
MASCOT: Memory-efficient and Accurate Sampling for
Counting Local Triangles in Graph Streams

Yongsub Lim
Department of Computer Science

KAIST
yongsub@kaist.ac.kr

U Kang
Department of Computer Science

KAIST
ukang@cs.kaist.ac.kr

ABSTRACT
How can we estimate local triangle counts accurately in a
graph stream without storing the whole graph? The local
triangle counting which counts triangles for each node in a
graph is a very important problem with wide applications
in social network analysis, anomaly detection, web mining,
etc.

In this paper, we propose Mascot, a memory-efficient
and accurate method for local triangle estimation in a graph
stream based on edge sampling. To develop Mascot, we
first present two naive local triangle counting algorithms in
a graph stream: Mascot-C and Mascot-A. Mascot-C is
based on constant edge sampling, and Mascot-A improves
its accuracy by utilizing more memory spaces. Mascot
achieves both accuracy and memory-efficiency of the two
algorithms by an unconditional triangle counting for a new
edge, regardless of whether it is sampled or not. In contrast
to the existing algorithm which requires prior knowledge on
the target graph and appropriately set parameters, Mas-
cot requires only one simple parameter, the edge sampling
probability. Through extensive experiments, we show that
for the same number of edges sampled, Mascot provides the
best accuracy compared to the existing algorithm as well as
Mascot-C and Mascot-A. Thanks to Mascot, we also
discover interesting anomalous patterns in real graphs, like
core-peripheries in the web and ambiguous author names in
DBLP.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms; H.2.8 [Database
Applications]: Data mining

General Terms
Design, Experimentation, Algorithms

Keywords
Local Triangle Counting, Graph Stream Mining, Edge Sam-
pling, Anomaly Detection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD ’15 Sydney, Australia
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783285 .

1. INTRODUCTION
How can we count local triangles in a graph stream with

a limited memory space? How accurate are edge sampling
strategies for local triangle counting? Triangle counting is
one of the most widely studied graph mining problems. The
number of triangles in a graph becomes an important index
indicating cohesiveness of the graph. In many cases, one
wants to count triangles adjacent to every node, which helps
understand whether the node belongs to a tightly connected
group or has diverse neighbors. This problem, called local
triangle counting, has various applications. For instance,
in social networks, triangle counting is used to detect fake
accounts [40]; the number of triangles of a user is examined
to identify a social role of the user in the network [39], and is
shown to be a good feature in assessing the content quality
provided by the user [8]. In web mining, it is also used to find
spam pages [8] and to uncover hidden thematic layers [15].
Other applications include network community detection [9]
and motif detection in bioinformatics [24].

Despite enormous bodies of researches on triangle count-
ing, it is still challenging to handle a massive graph due
to the complexity of the problem—superlinear time on the
graph size is inevitable. Moreover, a number of real graphs
appearing especially in recent days are given in a stream
fashion whose size is unknown, or even infinite: e.g. packet
transmission in the Internet, phone call history, financial
transactions, etc. Often, such real graph streams should
be analyzed in real time. Thus, designing a streaming al-
gorithm is required for efficient online analysis of a huge
size graph. A number of algorithms to count triangles in a
graph stream have been proposed [7, 8, 11, 17, 18, 19, 27].
Most of them, however, focus on global triangle counting.
Although the first one-pass streaming algorithm for local
triangle counting was developed with rigorous theoretical
analysis [22], it is unsuitable for an evolving graph unless an
efficient update scheme is explicitly designed. To be used in
practice, it also requires knowing the number of nodes in the
stream to set hash functions, and a user-defined threshold
to count local triangles for nodes having degrees above the
threshold.

In this paper, we propose Mascot, a memory-efficient,
and accurate one-pass local triangle counting algorithm for
a graph stream based on edge sampling. Mascot provides
unbiased estimation of the number of local triangles for ev-
ery node. We first develop two naive algorithms, Mascot-C
and Mascot-A, with simple edge sampling. Mascot-C is
based on constant edge sampling, and Mascot-A performs
Mascot-C with unconditionally sampling an edge making a

● MASCOT MASCOT−C MASCOT−A KP

(a) True vs. Estimation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
70

0.
80

0.
90

1.
00

Memory Usage (η)

C
or

re
la

tio
n

(ρ
) ●

●

●
●

● ● ● ● ●

●
BEST

(b) Corr. Coef.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
00

5
0.

01
0

0.
01

5

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●

●

●
●

●
●

●
● ●

●
BEST

(c) Mean of Error

Figure 1: Summary of our results on the BerkStan graph described in Table 3. (a) Scatter plot between the
true local triangle counts and its estimations by Mascot for all nodes. Mascot is accurate especially for nodes
with many triangles. (b), (c): Comparison of our proposed algorithm Mascot and competitors including
KP [22] for local triangle estimation in a graph stream. Note that for a fixed memory space, Mascot provides
the best accuracy in terms of the correlation coefficient and the error.

Table 1: Comparison of Mascot and other al-
gorithms. Our main proposed method Mascot
shows the best performance for all metrics. For
Corr. Coef. and Error, we compare at the same
memory usage, and for the memory usage, we do
at the same accuracy.

[Proposed] Basic Existing

Mascot Mascot-A Mascot-C KP [22]

Corr. Coef. High High Medium Low

Error Small Medium Medium Large

Memory Usage Low Medium Medium Large

Estimated
Node Range

All All All Top-k

Incremental
Update

Yes Yes Yes No

triangle. Mascot-A has lower variance but uses more mem-
ory spaces than Mascot-C. Our proposed algorithm Mas-
cot provides the advantages of both accuracy and memory-
efficiency by the strategy of “unconditional counting before
sampling”. Table 1 compares Mascot and other algorithms
including KP [22] by various aspects.

Conducting extensive experiments on real world graphs,
we show that Mascot estimates local triangle counts bet-
ter than Mascot-C and Mascot-A in terms of Pearson
correlation coefficient and mean of absolute relative error.
We also demonstrate that Mascot outperforms the exist-
ing algorithm [22] in both metrics which to the best of our
knowledge is the only one-pass local triangle counting algo-
rithm for a graph stream. Figure 1 illustrates our results
for BerkStan graph. Applying Mascot to real graphs, we
show that local triangle counts are effective in discovering
anomalous patterns in a graph.

