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Static and Streaming Tucker Decomposition for Dense
Tensors
JUN-GI JANG, Seoul National University, Republic of Korea
U KANG∗, Seoul National University, Republic of Korea

Given a dense tensor, how can we efficiently discover hidden relations and patterns in static and online

streaming settings? Tucker decomposition is a fundamental tool to analyze multidimensional arrays in

the form of tensors. However, existing Tucker decomposition methods in both static and online streaming

settings have limitations of efficiency since they directly deal with large dense tensors for the result of Tucker

decomposition. In a static setting, although few static methods have tried to reduce their time cost by sampling

tensors, sketching tensors, and efficient matrix operations, there remains a need for an efficient method.

Moreover, streaming versions of Tucker decomposition are still time-consuming to deal with newly arrived

tensors.

We propose D-Tucker and D-TuckerO, efficient Tucker decomposition methods for large dense tensors in

static and online streaming settings, respectively. By decomposing a given large dense tensor with randomized

singular value decomposition, avoiding the reconstruction from SVD results, and carefully determining the

order of operations, D-Tucker and D-TuckerO efficiently obtain factor matrices and core tensor. Experimental

results show that D-Tucker achieves up to 38.4× faster running times, and requires up to 17.2× less space than

existing methods while having similar accuracy. Furthermore, D-TuckerO is up to 6.1× faster than existing

streaming methods for each newly arrived tensor while its running time is proportional to the size of the

newly arrived tensor, not the accumulated tensor.

Additional Key Words and Phrases: Dense tensor, Tucker decomposition, static setting, online streaming

setting, efficiency
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1 INTRODUCTION
How can we efficiently discover hidden concepts and patterns of large dense tensors? Many real-

world data including video, music, and air quality, can be represented as dense tensors. Tucker

decomposition is a fundamental tool for factorizing a given tensor into factor matrices and a core

tensor to find hidden concepts and latent patterns. Tucker decomposition has spurredmuch interests

with various applications including dimensionality reduction [27, 47], recommendation [40, 44],

and clustering [9, 20].

Alternating Least Square (ALS) is the most widely used method for Tucker decomposition.

Existing ALS based methods, however, fail to satisfy all the desired properties for dense tensor

decompositions: fast running time, low memory requirement, and high accuracy. Tucker-ALS
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111:2 Jun-Gi Jang and U Kang

which updates factor matrices iteratively is slow when the number of iterations is large. Moreover,

Tucker-ALS has a memory problem to obtain final factor matrices and a core tensor since it directly

handles large dense tensors in order to update the factor matrices and the core tensor at each

iteration. A few static Tucker decomposition methods reduce the computational cost using efficient

matrix operations [5, 33] or applying randomized algorithms [11, 35]. In addition, other Tucker

decomposition methods [34, 56] reduce the computational time and the memory requirement

by approximating large dense tensor. However, none of them provide both fast running time

and accuracy. The major challenges to deal with large dense tensors are 1) how to efficiently

approximate a large dense tensor with low error, and 2) how to update factor matrices by using

approximated results.

In this paper, we propose D-Tucker and D-TuckerO, efficient Tucker decomposition methods on

large dense tensors. D-Tucker and D-TuckerO run in static and online streaming settings, respec-

tively. The main ideas of D-Tucker are as follows: 1) slice an input tensor into matrices and compress

each matrix by exploiting randomized singular value decomposition (SVD), 2) initialize and update

factor matrices and a core tensor using the SVD results, and 3) carefully determine the ordering of

computations for efficiency. Similar to D-Tucker, D-TuckerO tackles Tucker decomposition for an

online streaming setting with the following ideas: 1) avoid direct computations related to previous

time-steps, 2) approximate each new incoming tensor, and then 3) carefully update factor matrices

by determining the ordering of computations.

D-Tucker has three main phases: approximation, initialization, and iteration (see Fig. 1). The

approximation phase of D-Tucker slices an input tensor intomatrices, and then performs randomized

SVD [19] of each sliced matrix. It allows us to reduce the size of the input tensor for updating the

factor matrices and the core tensor. The initialization phase of D-Tucker initializes factor matrices

by computing orthogonal factor matrices using the SVD results of sliced matrices. The iteration

phase of D-Tucker updates the factor matrices and the core tensor by carefully exploiting the

SVD results. D-Tucker achieves better time and space efficiency by carefully dealing with SVD

results. Experimental results show that D-Tucker is faster and more memory-efficient than existing

methods.

