
MMap: Fast Billion-Scale Graph Computation
on a PC via Memory Mapping

Zhiyuan Lin, Minsuk Kahng, Kaeser Md. Sabrin, Duen Horng (Polo) Chau
Georgia Tech

Atlanta, Georgia
{zlin48, kahng, kmsabrin, polo}@gatech.edu

Ho Lee, U Kang
KAIST

Daejeon, Republic of Korea
{crtlife, ukang}@kaist.ac.kr

Abstract—Graph computation approaches such as GraphChi
and TurboGraph recently demonstrated that a single PC can
perform efficient computation on billion-node graphs. To achieve
high speed and scalability, they often need sophisticated data
structures and memory management strategies. We propose a
minimalist approach that forgoes such requirements, by leverag-
ing the fundamental memory mapping (MMap) capability found
on operating systems. We contribute: (1) a new insight that MMap
is a viable technique for creating fast and scalable graph algo-
rithms that surpasses some of the best techniques; (2) the design
and implementation of popular graph algorithms for billion-scale
graphs with little code, thanks to memory mapping; (3) extensive
experiments on real graphs, including the 6.6 billion edge Ya-
hooWeb graph, and show that this new approach is significantly
faster or comparable to the highly-optimized methods (e.g., 9.5X
faster than GraphChi for computing PageRank on 1.47B edge
Twitter graph). We believe our work provides a new direction in
the design and development of scalable algorithms. Our packaged
code is available at http://poloclub.gatech.edu/mmap/.

I. INTRODUCTION

Large graphs with billions of nodes and edges are in-
creasingly common in many domains, ranging from computer
science, physics, chemistry, to bioinformatics. Such graphs’
sheer sizes call for new kinds of scalable computation frame-
works. Distributed frameworks have become popular choices;
prominent examples include GraphLab [17], PEGASUS [12],
and Pregel [18]. However, distributed systems can be expensive
to build [14], [8] and they often require cluster management
and optimization skills from the user. Recent works, such
as GraphChi [14] and TurboGraph [8], take an alternative
approach. They focus on pushing the boundaries as to what
a single machine can do, demonstrating impressive results that
even for large graphs with billions of edges, computation can
be performed at a speed that matches or even surpasses that
of a distributed framework. When analyzing these works, we
observed that they often employ sophisticated techniques in
order to efficiently handle a large number of graph edges [14],
[8] (e.g., via explicit memory allocation, edge file partitioning,
and scheduling).

Can we streamline all these, to provide a simpler approach
that achieves the same, or even better performance? Our
curiosity led us to investigate whether memory mapping, a
fundamental capability in operating systems (OS) built upon
virtual memory management system, can be a viable technique
to support fast and scalable graph computation. Memory
mapping is a mechanism that maps a file on the disk to the
virtual memory space, which enables us to programmatically

1248 s

198 s

131 s

GraphChi

TurboGraph

MMap

PageRank Runtime on Twitter Graph
(1.5 billion edges; 10 iterations)

154.7 ms

3.3 ms

TurboGraph

MMap

1-step Neighbor Query Runtime on
YahooWeb Graph (6.6 billion edges)

Fig. 1: Top: Our MMap method (memory mapping) is 9.5X
as fast as GraphChi and comparable to TurboGraph; these
state-of-the-art techniques use sophisticated data structures and
explicit memory management, while MMap takes a minimalist
approach using memory mapping. Bottom: MMap is 46X as
fast as TurboGraph for querying 1-step neighbors on 6.6 billion
edge YahooWeb graph (times are averages over 5 nodes with
degrees close to 1000 each).

access graph edges on the disk as if they were in the main
memory. In addition, the OS caches items that are frequently
used, based on policies such as the least recently used (LRU)
page replacement policy, which allows us to defer memory
management and optimization to the OS, instead of imple-
menting these functionalities ourselves, as GraphChi [14] and
TurboGraph [8] did. This caching feature is particularly desir-
able for computation on large real-world graphs, which often
exhibit power-law degree distributions [6]. In such graphs,
information about a high-degree node tends to be accessed
many times by a graph algorithm (e.g., PageRank), and thus
is cached in the main memory by the OS, resulting in higher
overall algorithm speed.