Our contributions are summarized as follows.

• Algorithm. We propose Mascot, a memory-efficient
and accurate one-pass local triangle counting algorithm
for a graph stream. This improves two naive edge

Table 2: Table of symbols.

Symbol Description

G, V,E Undirected graph, set of its nodes, set of its edges
n,m Numbers of nodes and edges
Nu Set of neighbors of a node u
Nuv Nu ∩Nv

T Set of triangles in a graph
Tu Set of triangles of the node u
4u Number of triangles of the node u, equals to |Tu|
τu, τ

c
u, τ

a
u Estimation for 4u

p Default probability of sampling each edge
η Ratio of sampled edge over the total edges
quv, qe True probability that an edge e = (u, v) is sampled

sampling based algorithms Mascot-C and Mascot-A
to achieve both small variance and memory-efficiency.
Unlike the previous algorithm [22], Mascot requires
only one simple parameter, the edge sampling proba-
bility, without requiring knowledge on the input graph.
• Performance. We show that Mascot is more ac-

curate not only than Mascot-C and Mascot-A but
also than the previous algorithm [22] in terms of Pear-
son correlation coefficient and the mean of absolute
relative error.
• Discovery. We discover several anomalous patterns

in real graphs by applying Mascot, including core-
periphery structures in the web and ambiguous author
names in a collaboration network.

The codes and data used in this paper are available at
http://kdmlab.org/mascot. The rest of this paper is or-
ganized as follows. In Section 2, we discuss related works
of our paper. We describe our proposed algorithm Mascot
and two naive ones in Section 3. After showing the perfor-
mance of Mascot in accuracy, and comparing it with the
previous algorithm in Section 4, we conclude in Section 5.

2. RELATED WORK
In this section, we describe related works. Table 2 lists

the symbols used in our paper.

2.1 Triangle Counting
The global and local triangle counting in a graph has been

extensively studied. The simplest and time-efficient algo-
rithm is to use matrix multiplication [3]—A3 for an adja-
cency matrix A results in exact local triangle counting. De-
spite the fast running time of O(m1.41), the algorithm is not
suitable for large scale graphs due to its high space complex-
ity of O(n2) where n and m are the numbers of nodes and
edges, respectively. To achieve a fast running time with a
reasonable space requirement, various approaches have been
proposed [23, 32].

To handle large-scale graphs, researchers have been also
interested in devising external and distributed algorithms.
Chu and Cheng [12] proposed a graph partitioning based
algorithm, and Hu et al. [16] developed an algorithm by
iteratively loading a part of edges and counting triangles
among them. Recently, Pagh and Silvestri [26] achieved the

currently minimum I/O complexity O(m3/2/(B
√
M)) where

M is the total space and B is a size of data transfer block.
To make an algorithm more scalable, parallel computing has
been also widely considered. Cohen [13] proposed the first
MapReduce algorithm for triangle enumeration. Suri and
Vassilvitskii [36] proposed a graph partitioning based algo-
rithm, which is further improved by Park and Chung [28].
For more parallel algorithms, we refer to [4, 21, 29].

2.2 Graph Stream Mining
There have been numerous studies on graph stream min-

ing. We first present studies on triangle counting in a graph
stream, and then those on other graph mining problems.

2.2.1 Triangle Counting
Recently, there have been numerous studies on triangle

counting in a graph stream.
Global Triangle Counting. The first study was con-

ducted theoretically by Bar-Yossef et al. [7]. Afterwards, its
space bound was improved by [18] and [11] successively. Re-
cently, Jha et al. [17] proposed a single pass algorithm based
on wedge sampling to estimate the number of triangles and
the clustering coefficient from a graph stream. The algo-
rithm takes O(

√
n) memory spaces with an additive error

guarantee. Kane et al. [19] devised a sketch based stream-
ing algorithm to count subgraphs with a constant size, which
allows edge deletion. This result was improved in the space
complexity by [30]. Tsourakakis et al. [38] presented a graph
sparsification method by edge sampling for estimating the
number of triangles in a graph, which requires one-pass to
the graph and can be applied to a stream model. A more
general edge sampling framework was proposed by [1], which
can be applied to estimating various graph statistics includ-
ing the number of triangles.

Local Triangle Counting. Counting triangles in a
graph stream for each node has been also studied. Becchetti
et al. [8] proposed a semi-streaming algorithm requiring logn
passes, and Kutzkov and Pagh proposed a single pass algo-
rithm (“KP” henceforth) [22] based on node coloring [27].
However, they are limited in practice: [8] requires multiple
passes to a graph, and [22] requires to know the number of
nodes in a graph stream in advance. In contrast, our pro-
posed Mascot requires only one pass to the graph with only
one parameter, the edge sampling probability, while achiev-
ing a better accuracy. Note that although the one-pass local
triangle counting methods, [22] and our proposed Mascot,

assume no duplicated edges, both can be easily extended to
a multigraph: e.g. duplicated edges can be checked using a
hash scheme like Bloom filter [10].

2.2.2 Other Problems
Other graph mining tasks for a stream model have been

extensively studied as well. Balanced graph partitioning in
a graph stream was initiated in [35] by suggesting several
simple heuristics. Their method not only significantly out-
performs a naive hashing scheme, but also is comparable
to the state-of-the-art method for some cases. Stanton [34]
theoretically showed the lower bound o(n) of approximation
ratio, and proposed two randomized greedy algorithms. We
refer to [25, 37] for more related studies.

Another interesting topic is online PageRank computa-
tion. Sarma et al. [31] studied performing a random walk
from a graph stream, and their method enables computing
PageRank and conductance. Also PageRank computation
in an evolving graph has been studied in [5, 6, 14].