In an online streaming setting, D-TuckerO efficiently deals with each new incoming tensor by

updating the temporal factor matrix, and then updating factor matrices of non-temporal modes. To

update the temporal factor matrix, we leverage only the new incoming tensor and factor matrices of

non-temporal modes obtained at the previous time step. For factor matrices of non-temporal modes,

we avoid direct computations related to the entire tensor and the temporal factor matrix obtained at

previous time-steps. It enables that computational cost and memory requirements are proportional

to the size of a new incoming tensor, not the entire tensor. In addition, at each time-step, we

approximate a new incoming tensor using the approximation phase of D-Tucker, and then update

the factor matrices by carefully using the approximation results. Exploiting the approximation

phase gives D-TuckerO the same benefit as D-Tucker: it allows us to use a smaller size of the

approximated results than that of a new incoming tensor in updating the factor matrices and the

core tensor, to achieve better time and space efficiency. Through comprehensive experiments, we

show that D-TuckerO is more efficient than existing streaming methods, and the running time of

D-TuckerO is proportional to the size of a newly arrived tensor, not the accumulated tensor.

The contributions of this paper are as follows.

• Algorithm. We propose D-Tucker and D-TuckerO, efficient methods for decomposing

dense tensors in static and online streaming settings.

• Analysis. We provide analysis for the time and the space complexities of our proposed

methods D-Tucker and D-TuckerO.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2022.
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Table 1. Symbol description.

Symbol Description

X𝑟 Reordered tensor (∈ 𝐼1 × 𝐼2 × 𝐾3 × ... × 𝐾𝑁 )
G Core tensor (∈ 𝐽1 × 𝐽2 × ... × 𝐽𝑁 )

A(𝑛) Factor matrix of the 𝑛-th mode

𝐼𝑛 Dimensionality of the 𝑛-th mode of X𝑟 for modes 𝑛 = 1 and 2

𝐾𝑛 Dimensionality of the 𝑛-th mode of X𝑟 for mode 𝑛 = 3, 4, ..., 𝑁

𝐽𝑛 Dimensionality of the 𝑛-th mode of core tensor[
X ; Y

]
Horizontal concatenation of two matrices X and Y

X::𝑘3 ...𝑘𝑁 (𝑘3, ..., 𝑘𝑁 )-th sliced matrix of size 𝐼1 × 𝐼2
U::𝑘3 ...𝑘𝑁 Left singular vector matrix of X::𝑘3 ...𝑘𝑁

Σ::𝑘3 ...𝑘𝑁 Singular value matrix of X::𝑘3 ...𝑘𝑁

V::𝑘3 ...𝑘𝑁 Right singular vector matrix of X::𝑘3 ...𝑘𝑁

𝐿 Number of sliced matrices (= 𝐾3 × · · ·𝐾𝑁 )
𝑟 Number of singular values for SVD

𝑁 Order of the given tensor

𝜖 Error tolerance in the iteration phase

𝑡𝑛𝑒𝑤 New time-step in an online streaming setting

X𝑜𝑙𝑑 Accumulated tensor

X𝑛𝑒𝑤 New time slice at a time step 𝑡𝑛𝑒𝑤
𝑇𝑜𝑙𝑑 Dimensionality of the temporal mode of an accumulated tensor (∈ 𝐼1 × 𝐼2 × 𝐾3 × ... ×𝑇𝑜𝑙𝑑 )
𝑇𝑛𝑒𝑤 Dimensionality of the temporal mode of a new time slice (∈ 𝐼1 × 𝐼2 × 𝐾3 × ... ×𝑇𝑛𝑒𝑤)

𝑏𝑙𝑘𝑑𝑖𝑎𝑔({A𝑙 }𝐿𝑙=1) Block diagonal matrix consisting of A𝑙 for 𝑙 = 1, ...𝐿 (see Equation (10))

A(𝑛)
𝑜𝑙𝑑

Pre-existing factor matrix of the 𝑛-th mode in an online streaming setting

⊗ Kronecker product

† Pseudoinverse

• Experiment. We experimentally show that D-Tucker 1) is up to 38.4× faster and requires

up to 17.2× less space than competitors (see Fig. 3), and 2) provides good starting points

to minimize the running time. Moreover, D-Tucker is scalable in handling dense tensors

in terms of dimensionality, rank, order, and number of iterations. D-TuckerO is up to 6.1×
faster than competitors in an online streaming setting (see Fig. 7).

In the rest of this paper, we describe the preliminaries in Section 2, propose our methods D-

Tucker and D-TuckerO in Sections 3 and 4, respectively, present experimental results in Section 5,

discuss related works in Section 6, and conclude in Section 7. The code and datasets are available at

https://datalab.snu.ac.kr/dtucker.

2 PRELIMINARIES
We describe the preliminaries for tensor, SVD, and Tucker decomposition. Table 1 shows the

symbols used.