In this paper, we present MMap, a fast and scalable graph
computation method that leverages the memory mapping tech-
nique, to achieve the same goal as GraphChi and TurboGraph,
but through a simple design. Our major contributions include:

• New Insight. We show that the well-known memory
mapping capability is in fact a viable technique for
easily creating fast and scalable graph algorithms
that surpasses some of the best graph computation
approaches such as GraphChi and TurboGraph as
shown in Figure 1 and Section IV.

http://poloclub.gatech.edu/mmap/

source_id target_id

0 1

0 4

0 5

0 8

1 1

1 44

1 50

2 3

3 3

3 10

999,998 875

999,999 255,750

Edge List file
(e.g. tens of GB)

Physical Memory
(e.g. 8 GB)

Fig. 2: How memory mapping works. A portion of a file on
disk is mapped into memory (blue); portions no longer needed
are unmapped (orange). A large graph is often stored as an
edge list (left), which usually does not fit in the main memory
(right). MMap treats the edge file as if it were fully loaded into
memory; programmatically, the edge list is accessed like an
array. Each “row” of the edge file describes an edge, identified
by its source node ID and target node ID.

• Design & Implementation. We explain how MMap
can be leveraged to build important algorithms for
large graphs, using simple data structures and little
code (Section III). For example, GraphChi’s frame-
work consists of more than 8000 lines of code [14],
while MMap’s is fewer than 450 lines1.

• Extensive Evaluation on Large Graphs. Using large
real graphs with up to 6.6 billion edges (YahooWeb
[25]), our experiments show that MMap is signifi-
cantly faster than or comparable to GraphChi and Tur-
boGraph. We also evaluate how MMap’s performance
would sustain for different graph sizes.

Importantly, we are not advocating to replace existing ap-
proaches with MMap. Rather, we want to highlight the kind of
performance we can achieve by leveraging memory mapping
alone. We believe MMap has strong potential to benefit a wide
array of algorithms, besides the graph algorithms that we focus
on in this work.

II. BACKGROUND: MEMORY MAPPING AND ITS
ADVANTAGES

Here, we describe how memory mapping works and how
it may benefit large graph computation. We refer our readers
to [19], [20], [24], [4] for more details on memory mapping.

A. Memory Mapping

Memory mapping is a mechanism that maps a file or part
of a file into the virtual memory space, so that files on the disk
can be accessed as if they were in memory. Memory mapping
is a mature and well-studied technique. We refer the readers

1MMap code measured by the Metrics Plugin; GraphChi measured by
LocMetrics.

to comprehensive resources such as [15] for more details.
Figure 2 briefly describes how memory mapping works.

Systems like GraphChi and TurboGraph implemented some
of the above techniques like custom pages and page tables
by themselves, which are eventually translated into OS-level
paging. We believe this indirection incurs overhead and may
not have fully utilized memory management optimization
already built on the OS. This belief prompted us to investigate
using memory mapping to directly scale up graph algorithms.

B. Advantages of Memory Mapping

There are many advantages of using memory mapping,
especially when processing large files. Below we summarize
the major advantages of memory mapping [15].

• Reading from and writing to a memory-mapped file
do not require the data to be copied to and from a
user-space buffer while standard read/write do.

• Aside from any potential page faults, reading from
and writing to a memory-mapped file do not incur
any overhead due to context switching.

• When multiple processes map the same data into
memory, they can access that data simultaneously.
Read-only and shared writable mappings are shared
in their entirety; private writable mappings may have
their not-yet-COW (copy-on-write) pages shared.

III. MMAP: FAST & SCALABLE GRAPH COMPUTATION
THROUGH MEMORY MAPPING

We describe our fast and minimal MMap approach for large
graph computation. We will explain how MMap uses simpler
data structures for storing and accessing graph edges and how
MMap flexibly supports important classes of graph algorithms.

A. Main Ideas

Existing approaches. As identified by GraphChi and
TurboGraph researchers [14], [8], the crux in enabling fast
graph computation is to design efficient techniques to store
and access the large number of graph’s edges. GraphChi and
TurboGraph, among others, designed sophisticated methods
such as parallel sliding windows [14] and pin-and-slide [8]
to efficiently access the edges. To handle the large number
of edges that may be too large to fit in memory (e.g., 50GB
for YahooWeb), GraphChi and TurboGraph utilize sharding to
break the edge lists into chunks, load and unload those chunks
into the memory, perform necessary computation on them, and
move the partially computed results back and forth to the disk.
This requires them to convert the simple edge list file into a
complex, sharded and indexed database, and to have extraneous
memory management for optimally accessing the database.

