed subset is of a size less than half of the subset size, it
is not presented. This is because the case is less meaningful to compute a bal-
anced partition. For example, in CondMat, only the black line is cut off, and
in extreme cases like Oregon2, there is no black line at all in the plot. Over-
all, RndSetMts and MtsDelRnd are not effective in reducing the conductance.
Although MtsDelHub seems to reduce the conductance effectively for a few
graphs, its corresponding GCC size decreases very rapidly (Fig. 8), implying
that the computed subset consists of many small connected components.

titions with low conductance for some graphs like Amazon, MTP still out-
performs it. The best result for each method and each graph in Fig. 7, is shown
in Fig. 1b.
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Fig. 8: MTP finds a connected subset by construction while subsets by
competitors are disconnected. The plots show sizes of GCCs belonging to the
subsets found by each method. By construction, subsets by MTP are al-
ways connected, leading to the value of 1. For RndSetMts and MtsDelRnd, the
decrease of the GCC size is linear. On the other hand, for MtsDelHub, the
GCC size dramatically decreases, which means that the subsets found become
less meaningful even though it has a balanced partition with low conductance.
The graphs not shown here also exhibit similar patterns.

Fig. 8 shows sizes of GCCs in subsets found by the four methods. None
of the competitors find a connected subset at all, while subsets by MTP
are always connected by construction. For RndSetMts and MtsDelRnd, their
GCCs in computed subsets are quite large, but the corresponding conduc-
tance values are not reduced effectively (Fig. 7). Especially, the GCC size of
a subset by MtsDelHub decreases fast with increasing k, implying that the
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Fig. 9: Conductance of a subset by MTP is lower than the whole graph not
only for a balanced partition but also for partitions of various imbalanced
sizes. The plots show Network Community Profile (NCP) plots [30], explained
in Section 2, for each graph with different k values. For each plot, each line
is computed by the SNAP library [29] for a subset found by MTP with the
specified k. Note that for almost all cases, the NCP plot tends to move down as
k gets larger—the pattern is fairly clear, though slightly weaker for Donations,
Cit-HepPh and Amazon.

subset consists of small connected components in which a balanced partition
becomes less meaningful.

Observation 4 (Good Partitions at All Scales) A subset found by
MTP has partitions at all scales whose conductance is lower than that of
the whole graph at the same scales.
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Fig. 10: Running times of MTP and gbMTP. Both run in a (nearly) linear
time on the number of edges in a graph. We used principal submatrices of
the adjacency matrix of the Flickr graph data. Note that gbMTP rather runs
faster for a larger number of edges. This can happen in practice because the
speed of gbMTP depends on the number of hubs and the corresponding spokes.

Fig. 9 depicts Network Community Profile (NCP) plots, which we explained
in Section 2, for subsets found by MTP with k ∈ {0, 0.01n, 0.03n, 0.05n}
for each graph. Each line corresponds to an NCP plot for the subset ob-
tained with the specified k. From the figure, we observe that an NCP plot
gets lower as k becomes larger. For most of the graphs, the NCP plots are
clearly separated—it is remarkable especially for Slashdot, Wordnet and Flickr.
This means that MTP finds a subset in which partitions at various scales
have lower conductance compared with those for the whole graph at the same
scales. In other words, the found subset by MTP is partitioned much clearly
compared with the whole graph at any scale while keeping V-shape patterns
observed in real world graphs.

Observation 5 (Linear Running Time of MTP) Running time of
MTP is linear on the number of edges in a graph.

With METIS used for the partitioning step, the running time of MTP
is linear on the number of edges in a graph as shown in Fig. 10. We took
principal submatrices4 of the adjacency matrix of Flickr to make graphs with
appropriate sizes.

5.3 Performance of gbMTP

We evaluate gbMTP in terms of conductance by comparing with METIS, the
state-of-the-art graph partitioning method.

Observation 6 (gbMTP Better than METIS) With small k ≤ 100,
gbMTP finds global balanced partitions whose conductance values are lower
than those by METIS for almost all graphs. Examining more k values, the

4 A principal submatrix with size n′ × n′ of a matrix A with size n × n for n′ ≤ n is a
submatrix by taking the first n′ rows and columns from A.
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Fig. 11: Performance of gbMTP on varying k = 0 to 100. Note that k =
0 corresponds to METIS. Except for Flickr, gbMTP finds global balanced
partitions whose conductance is lower than those by METIS.

improvement becomes significant for some graphs like Advogato, Donations,
and Flickr.

Fig. 11 shows conductance of global balanced partitions found by gbMTP
over varying k = 0 to 100. We observe that except for Oregon2 and Enron,
gbMTP finds a global balanced partition whose quality is better than that by
METIS (k = 0), denoted by the red dashed line, for some k > 0. Especially,
for more than half of the graphs, i.e. Advogato, Donations, Slashdot, Epinions,
Gowalla, Amazon, and Flickr, the improvements are achieved over wide ranges
of k.

Fig. 12 depicts the best improvement achieved by gbMTP over METIS.
For each graph, the best partition is chosen from the results shown in Fig. 11
and results additionally obtained by running gbMTP for k = 0.001n to 0.1n at
the interval of 0.001n. Note that gbMTP discovers a global balanced partition
whose conductance is lower than that found by METIS for most cases. Espe-
cially, we observe that for Advogato, Donations, and Flickr, gbMTP outputs
significantly improved partitions compared with METIS.