2.1 Tensor
Each ‘dimension’ of a tensor (i.e., a multi-dimensional array) is denoted by𝑚𝑜𝑑𝑒 or𝑤𝑎𝑦. ‘dimen-

sionality’ of a mode denotes the length of it. An 𝑁 -mode or 𝑁 -way tensor is represented as a

boldface Euler script capital (e.g. X ∈ R𝐼1×𝐼2×···×𝐼𝑁 ) letter, and matrices are denoted by boldface

capitals (e.g. A). A mode-𝑛 fiber is a vector having fixed indices except for the 𝑛-th index in a tensor.

A sliced matrix is a matrix having fixed all indices except for two indices in a tensor.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2022.
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	𝐗𝟏

𝑰𝟐

𝑰𝟏

𝑲𝟑

𝐔𝟏
𝚺𝟏 𝐕𝟏𝑻

	𝓧

𝑰𝟐

𝑰𝟏

𝑲𝟑

𝐀(𝟏)
		𝐀(𝟐)

1. Slice the given tensor 𝓧
along the mode having the 

smallest dimensionality (𝑲𝟑)

2. Perform 
randomized SVD 
of sliced matrices 

3. Initialize factor matrices using 
the SVD results of sliced matrices

Approximation
Phase

Initialization
Phase

𝐀(𝟏)
		𝐀(𝟐)

𝓖

Iteration
Phase

4. Iteratively update factor matrices 
and obtain the core tensor using the 

SVD results

𝐀(𝟑) 𝐀(𝟑)

Fig. 1. Overview of D-Tucker. We first slice the given 3-order tensor X ∈ R𝐼1×𝐼2×𝐾3 along the mode having
the smallest dimensionality (𝐾3), and approximate sliced matrices using singular value decomposition (SVD).
Then, we compute factor matrices using SVD results of sliced matrices in initialization step. We iteratively
update factor matrices using SVD results of sliced matrices. After that, we obtain the core tensor using the
updated factor matrices and SVD results of sliced matrices.

2.2 Tensor Operation
We use the following tensor operations in this paper: Frobenius norm, matricization, 𝑛-mode

product, Kronecker product, and slicing.

Frobenius Norm. The Frobenius norm of X (∈ R𝐼1×...×𝐼𝑁 ) is denoted by ∥X∥F and defined as

follows:

∥X∥F =

√︄ ∑︁
∀(𝑖1,...,𝑖𝑁 ) ∈X

X2

(𝑖1,...,𝑖𝑁 )
.

Matricization. Mode-𝑛 matricization converts a given tensor into a matrix form along 𝑛-th

mode. We denote the mode-𝑛 matricization of a tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 as X(𝑛) . Each element

(𝑖1, ..., 𝑖𝑁 ) of X is mapped to an element (𝑖𝑛, 𝑗) of X(𝑛) such that

𝑗 = 1 +
𝑁∑︁
𝑘=1
𝑘≠𝑛

©«(𝑖𝑘 − 1)
𝑘−1∏
𝑚=1
𝑚≠𝑛

𝐼𝑚
ª®®¬ ,

where all indices start from 1.

𝑛-mode product. The 𝑛-mode product X×𝑛A of a tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 with a matrix

A ∈ R𝐽𝑛×𝐼𝑛 has the size of 𝐼1×· · ·𝐼𝑛−1×𝐽𝑛 ×𝐼𝑛+1 · · · × 𝐼𝑁 , and defined by

(X ×𝑛 A)𝑖1 ...𝑖𝑛−1 𝑗𝑛𝑖𝑛+1 ...𝑖𝑁 =

𝐼𝑛∑︁
𝑖𝑛=1

𝑥𝑖1𝑖2 ...𝑖𝑁 𝑎 𝑗𝑛𝑖𝑛

where 𝑎 𝑗𝑛𝑖𝑛 is the ( 𝑗𝑛, 𝑖𝑛)-th entry of A. The result of 𝑛-mode product of a tensor X with a matrix

A is identical to that of the following three operations: 1) performing mode-𝑛 matricization X(𝑛) , 2)
computing Y(𝑛) = AX(𝑛) , and 3) reshaping the result Y(𝑛) as a tensor Y ∈ R𝐼1×···𝐼𝑛−1× 𝐽𝑛×𝐼𝑛+1 · · ·×𝐼𝑁 .