Our streamlined approach. We would like to forgo these
steps with a simpler approach by leveraging memory mapping.
In spirit, our goal is the same as GraphChi and TurboGraph,
but we defer the memory management to the OS. Once a
graph data file is memory-mapped to its binary representation,
we can programmatically access the edges as if they were
in the main memory even when they are too large to fit
in it. Furthermore, OS employs several memory and process
management techniques for optimizing the memory usage,

including paging managements techniques such as read-ahead
paging, and least recently used (LRU) page replacement policy,
which make it possible for us to defer memory management
and optimization to the OS, instead of implementing these
functionalities ourselves as GraphChi and TurboGraph did.

Why MMap works for graph computation. As Kang
et al. [12] showed, many graph algorithms can be formulated
as iterative matrix-vector multiplications; it allows MMap to
leverage the spatial locality brought about by such formulation
to maximize the algorithm performance through replacement
policies such as read-ahead paging. In addition, many of real
graphs follow power-law distribution [6], and in many graph
algorithms, such as PageRank, high degree nodes are likely
to be accessed very frequently. This lets the OS take great
advantage of temporal locality to improve graph computation’s
performance, via replacement policies such as the LRU policy.
To verify our hypothesis about MMap (see Section III-C),
we implemented multiple graph algorithms that are commonly
offered by standard graph libraries [12], [17], [14], [7], which
include finding 1-step and 2-step neighbors, and the important
class of algorithms based on iterative matrix-vector multipli-
cations that include PageRank and Connected Components.
GraphChi [14] also explored this locality in the early phase of
their project, but they decided not to pursue it.

B. Graph Storage Structures

Here, we explain how we store graphs for computing graph
algorithms via memory mapping. Our storage consists of two
main data structures: an edge list file and an index file.

Edge List file: Edge list representation is one of the simple
and popular ways of representing graphs. In this representation,
each row in the data file represents a single edge, and each
of which is represented by its two endpoints’ node IDs as
depicted in Figure 3. For memory mapping, we need to convert
it into its binary representation, i.e., converting each node
ID into a binary integer. On the other hand, GraphChi and
TurboGraph create custom, sophisticated databases that are
often much larger than the given edge list text file; this also
incurs considerable conversion (preprocessing) time. MMap
then primarily works on the simple binary edge list file.

Index file: For some classes of graph queries, we use a
binary index file in addition to the binary edge list file. We
assume edges corresponding to a same source node are stored
contiguously, an assumption also made by the GraphChi and
TurboGraph. Based on this assumption, we define an index
file that keeps starting offset of a source node’s edges from
the edge list file. As shown in Figure 3, we store a node’s
file offset from the binary edge file in an 8 Byte Long data
type2. To ensure that the file offsets are correctly recorded, we
include empty padding for nodes that are missing. Optionally,
we can store other information about each node for efficient
computation such as degrees of nodes (see Section III-C).

Other Data Structures: Many other data structures can
be emulated. For instance, we can emulate adjacency lists by
having an index file which keeps the first edges’ offset of
source nodes in the edge list, which could be useful for some
classes of algorithms.

2We could not use Java int, because it can store only up to about 4.2 billion
(232) values, but the number of edges in graphs we used exceeds it.

Fig. 3: Data structures used for computing PageRank. In
our PageRank implementation, a binary edge list file and three
node vectors are used. In addition to the edge list file (denoted
as E at the bottom), out-degree information of each node (N2)
is used to normalize an edge matrix.

C. Supporting Scalable Queries via MMap

We support several popular graph algorithms, which can
be divided into two classes: (a) global queries which tend to
access all edges in the graph and (b) targeted queries which
access a small number of edges that are often localized (e.g.,
finding a node’s 2-step-away neighbors). We implemented
algorithms that both GraphChi and TurboGraph have imple-
mented in order to compare our performance with theirs.

Global Queries: PageRank, as well as many other global
queries and algorithms, such as Connected Components, Belief
Propagation [9], and Eigensolver [10] can be implemented
using generalized iterative matrix-vector multiplications [12].
We refer our readers to [12] to the full list of such algorithms.
That makes it possible to leverage MMap to achieve powerful
performance through a simple design. Figure 3 visualizes the
data structures used for computing PageRank using the power
iteration method [3].