3. PROPOSED METHOD
In this section, we propose Mascot, a memory-efficient

accurate algorithm to provide unbiased estimation of local
triangle counts for every node in a graph stream. We first
present two naive algorithms Mascot-C and Mascot-A
based on edge sampling. While Mascot-A provides lower
variance than Mascot-C, it requires more memory spaces
for the same sampling probability. Mascot achieves both
memory-efficiency and small variance. Also Mascot re-
quires only one simple parameter of edge sampling prob-
ability and no prior knowledge on an input graph.

3.1 MASCOT-C
Mascot-C (Memory-efficient Accurate Sampling for Count-

ing Local Triangles with Constant Sampling) is based on
Doulion [38], a method to estimate the number of triangles
in a massive graph by sparsification. Mascot-C samples
every edge from a graph stream with a constant probability
p while keeping local triangle estimation up-to-date for ev-
ery node. For an efficient update, given a new edge (u, v),
only the estimations for c ∈ Nuv ∪ {u, v}, where Nuv is the
set of common neighbors of u and v, are updated. Note that
triangle counts of the other nodes are not affected by (u, v).
The dominant factor of the total cost per new edge is the
computation of Nuv which takes O(du + dv) time where du
is the degree of u. The whole procedure of Mascot-C is
shown in Algorithm 1.

Mascot-C provides unbiased estimation as stated in the
following lemma.

Lemma 1. Let 4u be the true number of local triangles of
u, and τ cu be its estimation by Mascot-C. For every u ∈ V ,

E [τ cu] = 4u.

Proof. Let δλ indicate whether the triangle λ is sampled
or not. At any time, the expected value of τ cu becomes

E [τ cu] =
∑
λ∈Tu

1

p3
E [δλ] ,

where Tu is the set of triangles containing u. Since every
edge is sampled with probability p, E [δλ] = p3. Hence, we
obtain E [τ cu] = 4u.

Algorithm 1: Mascot-C (Memory-efficient Accurate
Sampling for Counting Local Triangles with Constant
Sampling)

Input: Graph stream S, and
edge sampling probability p.

1 G← (V,E) with V = E = ∅.
2 foreach edge e = (u, v) from S do
3 ReadyNode(u).
4 ReadyNode(v).
5 x← SampleEdge(e, p).
6 if x = 1 then
7 CountTriangles(e, 1/p3).
8 end

9 end

10 Function ReadyNode(u)
11 if u /∈ V then V ← V ∪ {u} and τu = 0.
12 end

13 Function SampleEdge((u, v), p) → int
14 x← Bernoulli(p).
15 if x = 1 then
16 E ← E ∪ {(u, v)}.
17 end
18 return x.

19 end

20 Function CountTriangles((u, v), s)
21 Nuv ← Nu ∩Nv.
22 foreach c ∈ Nuv do
23 τc ← τc + s.
24 end
25 τu ← τu + |Nuv|s.
26 τv ← τv + |Nuv|s.
27 end

The following lemma analyzes variance of Mascot-C.

Lemma 2. Let 4u be the true number of local triangles
of u, and τ cu be its estimation by Mascot-C. At any time,
for every u ∈ V ,

Var [τ cu] =
4u

(
1− p3

)
+ ru

(
p2 − p3

)
p3

,

where ru =
∑
v∈Nu

|Nuv| (|Nuv| − 1), Nu is the set of neigh-

bors of u, and Nuv = |Nu ∩Nv|.

Proof. Let δλ indicate whether the triangle λ is sampled
or not. At any time, the variance of τ cu becomes

Var [τ cu] = Var

[
1

p3

∑
λ∈Tu

δλ

]
=

1

p6

∑
λ∈Tu

∑
γ∈Tu

Cov [δλ, δγ]

=
1

p6

∑
λ∈Tu

Var [δλ] +
∑
λ∈Tu

∑
γ∈Tu
γ 6=λ

Cov [δλ, δγ]

By definition, Var [δλ] = p3 − p6 for any triangle λ. If two
triangles λ and γ do not share an edge, Cov [λ, γ] = 0; if
they share one edge, Cov [λ, γ] = p5 − p6. The number of
triangle pairs adjacent to u which share an edge is calculated
by examining each edge of u. For each edge e = (u, v), u has
Nuv number of triangles sharing e. Since any two triangles

Algorithm 2: Mascot-A (Memory-efficient Accurate
Sampling for Counting Local Triangles with Adaptive
Sampling)

Input: Graph stream S, and
edge sampling probability p.

1 G← (V,E) with V = E = ∅.
2 foreach edge e = (u, v) from S do
3 ReadyNode(u).
4 ReadyNode(v).
5 if e forms a triangle then
6 SampleEdgeA(e, 1).
7 CountTrianglesA(e).

8 else
9 SampleEdgeA(e, p).

10 end

11 end

12 Function SampleEdgeA((u, v), p)
13 x← Bernoulli(p).
14 if x = 1 then
15 E ← E ∪ {(u, v)}.
16 quv = p.

17 end

18 end

19 Function CountTrianglesA((u, v))
20 Nuv ← N(u) ∩N(v).
21 foreach c ∈ Nuv do
22 s← 1/quvqucqvc.
23 τc ← τc + s.
24 τu ← τu + s.
25 τv ← τv + s.

26 end

27 end

share at most one edge, the number of triangle pairs adjacent
to u which share an edge becomes

ru =
∑
v∈Nu

Nuv (Nuv − 1) .

Thus, ∑
λ∈Tu

∑
γ∈Tu
γ 6=λ

Cov [δλ, δγ] = ru
(
p5 − p6) .

Since |Tu| = 4u by definition, the lemma is proved.

3.2 MASCOT-A
Mascot-A further improves Mascot-C by decreasing

the variance using a non-uniform sampling: if a new edge
e = (u, v) closes a triangle (i.e., the new edge e increases
the number of triangles at least by 1), Mascot-A uncon-
ditionally samples e. Let Nuv = Nu ∩ Nv be a set of
nodes constructing triangles {(u, v, c) | c ∈ Nuv} where Nu
is a set of neighbors of u. By the non-uniform sampling,
Mascot-A increases the triangle count of the nodes u, v
and every c ∈ Nuv. Since each edge has a different sampling
probability, Mascot-A maintains the sampling probability
quv ∈ {p, 1} for every sampled edge to give an appropriate
weight for each sampled triangle. Mascot-A is fully de-
scribed in Algorithm 2. Like Mascot-C, Mascot-A pro-
vides unbiased estimation.