Kronecker product. Kronecker product of a matrix A ∈ R𝑝×𝑞 with a matrix B ∈ R𝑟×𝑠 produces
the output C = A ⊗ B of the size 𝑝𝑟 × 𝑞𝑠 . Each element of the output is defined as follows:

C𝑟 (𝑡−1)+𝑢,𝑠 (𝑣−1)+𝑤 = 𝑎𝑡,𝑣 × 𝑏𝑢,𝑤 (1)

where 𝑎𝑡,𝑣 is (𝑡, 𝑣)-th element of the matrix A and 𝑏𝑢,𝑤 is (𝑢,𝑤)-th element of the matrix B.
Slicing a tensor. Slicing an 𝑁 -order tensor X (∈ R𝐼1×...×𝐼𝑁 ) along modes not in {𝑚,𝑛} decom-

posesX into 𝐿 sliced matrices of size 𝐼𝑚× 𝐼𝑛 , where 𝐿 = 𝐼1× ...× 𝐼𝑚−1× 𝐼𝑚+1× ...× 𝐼𝑛−1× 𝐼𝑛+1× ...× 𝐼𝑁 .
For example, consider a 3-order tensor X (∈ R𝐼1×𝐼2×𝐾3 ) in Fig. 1. Slicing X along mode 3 leads to

𝐾3 sliced matrices of size 𝐼1 × 𝐼2.
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Algorithm 1: Randomized SVD [59]

Input: matrix A ∈ R𝑚×𝑛 , target rank 𝑘 , and sampling parameters 𝑝 and 𝑙

Output: SVD results U ∈ R𝑚×𝑘 , Σ ∈ R𝑘×𝑘 , V ∈ R𝑛×𝑘
1: draw random matrices Ω ∈ R𝑝×𝑚 and Ψ ∈ R𝑙×𝑛
2: form matrices Y = ΩA and Z = ΨA𝑇

3: obtain column orthogonal matrices Q and P by QR factorization of Y𝑇 and Z𝑇 .
4: form matrices W = ΩP and B = YQ.

5: obtain a matrix X which minimizes ∥WX − B∥
6: compute SVD of X = ŨΣṼ𝑇

7: U← PŨ𝑘 , Σ← Σ̃𝑘 , V← QṼ𝑘

2.3 Singular Value Decomposition (SVD)
Given a matrix X ∈ R𝑚×𝑛 , Singular Value Decomposition (SVD) decomposes it into the three

matrices U ∈ R𝑚×𝑟 , Σ ∈ R𝑟×𝑟 , and V ∈ R𝑛×𝑟 where X is equal to UΣVT
. U is a column orthogonal

matrix (i.e., U𝑇U = I) consisting of left singular vectors of X; Σ is an 𝑟 ×𝑟 diagonal matrix consisting

of singular values 𝜎𝑟 where 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑟 ≥ 0. V ∈ R𝑛×𝑟 is a column orthogonal matrix (i.e.,

V𝑇V = I) consisting of right singular vectors of X.

SVD with randomized algorithm. Randomized SVD efficiently approximates a matrix A ∈
R𝑚×𝑛 with a low rank using randomization techniques (See Algorithm 1). The main idea of

randomized SVD is 1) to generate random matrices Ω ∈ R𝑝×𝑚 and Ψ ∈ R𝑙×𝑛 where 𝑝 and 𝑙 are

sampling parameters, and find column orthogonal matrices Q ∈ R𝑛×𝑝 and P ∈ R𝑚×𝑙 of sketches
Y𝑇 = (ΩA)𝑇 ∈ R𝑛×𝑝 and Z𝑇 = (ΨA𝑇 )𝑇 ∈ R𝑚×𝑙 , respectively, 2) to construct a smaller matrices

W = ΩP ∈ R𝑝×𝑙 and B = YQ ∈ R𝑝×𝑝 , and find X ∈ R𝑙×𝑝 that minimizes ∥WX − B∥, 3) to
compute X ≈ Ũ𝑘Σ𝑘 Ṽ𝑇

𝑘
by truncated SVD at target rank 𝑘 , and 4) to compute U = PŨ𝑘 ∈ R𝑚×𝑘 and

V = QṼ𝑘 ∈ R𝑛×𝑘 . The dominant terms to compute randomized SVD are to form sketches Y and Z.
Recent works [14, 34] require 𝑂 (𝑚𝑛) time to construct random matrix and form matrix Y using

sparse embedding matrix Ω ∈ R𝑝×𝑚 = ΦD.

• ℎ: [𝑚] → [𝑝] is a random map so that ℎ(𝑚′) = 𝑝′ for 𝑝′ ∈ [𝑝] with probability 1/𝑝 for

each𝑚′ ∈ [𝑚], where [𝑚] = {1, 2, ...,𝑚} and [𝑝] = {1, 2, ..., 𝑝}.
• Φ ∈ {0, 1}𝑝×𝑚 : for each𝑚′-th column of Φ, all the entries are 0 except that ℎ(𝑚′)-th entry is

1; each column vector is a one-hot encoding vector whose only one entry is 1 and remaining

entries are 0.

• Diagonal matrix D ∈ R𝑚×𝑚 : diagonal entries are randomly chosen to be 1 or −1 with equal

probability.