Targeted Queries: As for targeted queries, we chose to
implement two queries which TurboGraph [8] implemented:
finding 1-step and 2-step neighbors of a node. They require
access to a portion of the edge list file containing information
about the node in context. To help speed up the targeted
queries, we used a simple binary index file in addition to the
binary edge list file as described in III-B.

IV. EXPERIMENTS ON LARGE GRAPHS

We compared our memory mapping approach with
two state-of-the-art approaches, GraphChi [14] and Turbo-
Graph [8]. Following their experimental setups, we measured
the elapsed times for two classes of queries: global queries and
targeted queries. Table I lists all the queries being evaluated.

In the following subsections, we describe the datasets we
used and the experimental setups, then we present and discuss
our results.

2.0 s

3.3 s

4.3 s

6.3 s

6.4 s

54.0 s

0 20 40 60

Conn.
Comp.

PageRank
(10 iter.)

Runtime (s)

GraphChi
TurboGraph
MMap

(a) LiveJournal graph (69M edges)

69 s

131 s

120 s

198 s

149 s

1248 s

0 500 1000 1500

Conn.
Comp.

PageRank
(10 iter.)

Runtime (s)

GraphChi
TurboGraph
MMap

(b) Twitter graph (1.47B edges)

274 s

579 s

411 s

643 s

367 s

2308 s

0 1000 2000 3000

Conn.
Comp.

PageRank
(3 iter.)

Runtime (s)

GraphChi
TurboGraph
MMap

(c) YahooWeb graph (6.6B edges)

Fig. 4: Runtimes of GraphChi, TurboGraph, and our MMap approach (in seconds), on LiveJournal, Twitter and YahooWeb graphs
for global queries (PageRank with 10 iterations; Connected Components). MMap is the fastest across all tests and all graph sizes,
and significantly faster than GraphChi. PageRank is an iterative algorithm, thus taking longer to run than Connected Components.

TABLE I: Global queries and targeted queries being evaluated.

Global Queries PageRank
Connected Components

Targeted Queries 1-Step Out-neighbors
2-Step Out-neighbors

TABLE II: Large real-world graphs used in our experiments.

Graph Nodes Edges

LiveJournal 4,847,571 68,993,773
Twitter 41,652,230 1,468,365,182
YahooWeb 1,413,511,391 6,636,600,779

A. Graph Datasets

We used the same three large graph datasets used in GraphChi
and TurboGraph’s experiments, which come at different scales.
The three datasets are: the LiveJournal graph [2] with 69
million edges, the Twitter graph [13] with 1.47 billion edges,
and the YahooWeb graph [25] with 6.6 billion edges. Table II
shows the exact number of nodes and edges of these graphs.

B. Experimental Setup

Machine: All tests are conducted on a desktop computer
with Intel i7-4770K quad-core CPU at 3.50GHz, 4×8GB
RAM, 1TB SSD of Samsung 840 EVO-Series and 2×3TB
WD 7200RPM hard disk. Unless specified otherwise, all
experiments use 16GB of RAM, and store the graphs on the
SSD drives as required by TurboGraph [8]. TurboGraph only
runs on Windows, thus we chose Windows 8 (x64) as our
main test OS, where we also run MMap (which also runs
on other OSes since it is written in Java). We could not run
GraphChi on Windows unfortunately, due to a missing library.
Therefore, we run GraphChi on Linux Mint 15 (x64). Each
library’s configurations are as follows:

MMap: Written in Java 1.7.

TurboGraph: V0.1 Enterprise Edition. TurboGraph requires a
user-specified buffer size. We found that a size that is too close
to the system’s physical RAM amount causes the whole system
to freeze. Empirically, we were able to use a buffer size of 12

GB (out of 16 GB available) without crashing. TurboGraph’s
source code is not available.

GraphChi: C++ V0.2.6, with default configurations.

Test Protocol: Each test was run under the same configuration
for three times, and the average is reported. Page caches were
cleared before every test by completely rebooting the machine.