Lemma 3. Let 4u be the true number of local triangles
of u, and τau be its estimation by Mascot-A. At any time,
for every u ∈ V ,

E [τau] = 4u.
Proof. Let δλ indicate whether the triangle λ is sampled

or not. At any time, the expected value of τau becomes

E [τau] =
∑

λ=(e,f,g)∈Tu

1

qeqfqg
E [δλ] ,

where Tu is the set of triangles containing u. Since qe is
the probability that the edge e is sampled, the probability
of sampling λ becomes qeqfqg, leading to E [δλ] = qeqfqg.
Consequently, we obtain E [τau] = |Tu| = 4u.

For Mascot-A, we analyze an upper bound of variance
which is smaller than the variance of Mascot-C in Lemma 2.

Lemma 4. Let 4u be the true number of local triangles
of u, and τau be its estimation by Mascot-A. At any time,
for every u ∈ V ,

Var [τau] ≤
4u

(
1− p2

)
+ ru

(
p− p2

)
p2

.

Proof. In this proof, qλ = qefg = qeqfqg for a triangle
λ = (e, f, g). Let δλ indicate whether the triangle λ is sam-
pled or not. At any time, the expected value of τau becomes

Var [τau] = Var

[∑
λ∈Tu

1

qλ
δλ

]
=
∑
λ∈Tu

∑
γ∈Tu

Cov

[
δλ
qλ
,
δγ
qγ

]
=
∑
λ∈Tu

1

q2
λ

Var [δλ] +
∑
λ∈Tu

∑
γ∈Tu
λ 6=γ

1

qλqγ
Cov [δλ, δγ] .

(1)

Note that for any sampled triangle λ, qλ ≥ p2 by construc-
tion of the algorithm. Thus, the first term of Eq. (1) is
bounded as follows:

1

q2
λ

Var [δλ] =
1

q2
λ

(
qλ − q2

λ

)
≤ 1

p2

(
1− p2) . (2)

The remaining task is to bound the following in the second
term:

1

qλqγ
Cov [δλ, δγ] =

1

qλqγ
(E [δλδγ]− E [δλ]E [δγ])

=
E [δλδγ]

qλqγ
− 1.

Since Cov [δλ, δγ] = 0 for independent triangles λ and γ, we
focus on the case where λ = (e, f, g) and γ = (g, h, `) share
the one edge g. There are two cases:

• g is the last among all the edges of λ and γ: In this
case, qg = 1; then the following holds:

E [δλδγ]

qλqγ
=
qeqfqhq`
qefgqgh`

=
1

q2
g

= 1.

• g is not the last among all the edges of λ and γ: There
are at least two edges (6= g) that are unconditionally
sampled. Let them be e and ` without loss of general-
ity, i.e. qe = q` = 1; then

E [δλδγ]

qλqγ
=

qfqgqh
qefgqgh`

=
1

qeqgq`
≤ 1

p
. (3)

Substituting Eq. (2) and (3) to Eq. (1), we prove the lemma.

Note that both 4u and ru are graph characteristics in-
dependent of the algorithms. As a result, Mascot-A has
a lower variance than Mascot-C. The main drawback of
Mascot-A is that the number of edges sampled depends
on the order of edges in a stream. It makes hard to ex-
actly analyze the space requirement of Mascot-A: the size
of sampled edges may vary highly between pm and m.

3.3 MASCOT
Although Mascot-A has lower variance than Mascot-C,

it may sample too many edges. By the following observation,
however, we do not need to unconditionally sample an edge
even though it constructs a triangle.

Observation 1. For a new edge e = (u, v), let c be a
node having edges to both u and v. In the future, e will not
be used for constructing a triangle involving c.

Namely, only u and v need e. Thus, c can safely discard e
after counting the triangle, and u and v sample e with the
given probability p for the future use. Based on this idea,
we propose Mascot as shown in Algorithm 3.

Algorithm 3: Mascot (Memory-efficient Accurate
Sampling for Counting Local Triangles)

Input: Graph stream S, and
edge sampling probability p.

1 G← (V,E) with V = E = ∅.
2 foreach edge e = (u, v) from S do
3 ReadyNode(u).
4 ReadyNode(v).

5 CountTriangles(e, 1/p2).
6 SampleEdge(e, p).

7 end

Mascot provides unbiased estimation as follows.

Lemma 5. Let 4u be the true number of local triangles
of u, and τu be its estimation by Mascot. At any time, for
every u ∈ V ,

E [τu] = 4u.

Proof. Every new incoming edge remains in our sampled
graph in the future with probability p. We show that every
triangle λ = (e, f, g) in the graph is counted with proba-
bility p2. Without loss of generality, assume that e, f and
g are given in order from the graph stream. Let δλ be an
indicator representing whether λ is counted or not. For λ
to be sampled, e and f should be sampled before g whose
probability is p2. In that case, when g is observed, λ is un-
conditionally counted. Thus, E [δλ] = p2. With the weight
of 1/p2 for sampled edges, the lemma is proved by following
the proof of Lemma 3.

Lemma 6. Let 4u be the true number of local triangles
of u, and τu be its estimation by Mascot. At any time, for
every u ∈ V ,

Var [τu] ≤
4u

(
1− p2

)
+ ru

(
p− p2

)
p2

.

Table 3: Summary of the graph data used in our
experiments. The number of nodes and edges are
counted after removing direction, weights, and self-
loops.