Due to the special form of Φ and D, the complexity of multiplying Ω to A is 𝑂 (𝑚𝑛) (see [14] for
details). Z is also constructed like Y using sparse embedding matrix. Therefore, the time complexity

of randomized SVD is 𝑂 (𝑚𝑛) when we use sparse embedding matrices. In this paper, we use

randomized SVD to efficiently deal with large dense matrices in the approximation phase. We use

standard SVD [7] with time complexity 𝑂 (𝑚𝑛𝑘) to stably deal with relatively small matrices in the

initialization and iteration phases.

2.4 Tucker Decomposition
Definition 1 (Tucker Decomposition). Given an N-order tensor X ∈ R𝐼1×...×𝐼𝑁 , Tucker de-

composition decomposes X into the core tensor G ∈ R𝐽1×...× 𝐽𝑁 and factor matrices A(𝑛) ∈ R𝐼𝑛× 𝐽𝑛 for
𝑛 = 1...𝑁 . □
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Algorithm 2: Tucker-ALS (HOOI) [31]

Input: tensor X ∈ R𝐼1×...×𝐼𝑁 and core tensor dimensionality 𝐽1, ..., 𝐽𝑁

Output: core tensor G ∈ R𝐽1,...,𝐽𝑁 and factor matrices A(𝑖 )

(𝑖 = 1, ..., 𝑁 )

1: initialize: factor matrices A(𝑖 ) (𝑖 = 1, ..., 𝑁 )

2: repeat
3: for 𝑖 = 1, ..., 𝑁 do
4: Y← X ×1 A(1)𝑇 · · · ×𝑖−1 A(𝑖−1)𝑇 ×𝑖+1 A(𝑖+1)𝑇 · · · ×𝑁 A(𝑁 )𝑇

5: A(𝑖 ) ← J𝑖 leading left singular vectors of Y(𝑖 )
6: end for
7: until the maximum iteration is reached, or the error ceases to decrease;

8: G← X ×1 A(1)𝑇 ×2 A(2)𝑇 · · · ×𝑁 A(𝑁 )𝑇

Note that A(𝑛) is a column orthogonal matrix, i.e. A(𝑛)𝑇 A(𝑛) = I where I is the identity matrix,

and core tensor G is small and dense. The objective function of Tucker decomposition is given as

follows.

min

G,A(1) ,...,A(𝑁 )
| |X − G ×1 A(1) · · · ×𝑁 A(𝑁 ) | | (2)

where we represent the given tensor X using the core tensor G and factor matrices A(𝑛) :

X ≈ G ×1 A(1) · · · ×𝑁 A(𝑁 ) (3)

In addition, we re-express Equation (3) with matricization and Kronecker product as follows:

X(𝑛) ≈ A(𝑛)G(𝑛) (⊗𝑁𝑘≠𝑛A(𝑘 )𝑇 ) (4)

where (⊗𝑁
𝑘≠𝑛

A(𝑘 )𝑇 ) indicates Kronecker product of A(𝑘 )𝑇 for 𝑘 = 𝑁, 𝑁 − 1, ..., 𝑛 + 1, 𝑛 − 1, ..., 2, 1.
Computing the Tucker decomposition. A common approach to minimize Equation (2) is ALS

(Alternating Least Square). ALS approach iteratively updates the factor matrix of a mode while

fixing all factor matrices of other modes. Algorithm 2 describes Tucker decomposition based on ALS

approach, which is called higher-order orthogonal iteration (HOOI). A bottleneck of ALS approach

for a dense tensor is to compute Equation (5) (line 4 in Algorithm 2) which requires 𝑂 (∏𝑁
𝑚=1 𝐼𝑚)

space and𝑂 (𝐽1 ×
∏𝑁
𝑚=1 𝐼𝑚) computational time even to compute the first 𝑛-mode product between

an input tensor X and the factor matrix A(1) .

Y← X ×1 A(1)𝑇 · · · ×𝑖−1 A(𝑖−1)𝑇 ×𝑖+1 A(𝑖+1)𝑇 · · · ×𝑁 A(𝑁 )𝑇 ⇔ Y(𝑖 ) ← X(𝑖 )
(
⊗𝑁
𝑘≠𝑖

A(𝑘 )
)

(5)

Note that Equation (5) re-expresses line 4 of Algorithm 2 with mode-𝑖 matricization and Kronecker

product (see details in [28]). Moreover, the computational time grows as the number of iterations

increases. Applying the naive Tucker-ALS is impractical in terms of time and space.