Observation 7 (Linear Running Time of gbMTP) Running time of
gbMTP is nearly linear on the number of edges in a graph.



22 Yongsub Lim et al.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

  A
dv

og
at

o

   
Ore

go
n2

   
Con

dm
at

 D
on

at
ion

s

   
  E

nr
on

 C
it−

Hep
ph

  S
las

hd
ot

  E
pin

ion
s

   
W

or
dn

et

   
Gow

all
a

   
 A

m
az

on

   
 F

lic
kr

Im
pr

ov
em

en
t o

ve
r 

M
E

T
IS

Improved Not Improved

Fig. 12: The best improvement by gbMTP over METIS. In addition to the
results in Fig. 11, we obtain more by running gbMTP for k = 0.001n to k =
0.1n at the interval of 0.001n. Among all the results, the best global balanced
partition is compared with METIS. Except for Oregon2 and Enron, gbMTP
discovers a balanced partition better than that by METIS, and especially the
improvement is significant for Advogato, Donations, and Flickr.

Fig. 10 shows that gbMTP with METIS runs in a nearly linear time on
the number of edges in a graph. We used the same principal submatrices as
used for MTP. For some cases, it runs faster though the number of edges
increase. This is because the amount of operations in gbMTP depends on
the number of hub nodes and spokes which are attached to an initial partial
partition computed by MTP.

We also conduct experiments for multiway graph partitioning. Note that
our gbMTP can be easily extended for `-way graph partitioning. Here, we
consider two extensions of gbMTP, which are based on recursive partitioning:

– gbMTP1: For the first partitioning, gbMTP is used and for successive
partitioning, METIS is used.

– gbMTP∗: For every partitioning, gbMTP is used.

Note that given disjoint sets V1, . . . , V` ⊆ V of nodes, conductance is defined
by

ϕ(V1, . . . , V`) = max
1≤i≤`

cut(Vi)

vol(Vi)
.

Observation 8 (gbMTP Better than METIS for `-way Partitioning)
In `-way graph partitioning, gbMTP1 and gbMTP∗ generally outperform
METIS.

Fig. 13 shows comparison between gbMTP and MTP for `-way graph
partitioning. The x-axis corresponds to log `. We run gbMTP1 and gbMTP∗
for k = {1, . . . , 100} and take the best for each x = log `. Note that for most
cases, the extensions of gbMTP result in lower conductance than METIS.
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Especially, gbMTP1 has only three exceptions: ` = 2 for Oregon2, ` = 2 for
Enron, and ` = 4 for Slashdot.
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Fig. 13: Performance of `-way partitioning using gbMTP. The x-axis means
log `. For each x value, we take the best among the results obtained by
gbMTP1 and gbMTP∗ with k = {1, . . . , 100}. For most cases, the gbMTP
based extensions find partitions whose conductance is lower than those by
METIS.

We additionally evaluate a partition quality using the normalized cut [46].
Given disjoint sets V1, . . . , V` ⊆ V of nodes, the normalized cut is defined by

Ncut(V1 . . . , V`) =
∑

1≤i≤`

cut(Vi)

vol(Vi)
.

We use ψ(V1 . . . , V`) = Ncut(V1 . . . , V`)/` for the ease of presentation. This
makes no effect in our case since the comparison is done at the same `.
Fig. 14 shows the comparison result. Note that gbMTP1 generally outperforms
METIS. The result involves an important implication. For instance, gbMTP1

is better in conductance but worse in the normalized cut than METIS for
Slashdot. By definition, this means that gbMTP1 divides the graph into groups
with similar volumes while METIS results in groups with quite different sizes.
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Fig. 14: Comparison between gbMTP and METIS in the normalized cut for
`-way partitioning. The value for gbMTP is calcualted by averaging ψ of the
partitioning results with sizes {2, 4, 6, 8, 16, 32}. Especially, gbMTP1 shows
good performance: it is better than METIS for most datasets, except only for
three.

This characteristic of gbMTP1 is highly preferred in many real applications
like load balancing for distributed computing.

6 Conclusion

In this paper, we tackle the graph partitioning problem. Although the prob-
lem is known to be hard to solve, we observe that real graphs have large
subgraphs with high quality partitions for all size scales compared with the
original graph. Based on this observation, we propose MTP to discover those
subgraphs. Furthermore, we extend MTP to gbMTP to find a global balanced
partition with low conductance by carefully attaching the remaining nodes to
a balanced partition for the found subgraph. Our experimental results show
that MTP discovers a subset of a significant size with lower conductance
than the whole graph for a balanced partition, down to 14% of the original
conductance with a subset of size 70% of the total. We also show that the
found subset has partitions whose qualities are higher than those for the
whole graph at almost all size scales. Moreover, for most cases, gbMTP finds
a global balanced partition whose quality is better than that found by METIS,
the state-of-the-art partitioning method.

We expect that our research on finding a subgraph having high quality
partitions would give a new direction for graph partitioning. Such a subgraph
helps understand the original graph structure hidden at the global view, and
can be enlarged as a global partition if needed. Future work includes scaling
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up the graph partitioning methods for very large graphs, using distributed
systems.
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