Name Nodes Edges Description

Advogato1 5,155 39,285 Trust network

Enron2 36,692 183,831 Enron email exchanges

Wiki-Conflict1 116,836 2,027,871 Edit confliction

Gowalla2 196,591 950,327 Online social network

Stanford2 281,903 1,992,636 Web graph of Stanford.edu

NotreDame2 325,729 1,090,108 Web graph of Notre Dame

BerkStan2 685,230 6,649,470 Web graph of Berkeley and
Stanford

LiveJournal2 4,846,609 42,851,237 LiveJournal online social
network

MovieRev92 253,045 6,611,899 Co-reviewed movies in
Amazon

DBLP1 1,314,050 5,362,414 Co-author network in
DBLP

1http://konect.uni-koblenz.de/ 2http://snap.stanford.edu/data/index.html

Proof. With E [δλ] = p2, the proof is almost the same
as that for Lemma 2. The only difference is to compute
Cov [δλ, δγ]. In Mascot, E [δλδγ] for two triangles λ, γ ∈ Tu
sharing one edge varies depending on the order of edges in
a graph stream. If the shared edge of λ and γ is the last or
the second last among all edges of λ and γ, E [δλδγ] = p4;
otherwise E [δλδγ] = p3. Thus, E [δλδγ] ≤ p3, which proves
the lemma.

While the upper bound of variance of Mascot is the same
as that of Mascot-A, Mascot samples a smaller number of
edges than Mascot-A, which means that it requires smaller
memory spaces for the same p. Moreover, the number of
sampled edges of Mascot is easily estimated as pm where
m is the number of edges occurring in the stream until cur-
rently.

4. EXPERIMENTS
In this section, we show experimental results on perfor-

mance of Mascot and comparison with competing methods.
Especially, we answer the following questions.

Q1 How accurate is Mascot?
Q2 How better is Mascot compared with the basic ver-

sions of Mascot and the previous work [22]?
Q3 How can Mascot be applied to graph anomaly detec-

tion?

4.1 Dataset
We gather graph data from diverse domains such as social

networks, router connectivity, hyperlinks in webpages, col-
laboration networks, citation networks, etc. We make them
simple, i.e. directions, self-loops, and weights are removed.
Their edges are given in a random order. Table 3 lists the
datasets used in our experiments.

4.2 Evaluation Metric
To evaluate local triangle counting algorithms, we con-

sider the following metrics.

• Pearson Correlation Coefficient ρ: This measures how
well the relationship between two variables x and y is

● MASCOT MASCOT−C MASCOT−A

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
80

0.
85

0.
90

0.
95

1.
00

Memory Usage (η)

C
or

re
la

tio
n

(ρ
)

●

●

●
●

● ● ● ● ●

●
BEST

(a) Enron

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Memory Usage (η)

C
or

re
la

tio
n

(ρ
)

●

●

●

●
●

● ● ● ●

●
BEST

(b) NotreDame

0.1 0.2 0.3 0.4 0.5 0.6

0.
85

0.
90

0.
95

1.
00

Memory Usage (η)

C
or

re
la

tio
n

(ρ
) ●

●
●

●
● ● ● ● ●

●
BEST

(c) Gowalla

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Memory Usage (η)

C
or

re
la

tio
n

(ρ
)

●

●

●

●
●

● ● ● ●

●
BEST

(d) LiveJournal

Figure 2: Pearson correlation coefficient ρ over dif-
ferent ratio η of sampled edges, which dominate the
required memory spaces. Mascot shows the best
performance.

represented by a linear function. Given two vectors x
and y, the definition is as follows:

ρ(x, y) =
Cov [x, y]

σxσy
.

• Mean ε of Error: This measures how close our esti-
mation is to the ground truth. Given an estimation x
for the ground truth x∗, we use the following absolute
relative error:

ε(x, x∗) =
1

n

n∑
i=1

zi,

where zi = |xi − x∗i | /(x∗i + 1). We add 1 to both x
and x∗ for the case that x∗i = 0.
• Ratio η of Sampled Edges: This dominates the amount

of memory spaces required by an algorithm. It is equal
to p for Mascot and Mascot-C, and larger than p for
Mascot-A in expectation.

Note that the first two metrics are calculated for the true
and estimated local triangle counts.

We use the average of measurements obtained by 10 inde-
pendent runnings since our algorithms are randomized. For
the competing method KP [22], the same averaging scheme
is used since the implementation is based on random hash-
ing.

4.3 Performance of MASCOT
Figure 2 shows Pearson correlation coefficients (PCC) over

ratios of the number of sampled edges for our proposed al-
gorithms. In general, all algorithms improve PCC as the

MASCOT MASCOT−C MASCOT−A

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●
BEST

(a) Enron

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
2

0.
3

0.
4

0.
5

0.
6

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●
BEST

(b) NotreDame

0.1 0.2 0.3 0.4 0.5 0.60.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●
BEST

(c) Gowalla

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●
BEST

(d) LiveJournal

Figure 3: Mean ε of absolute relative error over ratio η of the number of sampled edges of Mascot and the
basic versions of Mascot. For the same η, Mascot always results in the lowest error. For all graphs, as
expected, standard deviations of Mascot and Mascot-A are smaller than that of Mascot-C—notable for large
graphs like LiveJournal. Sometimes, Mascot-C is more accurate than or at least comparable to Mascot-A. One
reason is that for the same number of the total sampled edges, Mascot-A samples large degree nodes more
than Mascot-C. This results in sacrificing accuracy for many nodes with extremely small degrees. The result
with excluding nodes whose degrees are smaller than 2/p is shown in Figure 4.

● MASCOT MASCOT−C MASCOT−A

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●

●
●

●
●

●
●

● ●

●
BEST

(a) Enron

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

1.
2

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●

●
●

●

●
●

●

● ●

●
BEST

(b) NotreDame

0.1 0.2 0.3 0.4 0.5 0.6

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●

●
●

●

●

●
●

●
●

●
BEST

(c) Gowalla

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●

●

●

●

●
●

●
●

●

●
BEST

(d) LiveJournal

Figure 4: Mean ε of relative error for nodes with degrees larger than 2/p over ratio η of the number of sampled
edges of Mascot and its variants. For the same η, sampled edges of Mascot-A are more concentrated on nodes
having many triangles than those of Mascot-C are; for those nodes the error of Mascot-A is smaller than
that of Mascot-C.

sampling rate gets larger. Note that while the sampling
rates of Mascot-C and Mascot are determined by p in
expectation, that of Mascot-A depends on both p and the
edge order in a graph stream. For all the graphs, Mascot
and Mascot-A show higher correlations than Mascot-C at
the same number of sampled edges. The difference between
Mascot and Mascot-A is insignificant.