C. Global Queries

Global queries represent the class of algorithms that need
access to the entire edge list file one or more times. Fig-
ure 4 shows the elapsed times of computing PageRank (10
iterations on LiveJournal and Twitter graphs and 3 iterations
on YahooWeb graph) and finding the connected components.
For finding connected components, we note that we used
the Union-Find [23] algorithm which requires a single pass
over the edge list file. Our approach (MMap) outperforms
TurboGraph by 1.11 to 2.15 times for all the three graphs
and GraphChi with even larger margins (1.34 to 16.4 times).

1) Results of PageRank and Connected Components on
LiveJournal and Twitter Graph: LiveJournal and Twitter
graphs represent the small and medium sized graphs in our
experiments. In our implementation of PageRank, three node
vectors are required for storing degree, and PageRank for
current and next steps. For LiveJournal and Twitter, we kept
all the three node vectors in memory and only mapped the
binary edge list file from disk. Three node vectors for Twitter
graph requires around 500MB RAM space, thus allowing the
OS to use the rest of the memory for mapping the edge file.

For the LiveJournal graph, we see the most significant
speedup because of its small size (the binary edge file is around
526MB). The operating system can memory-map the entire file
and keep it in memory at all times, eliminating many loading
and unloading operations which the other approaches may
require. There is less speedup for the Twitter graph. MMap is
1.5 times faster than TurboGraph for PageRank. This may be
due to a large binary edge list file (11GB on disk) in addition
to the 0.5GB node vectors.

2) Results of PageRank and Connected Components on
YahooWeb Graph: Our implementation of PageRank for Ya-
hooWeb is slightly different from the other two datasets due to
its large size. We cannot use in-memory node vectors which we
used for the smaller graphs because the data cannot be loaded

7.0 ms

0.7 ms

176.0 ms

15.6 ms

0 50 100 150 200

2-Nhr

1-Nhr

Average Runtime (ms)

TurboGraph
MMap

(a) LiveJournal graph

20.0 ms

3.3 ms

667.3 ms

154.7 ms

0 200 400 600 800

2-Nhr

1-Nhr

Average Runtime (ms)

TurboGraph
MMap

(b) YahooWeb graph

Fig. 5: Average runtimes of 1-step and 2-step out-neighbor
queries for LiveJournal and Yahoo graphs. We choose 5
nodes with similar 1-step and 2-step out-neighbors. MMap
outperforms TurboGraph by several orders of magnitude.

TABLE III: The graphs’ highest out-degrees.

Graph Max. Out-degree
LiveJournal 20,293
Twitter 2,997,469
YahooWeb 2,531

on 16GB RAM. Note that a single node vector containing
4-byte floats for YahooWeb would need around 5.6GB of
space. To resolve this, we used disk-based memory mapped
files for node vectors. We expected this would significantly
slow down our approach. Much to our surprise, even with
this approach, MMap performed quite nicely compared to
TurboGraph and GraphChi. As depicted in Figure 4 (c), we
in fact achieved slightly better performance than theirs. Our
understanding is, for such large sized node vectors, there exists
a strong locality of reference. As the edge list file is grouped
by source nodes, access to the node vectors is often localized
to the source node’s information (such as the node’s PageRank
value and degree). Thus for a period of time, OS loads only
small chunks of each node vector in memory and uses almost
the entire remaining RAM for mapping the huge binary edge
list file (which is around 50GB). This speeds up the overall
throughput.

D. Targeted Queries

Targeted queries represent the class of algorithms that need
to access random partial chunks of the edge list file at most
once. For targeted queries, we compared our approach with
TurboGraph only, since GraphChi does not have direct imple-
mentation for targeted queries. As explained in Section III, we
used the index file to find the 1-step and 2-step neighbors of
a node. TurboGraph uses 1MB as the custom page size for
its memory manager. However, for most of the nodes, chunks
containing all of its neighbors is much smaller. Typically, the

TABLE IV: 1-step neighbor query times (ms) on Twitter graph
of representative nodes from different degree range. Shorter
times are in bold.

MMap TurboGraph
Node ID #Neighbor MS Node ID #Neighbor MS

41955 67 1 6382:15 62 11
955 987 2 2600:16 764 12
1000 1,794 2 3666:64 1,770 13
989 5,431 4 3048:48 4,354 14
1,037,947 2,997,469 140 — — —

TABLE V: 2-step neighbor query times (ms) on Twitter graph
of representative nodes from different degree range. Shorter
times are in bold.