Recent works [34, 56] propose efficient tensor decomposition methods by approximating a large

dense tensor to a small tensor, and updating the factor matrices and the core tensor using the

small approximated tensor. MACH [56] updates them after randomly choosing elements of an

input tensor, but an accuracy issue remains. Besides, it requires high time and space costs in an

update phase. Malik et al. [34] proposed Tucker-ts which uses a sketching technique in updating

factor matrices and a core tensor. Tucker-ts generates small sketching tensors for each mode,

and uses them in the update phase. However, approximating a tensor with sketching requires a

heavy computational cost since it performs sketching for all modes of the input tensor. In addition,

scalability issues remain in the update phase since Tucker-ts generates large intermediate data

when order 𝑁 and rank 𝐽 are large.
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2.5 Streaming Tucker Decomposition
We formally define the problem of Tucker decomposition in an online streaming setting as follows:

Definition 2. (Tucker decomposition in a streaming fashion)

Given: a time slice X𝑛𝑒𝑤 ∈ R𝐼1×𝐼2×𝐾3×···×𝐾𝑁 −1×𝑇𝑛𝑒𝑤 at a time-step 𝑡𝑛𝑒𝑤 , a pre-existing set of factor
matrix A(𝑛)

𝑜𝑙𝑑
for 𝑛 = 1, 2, ..., 𝑁 , and a pre-existing core tensor G𝑜𝑙𝑑 where A(𝑛)

𝑜𝑙𝑑
and G𝑜𝑙𝑑 approximate

X𝑜𝑙𝑑 ∈ R𝐼1×𝐼2×𝐾3×···×𝐾𝑁 −1×𝑇𝑜𝑙𝑑 ,
Update: the factor matrix A(𝑛)𝑛𝑒𝑤 for 𝑛 = 1, 2, ..., 𝑁 and the core tensor G𝑛𝑒𝑤 to approximate the
accumulated tensor X ∈ R𝐼1×𝐼2×𝐾3×···×𝐾𝑁 −1×𝑇𝑡𝑜𝑡𝑎𝑙 where 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑜𝑙𝑑 +𝑇𝑛𝑒𝑤 .

A(𝑛)𝑛𝑒𝑤 ∈ R𝐼𝑛× 𝐽𝑛 (orR𝐾𝑛× 𝐽𝑛
) for𝑛 = 1, 2, ..., 𝑁−1 is a factor matrix updated at 𝑡𝑛𝑒𝑤 , A

(𝑁 )
𝑖𝑛𝑐
∈ R𝑇𝑛𝑒𝑤× 𝐽𝑁

is the temporal factor matrix corresponding to 𝑡𝑛𝑒𝑤 , and A(𝑁 )𝑛𝑒𝑤 =

[
A(𝑁 )
𝑜𝑙𝑑

A(𝑁 )
𝑖𝑛𝑐

]
∈ R𝑇𝑡𝑜𝑡𝑎𝑙× 𝐽𝑁 is the temporal

factor matrix corresponding to 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑜𝑙𝑑+𝑡𝑛𝑒𝑤 whereA(𝑁 )
𝑜𝑙𝑑
∈ R𝑇𝑜𝑙𝑑× 𝐽𝑁 is the pre-existing temporal

factor matrix.

Computing the Tucker decomposition in an online streaming setting. We can deal with

a newly arrived tensor using a static version of Tucker decomposition. However, it is inevitable

that running times and memory requirements increase over time. Recent works have tried to

update factor matrices and core tensor without the growth of the costs. DTA [52] updates factor

matrices and core tensor by efficiently updating covariance matrices X𝑇(𝑛)X(𝑛) . STA [52] is an

approximate version of DTA by exploiting SPIRIT [41] which efficiently deals with newly arrived

vectors. Tucker-ts and Tucker-ttmts can be adapted to an online streaming setting: 1) approximating

each newly arrived tensor using a sketching technique, and 2) updating factor matrices and core

tensor using the approximated results of the whole tensor. Although they avoid increasing running

time and memory requirements over time, there remains a need for accelerating the update process

since computations involved with a large dense incoming tensor are still time-consuming. To

efficiently update factor matrices and core tensor in an online streaming setting, we need to 1)

prevent the increase of cost over time, 2) reduce the cost of approximating a newly arrived tensor,

and 3) update them using the approximated results of the newly arrived tensor.

3 PROPOSED METHOD FOR STATIC TENSORS: D-TUCKER
We propose D-Tucker, a fast and memory-efficient Tucker decomposition method for large-scale

dense tensors. We first give an overview of D-Tucker in Section 3.1. We describe details of D-Tucker

in Sections 3.2 to 3.4. Finally, we analyze D-Tucker’s complexities in Section 3.5.

3.1 Overview
D-Tucker efficiently computes Tucker decomposition of large dense tensors. The main challenges

are as follows:

(1) Exploiting the characteristics of real-world tensors.Many real-world tensors are dense,

provoking time and space problems. Furthermore, many real-world tensors are skewed

(i.e., one of the dimensionality is much smaller than the others) and have low dimensional

structures. How can we exploit such characteristics of real-world tensors to compress a

dense input tensor with low computational cost and error?