Figure 3 shows the mean ε of absolute relative error over
the ratio η of sampled edges. Note that we also present the
standard deviation of ε obtained by 10 runnings, as stated in
Section 4.2, for every point. For all graphs, including those
not shown in the figure, Mascot works the best under the
same sampling rate. As shown in Section 3, standard devia-
tions of Mascot and Mascot-A are smaller than Mascot-
C—especially remarkable when memory usage (η) is small.

In contrast to the PCC case, the mean error of Mascot-
C and Mascot-A varies depending on graphs. For ex-
ample, Mascot-C outperforms Mascot-A for Enron and
NotreDame in general, while Mascot-A outperforms Mascot-
C for Gowalla; for LiveJournal they are comparable. The
reason of this result is as follows. The triangle estimation
is inaccurate for nodes with degrees smaller than 2/p. This

is because if a node has a degree less than 2/p, the num-
ber of sampled incident edges of the node is less than 2 in
expectation, leading to no chance to count its local trian-
gles. For the same η, the edge sampling probability pc for
Mascot-C is larger than the probability pa for Mascot-A,
i.e. 2/pc ≤ 2/pa. As a result, Mascot-A becomes accu-
rate for a small number of large degree nodes, and not for a
large number of small degree nodes, leading to large errors
in total. This is shown in Figure 4 where the error ε is cal-
culated for nodes whose degrees are above 2/p. Note that
Mascot-A always outperforms Mascot-C.

4.4 Comparison with Competing Method

4.4.1 Competing Method
We consider the first and the only local triangle count-

ing algorithm KP for a graph stream, proposed in [22]. KP
generates multiple independent sparsified graphs, and aggre-
gates triangles from them. Since the method requires deter-
mining hash functions to map every node to a color before
running, we assume that the number of nodes is known in
advance. Following their experiments, we set d = 1000, that

●

●

●

●●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●
●
●

●●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

0 0.02 0.04 0.06 0.08 0.1 0.12

True Clustering Coefficient

0

0.02

0.04

0.06

0.08

0.1

0.12
E

st
im

at
ed

 C
lu

st
er

in
g

C
oe

ffi
ci

en
t

(a) Wiki-Conflict by Mascot

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

0 0.01 0.02 0.03 0.04 0.05

True Clustering Coefficient

0

0.01

0.02

0.03

0.04

0.05

E
st

im
at

ed
 C

lu
st

er
in

g
C

oe
ffi

ci
en

t

(b) Stanford by Mascot

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●

● ● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

● ●

●●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●● ●

●

●

●

●

●
●

●

●

●

●

●

● ●● ●

● ●●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.05 0.1 0.15

True Clustering Coefficient

0

0.05

0.1

0.15

E
st

im
at

ed
 C

lu
st

er
in

g
C

oe
ffi

ci
en

t

(c) Wiki-Conflict by KP

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●● ●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

● ●●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●● ●●●

●

●

●

●● ●●

●●

●

●●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●● ●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●●●

●

● ●

● ●

●

●●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●●

●

●
● ●

●

●●

●

●●●

●

●

●●

●

●

● ●

0 0.02 0.04 0.06 0.08 0.1

True Clustering Coefficient

0

0.02

0.04

0.06

0.08

0.1

E
st

im
at

ed
 C

lu
st

er
in

g
C

oe
ffi

ci
en

t

(d) Stanford by KP

Figure 5: The true clustering coefficient vs. its estimation by Mascot with p = 0.3—(a) and (b)—and by KP
with K = 80—(c) and (d). In this setting, both algorithms sample similar numbers of edges: 0.3m and 0.32m
in expectation for Mascot and KP, respectively. All plots are with respect to nodes having degrees at least
1000. Note that Mascot estimates local triangles more accurately than KP—the points of Mascot are nearly
on the y = x line in contrast to those of KP.

● MASCOT MASCOT−C MASCOT−A KP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
6

0.
7

0.
8

0.
9

1.
0

Memory Usage (η)

C
or

re
la

tio
n

(ρ
)

●

●
●

● ● ● ● ● ●

●
BEST

(a) Wiki-Conflict

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
6

0.
7

0.
8

0.
9

1.
0

Memory Usage (η)

C
or

re
la

tio
n

(ρ
)

●

●

●
●

● ●
● ● ●

●
BEST

(b) Stanford

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
00

5
0.

01
0

0.
01

5

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●

●
●

● ●
● ● ● ●

●
BEST

(c) Wiki-Conflict

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

2
0.

00
6

0.
01

0

Memory Usage (η)

M
ea

n
of

 E
rr

or
 (ε

)

●

●

●
●

●
●

●
● ●

●
BEST

(d) Stanford

Figure 6: Pearson correlation coefficient ρ and mean ε of absolute relative error for the nodes with degrees at
least 1000. While Mascot is the best, Mascot-C and Mascot-A also outperform KP in terms of both metrics
ρ and ε.

is, our focus is on nodes whose degrees are at least d. The
other parameters are set according to Theorem 2 in their
paper—the number C of colors to d/4 = 250 and the sparsi-
fication threshold t to 9m/d = 0.009m—while the number K
of independent sessions sparsifying an input graph is varied
from 50 to 150 at the interval of 10. Note that the number
of edges sampled becomes ≈ mK/C.

4.4.2 Comparison
Setup. We compare Mascot with KP for estimation

of local clustering coefficients of nodes with degrees larger
than 1000. Note that KP was primarily developed for local
clustering coefficient estimation, and Mascot provides it by
dividing τu by du(du − 1)/2 for each node u since τ is an
unbiased estimator1. Calculating the degree of each node
in a graph stream is trivial, i.e. counting for each node its
occurrences in the stream. For this experiment, we use the
following three graphs: Stanford, Wiki-Conflict, and Berk-
Stan.