MMap TurboGraph
Node ID #2-Nhbr MS Node ID #2-Nhbr MS

25892360 102,000 156 6382:15 115,966 166
1000 835,941 235 2600:16 776,764 1446
100000 1,096,771 532 3666:64 1,071,513 2,382
10000 6,787,901 7,281 3048:48 7,515,811 6,835
1037947 22,411,443 202,026 — — —

OS works on a much smaller granularity of page size, giving
MMap a much faster average time than TurboGraph.

LiveJournal and YahooWeb graphs. TurboGraph sug-
gested that they randomly chose 5 nodes to compute targeted
queries and reported the average of the runtimes. This approach
works mostly for LiveJournal and YahooWeb graphs, however,
it does not work for the Twitter graph because it has a much
wider range of node degrees as we show in Table III. For
example, while the nodes that TurboGraph’s experiments had
selected had only up to 115,966 2-step neighbors, there are
nodes in the Twitter graph with more than 22.5 million 2-
step neighbors. Thus, we ran the queries on LiveJournal and
YahooWeb graphs following TurboGraph’s approach, but when
experimenting with the Twitter graph, we treated it separately.
TurboGraph used a custom notation for identifying a node,
which consists of the pageID and slotID corresponding to
their internal data structure. We were unable to recreate that
mapping and thus resorted to finding comparable nodes which
returned roughly equal number of 1-step and 2-step neighbors.
Figure 5 shows average query time for similar nodes in
LiveJournal and YahooWeb graphs.

Twitter graph. We picked representative nodes covering
the entire ranges of 1- and 2-step neighbor numbers and
report the node IDs and corresponding runtimes in Table IV
and V respectively. As shown in both tables, TurboGraph
uses a special format to identify nodes. We were not able to
locate the nodes used in TurboGraph’s experiments. Thus, for
TurboGraph, we resort to randomly picking a large number
of nodes and report their runtimes if their neighbor counts
are close to those used in MMap. We note that for 2-step
neighbors, this approach has drawbacks. This is because a
node with a million 2-step neighbors may have only one
1-step neighbor with a million out-degree or a million 1-
step neighbors having single out-degree, and these two cases
will have a large variation in runtimes. The dashed cells in
Tables IV and V indicate we could not locate a similar node

in TurboGraph’s representation.

V. RELATED WORK

We survey some of the most relevant works, broadly
divided into multi-machine and single-machine approaches.

Multi-machine. Distributed graph systems are divided into
memory-based approaches (Pregel [18], GraphLab [17][16]
and Trinity[22]) and disk-based approaches (GBase [11] and
Pegasus [12]). Pregel, and its open-source version Giraph [1],
use BSP (Bulk-Synchronous Parallel) model, which updates
vertex states by using message passing at each sequence
of iterations called super-step. GraphLab is a recent, best-
of-the-breed distributed machine learning library for graphs.
Trinity is a distributed graph system consisting of a memory-
based distributed database and a computation platform. For
huge graphs that do not fit in memory, distributed disk-
based approaches are popular. Pegasus and GBase are disk-
based graph systems on Hadoop, the open-source version of
MapReduce [5]. These systems represent graph computation
by matrix-vector multiplication, and perform it efficiently.

Single-machine. This category is more related to our work.
GraphChi [14] is one of the first works that demonstrated
how graph computation can be performed on massive graphs
with billions of nodes and edges on a commodity Mac mini
computer, with the speed matching distributed frameworks.
TurboGraph [8], improves on GraphChi, with greater par-
allelism, to achieve speed orders of magnitude faster. X-
Stream [21] is an edge-centric graph system using streaming
partitions, that forgoes the need of pre-processing and building
an index which causes random access into set of edges.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a minimalist approach for fast and scalable
graph computation based on memory mapping (MMap), a
fundamental OS capability. We contributed: (1) an important
insight that MMap is a viable technique for creating fast
and scalable graph algorithms; (2) the design and implemen-
tation of popular graph algorithms for billion-scale graphs
by using simple data structures and little code; (3) large-
scale experiments on real graphs and showed that MMap
outperforms or attains speed comparable to state-of-the-art
approaches. Our work provides a new direction in the design
and development of scalable algorithms. We look forward to
seeing how this technique may help with other general data
mining and machine learning algorithms. For the road ahead,
we will explore several related ideas, such as porting our Java
implementation to C++ for even greater speed, and exploring
how to support time-evolving graphs.