(2) Minimizing intermediate data. Existing methods require heavy computations and large

space while updating factor matrices and core tensor in the iteration phase. How can we

minimize the size of intermediate data when updating the factor matrices and the core

tensor?
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Algorithm 3: D-Tucker
Input: tensor X

Output: factor matrices A(𝑖 ) (𝑖 = 1, 2, ..., 𝑁 ), and core tensor G

Parameters: rank 𝐽𝑖 (𝑖 = 1, 2, ..., 𝑁 ), and error tolerance 𝜖

1: approximate slices of X by Algorithm 4

2: initialize factor matrices A(𝑖 ) (𝑖 = 1, 2, ..., 𝑁 ) by Algorithm 5

3: repeat
4: update factor matrices A(𝑖 ) (𝑖 = 1, 2, ..., 𝑁 ) and core tensor G by Algorithm 6

5: until the maximum iteration is reached, or the error difference is smaller than the error tolerance 𝜖

(3) Reducing numerical computation. Tucker decomposition deals with a large number of

tensor computations. How can we reduce the computational time of Tucker decomposition?

We address the above challenges with the following ideas:

(1) Slicing an input tensor into matrices and computing randomized SVD of sliced
matrices minimize the computational cost and error, by utilizing the low dimensional

structure of sliced matrices (Section 3.2).

(2) Avoiding the reconstruction from SVD results reduces the computational time as well

as memory usage. By replacing a dense input tensor with SVD results of sliced matrices, we

overcome a bottleneck of Tucker decomposition, 𝑛-mode product with a dense input tensor

(Sections 3.3 and 3.4).

(3) Careful ordering for matrix operations reduces the memory usage and minimizes the

computations. (Sections 3.3 and 3.4)

As shown in Fig. 1 and Algorithm 3, D-Tucker comprises three phases: approximation (Algo-

rithm 4), initialization (Algorithm 5), and iteration (Algorithm 6). In the approximation phase,

D-Tucker reorders modes of the input tensor in descending order for efficiency, extracts matrices

of size 𝐼1 × 𝐼2 by slicing the reordered tensor where 𝐼1 and 𝐼2 are the two largest dimensionalities,

and performs randomized SVD of sliced matrices in order to support fast and memory-efficient

Tucker decomposition (line 1 in Algorithm 3). In the initialization phase, we obtain initial factor

matrices using the SVD results of sliced matrices (line 2 in Algorithm 3). This phase provides a

good starting point for the iteration phase, reducing the number of iterations. In the iteration phase,

we obtain the factor matrices and the core tensor using the initial factor matrices and the SVD

results of sliced matrices (line 4 in Algorithm 3).

3.2 Approximation Phase
The main goal of the approximation phase is to compress the input tensor with low error; it enables

the iteration phase to reduce the memory requirements and the number of flops. Given a large-scale

dense tensor, previous works based on ALS approach require heavy computations and memory

usage in updating a factor matrix at each iteration step since they directly process the given tensor.

Although a few methods tried to solve the above problem by approximating the input tensor, they

give high errors, or require heavy computations. The approximation phase of D-Tucker enables

efficiently updating the factor matrices and the core tensor in the iteration phase based on two

characteristics of real-world tensors: 1) skewed shape, and 2) low dimensional structure in sliced

matrices. We reorder modes of a given tensor based on the first characteristic, and compress the

sliced matrices of the reordered tensor using a fast dimensionality reduction technique, randomized

SVD.
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Algorithm 4: Approximation phase of D-Tucker

Input: tensor X

Output: sets of SVD result U
::𝑘3,...,𝑘𝑁 Σ

::𝑘3,...,𝑘𝑁 VT

::𝑘3,...,𝑘𝑁
of sliced matrix X

::𝑘3,...,𝑘𝑁

Parameters: rank 𝑟

1: reorder modes of the input tensor by dimensionality in descending order

2: extract the matrix X
::𝑘3,...,𝑘𝑁 ∈ R𝐼1×𝐼2 by slicing the reordered tensor where 𝐼1 and 𝐼2 are the two largest

dimensionalities

3: for each (𝑘3, ..., 𝑘𝑁 ) do
4: perform randomized SVD of X

::𝑘3,...,𝑘𝑁 ≃ U
::𝑘3,...,𝑘𝑁 Σ

::𝑘3,...,𝑘𝑁 VT

::𝑘3,...,𝑘𝑁
5: end for

Skewed shape of real-world tensors. A skewed shape, where there are gaps between the

dimensionalities of modes, exists in many real-world tensors. For example, a 3-order Air Quality

tensor (see Table 3) of size (30648, 376, 6) in the form of (timestamp in second, location, atmospheric

pollutants; measurement) has a skewed shape where the dimensionality of the last mode is much

smaller than those of others. We reorder modes in descending order of dimensionality (line 1 in