Result. Figures 1b, 1c and 5 show how well two meth-
ods Mascot and KP estimate local clustering coefficients
for the top-1000 high degree nodes. Note that all points
for Mascot are nearly on the y = x line while KP’s es-
timations are not that accurate despite somewhat positive

1This is the same for Mascot-C and Mascot-A.

correlations. Figure 6 shows comparison results of Mascot
and KP with respect to ρ and ε. For both graphs, Mascot
shows a high Pearson correlation coefficient ρ even with a
small ratio η of sampled edges while KP’s PCCs are below
0.8 regardless of the number of sampled edges. Furthermore
Mascot outperforms in mean and standard deviation.

Additionally, we compare Mascot with the semi-streaming
algorithm (BA) proposed in [8] for local triangle counting,
which requires multiple passes to a graph. We set the num-
ber of passes to 50 and the number of random bits to log(n)
for BA. We use the four graphs Advogato, Wiki-Conflict,
BerkStan, and LiveJournal. In general, Mascot is faster than
BA, with larger absolute relative errors. However, for the
top-1% high degree nodes, Mascot is more accurate than
BA in most cases. Furthermore, the correlation coefficient
of Mascot is better than BA in most cases.

4.5 Anomaly Detection in Graph Streams
It has been known that local triangle counts play an im-

portant role in determining characteristics of nodes [2, 8].
In this section, we show that our proposed algorithm Mas-
cot detects anomalous nodes or patterns in real world graph
streams. We use the Stanford, MovieRev9 and DBLP graphs
listed in Table 3.

(a) Stanford
0.

0
0.

5
1.

0
1.

5

Group A
(1.00)

Group B
(0.81)

Group C
(0.72)

Group Density
Common Neighbors Density
(Group Size) / (Comm. Neighbors Size)

(b) Stanford (c) MovieRev9 (d) DBLP

Figure 7: Anomaly detection results for Stanford, Movie9 and DBLP. (a) Each color group forms a near clique,
which is observed as a short vertical line in the scatter plot. The nodes in the group have a large number of
common neighbors whose connections are sparse. The size of the common neighbors is much larger than that
of the group such that the two groups form a core-periphery. (b) Bar graph showing the internal densities
of each discovered group and their common neighbor group. Note that the discovered group has an edge
density larger than 0.95 while the corresponding neighbor group is rarely connected. The value below each
group means the ratio of common neighbors over all neighbors of the group members. (c) Each color group
corresponds to a movie series which can be favored by people with diverse preferences: classic movies (green,
blue and purple) and religious ones (red). (d) The steep linear pattern in red corresponds to researchers
who participate in at least one paper with many coauthors: they are close to the clique line. The gradual
linear pattern in blue corresponds to popular names. Since people with the same name becomes one point,
the point covers various domains, leading to a large degree but weak local cohesiveness.

Setup. We use Mascot with p = 0.3. Stanford is a hy-
perlink network of webpages: a node and an edge correspond
to a web page and a hyperlink, respectively. In analysis of
Stanford, we focus on structural anomaly since the graph is
unlabeled. MovieRev9 is originally given as a list of movie
reviews, containing the information of products and users, of
Amazon. Each node of MovieRev9 corresponds to a product
of the reviews; we make an undirected edge if two products
have at least 9 common reviewers. DBLP is a collabora-
tion network where there is an undirected edge between two
authors if they participate in the same work. For all the
graphs, we remove duplicated edges and edge directions.

Result. Following the strategy used in [2, 20], we espe-
cially focus on relation between degrees and local triangle
counts of nodes. There are two types of patterns of inter-
est: a group of anomalous nodes with similar characteristics
and a node far from a general pattern in the degree-triangles
scatter plot.

Observation 2 (Core-periphery in Web). In Stan-
ford, there are core-peripheries that can be divided into two
subgroups: the first subgroup is a small dense graph and the
other is a large sparse graph. The two subgroups are tightly
connected.

Figure 7a shows the result of discovering anomalous struc-
tures in the Stanford web graph. In the scatter plot of the
degree and the local triangle count for the nodes, we observe
several near clique structures shown as short vertical lines in
the plot. They are not only tightly connected to each other
but also share a large portion of neighbors outside the group.
The number of those neighbors are relatively large and they
are sparsely interconnected. As a result, each group and its
neighbors form a core-periphery. Figure 7b shows the edge
densities of the discovered groups and their neighbor groups,
and the ratios of the group sizes over the neighbor sizes. The
three groups that we discover show similar patterns.

Observation 3 (Broad Popularity of Movies). In
MovieRev9, several sets of movies are loved by many users
of various tastes.

Figure 7c shows anomalous groups of nodes discovered in
MovieRev9. The red group corresponds to religious films like
“Holy Night”and“Return to Nazareth”; all of them are made
with the same actors, writers and producers. Such movies
can be preferred by various people believing in that religion
regardless of their movie preferences, resulting in small tri-
angles compared with degrees. The green, blue and purple
groups correspond to classic movies, which are released in
various forms and reissued until recently—the green for a se-
ries of “Planet of the Apes”, the blue for “Casablanca”, and
the purple for “You Only Live Twice”. Since they have been
loved a long period of time, regardless of preferences, many
people with diverse spectra in their personalities watch those
movies. As a result, those movies form less tightly connected
ego networks.

Observation 4 (Papers by Many Coauthors). In
DBLP, there is a group of authors each of which participates
in at least one paper with many coauthors, forming a small
tightly connected group.

Observation 5 (Ambiguity by Common Names). In
DBLP, there are groups of very active researchers each of
which corresponds to people having a same name.

Figure 7d shows two linear patterns discovered in the
coauthorship relations of DBLP. The first pattern is formed
by the red and green groups which correspond to authors
whose coauthors are tightly connected. We observe that
this is due to papers written by a large number of coau-
thors. Especially, the green group contains 85 authors who
participate in one paper written by 119 authors; some of
them have only one publication.

The second linear pattern marked in blue is observed on
the area of large degrees and small local triangles. Those
correspond to authors actively collaborating with other re-
searchers, but we observe that each of them consists of a
collection of a common name. Most of them are Chinese:
e.g. the point with the largest degree is a result with many
researchers whose names are “Wei Wang” expressed in 8 dif-
ferent words in Chinese [33].