ACKNOWLEDGMENT

Funding was provided in part by the U.S. Army Research
Office (ARO) and DARPA under Contract No. W911NF-
11-C-0088. This material is based upon work supported by
the NSF Grant No. IIS-1217559 and the NSF Graduate Re-
search Fellowship Program under Grant No. DGE-1148903.
This work was partly supported by the IT R&D program
of MSIP/IITP of Korea. [10044970, Development of Core
Technology for Human-like Self-taught Learning based on
Symbolic Approach].

REFERENCES

[1] C. Avery. Giraph: Large-scale graph processing infrastructure on
hadoop. Proc. of the Hadoop Summit, 2011.

[2] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group
formation in large social networks: membership, growth, and evolution.
In KDD, pages 44–54. ACM, 2006.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In WWW, pages 107–117, Amsterdam, The Netherlands,
The Netherlands, 1998. Elsevier Science Publishers B. V.

[4] R. Bryant and O. David Richard. Computer systems: a programmer’s
perspective, volume 2. Addison-Wesley, 2010.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. OSDI’04, Dec. 2004.

[6] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relation-
ships of the internet topology. SIGCOMM, 1999.

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs. In
OSDI, 2012.

[8] W.-S. Han, L. Sangyeon, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and
H. Yu. Turbograph: A fast parallel graph engine handling billion-scale
graphs in a single pc. In KDD. ACM, 2013.

[9] U. Kang, D. Chau, and C. Faloutsos. Inference of beliefs on billion-
scale graphs. The 2nd Workshop on Large-scale Data Mining: Theory
and Applications, 2010.

[10] U. Kang, B. Meeder, E. Papalexakis, and C. Faloutsos. Heigen: Spectral
analysis for billion-scale graphs. Knowledge and Data Engineering,
IEEE Transactions on, 26(2):350–362, February 2014.

[11] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. Gbase: an
efficient analysis platform for large graphs. VLDB Journal, 21(5):637–
650, 2012.

[12] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale
graph mining system implementation and observations. In ICDM, 2009.

[13] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social
network or a news media? In WWW, pages 591–600. ACM, 2010.

[14] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a pc. In OSDI, 2012.

[15] R. Love. Linux System Programming. O’Reilly Media, 2007.
[16] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.

Hellerstein. Distributed graphlab: A framework for machine learning
and data mining in the cloud. Proc. of the VLDB Endowment, 5(8):716–
727, 2012.

[17] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Graphlab: A new framework for parallel machine learning.
arXiv preprint, 2010.

[18] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In SIGMOD Conf., pages 135–146. ACM, 2010.

[19] MathWorks. Overview of memory-mapping. Accessed: 2013-07-31.
[20] MSDN. Memory-mapped files. Accessed: 2013-07-31.
[21] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-centric

Graph Processing using Streaming Partitions. In Proc. SOSP, 2013.
[22] B. Shao, H. Wang, and Y. Li. Trinity: a distributed graph engine on a

memory cloud. In SIGMOD Conf., pages 505–516, 2013.
[23] R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union

algorithms. J. ACM, 31(2):245–281, Mar. 1984.
[24] A. Tevanian, R. F. Rashid, M. Young, D. B. Golub, M. R. Thompson,

W. J. Bolosky, and R. Sanzi. A unix interface for shared memory and
memory mapped files under mach. In USENIX Summer, pages 53–68.
Citeseer, 1987.

[25] Yahoo!Labs. Yahoo altavista web page hyperlink connectivity graph,
2002. Accessed: 2013-08-31.

	Introduction
	Background: Memory Mapping and Its Advantages
	Memory Mapping
	Advantages of Memory Mapping

	MMap: Fast & Scalable Graph Computation through Memory Mapping
	Main Ideas
	Graph Storage Structures
	Supporting Scalable Queries via MMap

	Experiments on Large Graphs
	Graph Datasets
	Experimental Setup
	Global Queries
	Results of PageRank and Connected Components on LiveJournal and Twitter Graph
	Results of PageRank and Connected Components on YahooWeb Graph

	Targeted Queries

	Related Work
	Conclusions and Future Work
	References