5. CONCLUSION
In this paper, we propose Mascot, a local triangle count-

ing algorithm in a graph stream. The main contributions
are as follows.

• Algorithm. We propose a one-pass local triangle
counting algorithm Mascot. Mascot improves two
basic algorithms Mascot-C and Mascot-A to pro-
vide both accuracy and memory-efficiency. In con-
trast to the previous algorithm [22], Mascot requires
only one parameter of edge sampling probability and
no prior knowledge on an input graph.
• Performance. Experimental results show that Mas-

cot is the best among our proposed algorithms and
outperforms the existing one.
• Discovery. Applying Mascot to real graphs, we dis-

cover anomalous patterns like the core-periphery struc-
ture in Web, and ambiguity of author names in DBLP.

Our future work includes developing streaming algorithms
to solve various graph mining problems such as subgraph
matching and graph partitioning.

6. REFERENCES
[1] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella.

Graph sample and hold: A framework for big-graph
analytics. In KDD, 2014.

[2] L. Akoglu, M. McGlohon, and C. Faloutsos. oddball:
Spotting anomalies in weighted graphs. In PAKDD, 2010.

[3] N. Alon, R. Yuster, and U. Zwick. Finding and counting
given length cycles. Algorithmica, 17(3):209–223, 1997.

[4] S. Arifuzzaman, M. Khan, and M. V. Marathe. Patric: a
parallel algorithm for counting triangles in massive
networks. In CIKM, 2013.

[5] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental
and personalized pagerank. PVLDB, 4(3):173–184, 2010.

[6] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal.
Pagerank on an evolving graph. In KDD, 2012.

[7] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in
streaming algorithms, with an application to counting
triangles in graphs. In SODA, 2002.

[8] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
algorithms for large-scale local triangle counting. TKDD,
4(3), 2010.

[9] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A.
Phillips. Tolerating the community detection resolution
limit with edge weighting. Phys. Rev. E, 83:056119, 2011.

[10] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7), 1970.

[11] L. S. Buriol, G. Frahling, S. Leonardi,
A. Marchetti-Spaccamela, and C. Sohler. Counting
triangles in data streams. In PODS, 2006.

[12] S. Chu and J. Cheng. Triangle listing in massive networks
and its applications. In KDD, 2011.

[13] J. Cohen. Graph twiddling in a mapreduce world.
Computing in Science and Engineering, 11(4):29–41, 2009.

[14] P. K. Desikan, N. Pathak, J. Srivastava, and V. Kumar.
Incremental page rank computation on evolving graphs. In
WWW (Special interest tracks and posters), 2005.

[15] J.-P. Eckmann and E. Moses. Curvature of co-links
uncovers hidden thematic layers in the World Wide Web.
PNAS, 99(9):5825–5829, 2002.

[16] X. Hu, Y. Tao, and C.-W. Chung. Massive graph
triangulation. In SIGMOD, 2013.

[17] M. Jha, C. Seshadhri, and A. Pinar. A space efficient
streaming algorithm for triangle counting using the
birthday paradox. In KDD, 2013.

[18] H. Jowhari and M. Ghodsi. New streaming algorithms for
counting triangles in graphs. In COCOON, 2005.

[19] D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun.
Counting arbitrary subgraphs in data streams. In ICALP,
2012.

[20] U. Kang, B. Meeder, E. Papalexakis, and C. Faloutsos.
Heigen: Spectral analysis for billion-scale graphs. TKDE,
26(2):350–362, February 2014.

[21] J. Kim, W.-S. Han, S. Lee, K. Park, and H. Yu. Opt: A
new framework for overlapped and parallel triangulation in
large-scale graphs. In SIGMOD, 2014.

[22] K. Kutzkov and R. Pagh. On the streaming complexity of
computing local clustering coefficients. In WSDM, 2013.

[23] M. Latapy. Main-memory triangle computations for very
large (sparse (power-law)) graphs. Theor. Comput. Sci.,
407(1-3):458–473, 2008.

[24] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: Simple
building blocks of complex networks. Science,
298(5594):824–827, 2002.

[25] J. Nishimura and J. Ugander. Restreaming graph
partitioning: simple versatile algorithms for advanced
balancing. In KDD, 2013.

[26] R. Pagh and F. Silvestri. The input/output complexity of
triangle enumeration. In PODS, 2014.

[27] R. Pagh and C. E. Tsourakakis. Colorful triangle counting
and a mapreduce implementation. Inf. Process. Lett.,
112(7):277–281, 2012.

[28] H.-M. Park and C.-W. Chung. An efficient mapreduce
algorithm for counting triangles in a very large graph. In
CIKM, 2013.

[29] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh. Mapreduce
triangle enumeration with guarantees. In CIKM, 2014.

[30] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu.
Counting and sampling triangles from a graph stream.
Proc. VLDB Endow., 6(14):1870–1881, Sept. 2013.

[31] A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating
pagerank on graph streams. J. ACM, 58(3):13, 2011.

[32] T. Schank and D. Wagner. Finding, counting and listing all
triangles in large graphs, an experimental study. In WEA,
2005.

[33] G. D. Sprouse. Editorial: Which Wei Wang? Physical
Review Letters, 99(23):230001, 2007.

[34] I. Stanton. Streaming balanced graph partitioning for
random graphs. In SODA, 2014.

[35] I. Stanton and G. Kliot. Streaming graph partitioning for
large distributed graphs. In KDD, 2012.

[36] S. Suri and S. Vassilvitskii. Counting triangles and the
curse of the last reducer. In WWW, 2011.

[37] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. Fennel: Streaming graph partitioning for
massive scale graphs. In WSDM, 2014.

[38] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos.
Doulion: counting triangles in massive graphs with a coin.
In KDD, 2009.

[39] H. T. Welser, E. Gleave, D. Fisher, and M. Smith.
Visualizing the signatures of social roles in online discussion
groups. The Journal of Social Structure, 8(2), 2007.

[40] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and
Y. Dai. Uncovering social network sybils in the wild. In
Internet Measurement Conference, 2011.