Algorithm 4). Reordered tensor is defined as follows:

Definition 3 (Reordered tensorX𝑟 ). Given an 𝑁 -mode input tensorX, we reorder the input ten-
sor by dimensionality in descending order. We represent the reordered tensor as X𝑟 ∈ R𝐼1×𝐼2×𝐾3×···×𝐾𝑁

where 𝐼1 and 𝐼2 are the two largest dimensionalities, 𝐾𝑛 for 𝑛 = 3, 4, ..., 𝑁 are the remaining dimen-
sionalities, and 𝐼1 ≥ 𝐼2 ≥ 𝐾3 ≥ · · · ≥ 𝐾𝑁 . □

This reordering helps minimize the output size of the approximation phase, which is described

in the analysis of space complexity in Section 3.5.

Low dimensional structure in sliced matrices.Many real-world data represented as a matrix

have a low dimensional structure since they have redundant and correlated components. Similarly,

sliced matrices of a given real-world tensor for any two modes often have a low dimensional

structure. For example, consider the 3-order Air Quality tensor X ∈ R𝐼1×𝐼2×𝐾3
of size (30648, 376, 6)

in Table 3 containing (timestamp in second, location, atmospheric pollutants; measurement), sliced

along modes 3. Out of the 6 sliced matrices, the 𝑖th sliced matrix X::𝑖 ∈ R𝐼1×𝐼2 indicates the

matrix containing (timestamp in second, location; measurement) for the 𝑖th atmospheric pollutant.

We observe that the number 𝑟 of singular values to keep 90% energy of each sliced matrix is

(28, 8, 6, 7, 6, 18), which is much smaller than 𝐼1 = 30648 and 𝐼2 = 360. Note that the energy of

a matrix X::𝑖 ∈ R𝐼1×𝐼2 is defined as

∑𝑚𝑖𝑛 (𝐼1,𝐼2 )
𝑟=1

𝜎2𝑟 where 𝜎𝑟 is the 𝑟 th singular value of X::𝑖 . This

result indicates that the sliced matrices have low dimensional structures. D-Tucker compresses

the given tensor by exploiting the low dimensional structure, achieving low errors. Moreover,

this structure provides the following computational benefit: the approximation phase of D-Tucker

yields faster performance by leveraging the randomized SVD [59] of sliced matrices. It enables

us to avoid performing tensor decomposition methods for sub-tensors, which makes D-Tucker

efficient since the tensor-based methods iteratively perform expensive operations such as 𝑛-mode

product. Therefore, D-Tucker achieves high efficiency and low errors even on single-core systems.

We express a reordered tensor X𝑟 ∈ R𝐼1×𝐼2×𝐾3×···×𝐾𝑁
as a collection of sliced matrix X::𝑘3 ...𝑘𝑁 .

We formally define the sliced matrix X::𝑘3 ...𝑘𝑁 in Definition 4.

Definition 4 (Sliced matrix X::𝑘3 ...𝑘𝑁 ). Given a reordered tensor X𝑟 ∈ R𝐼1×𝐼2×𝐾3×···×𝐾𝑁 , each
sliced matrix of size 𝐼1 × 𝐼2 is extracted by slicing the reordered tensor X𝑟 . The size of a sliced matrix
X::𝑘3 ...𝑘𝑁 is 𝐼1 × 𝐼2 where 𝐼1 is the number of rows and 𝐼2 is the number of columns of the sliced matrix.
□
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𝐗::𝟏,𝟏

𝐗::𝟐,𝟏
𝐗::𝟏,𝟐

𝐗::𝟐,𝟐

	𝐗::𝟏,𝟏 	𝐗∷𝟐,𝟏 	𝐗∷𝟏,𝟐 	𝐗::𝟐,𝟐

Mode-1	Matricization

4-order	tensor	
(∈ 𝑰𝟏×𝑰𝟐×𝑲𝟑×𝑲𝟒)

Matrix		(∈ 𝑰𝟏×(𝑰𝟐×𝑲𝟑×𝑲𝟒))

	𝐗::𝟏,𝟏𝐓 	𝐗∷𝟐,𝟏𝐓 	𝐗∷𝟏,𝟐𝐓 	𝐗::𝟐,𝟐𝐓

Mode-2	Matricization

Matrix	(∈ 𝑰𝟐×(𝑰𝟏×𝑲𝟑×𝑲𝟒))

Fig. 2. Example of matricizing a 4-order tensor X ∈ R𝐼1×𝐼2×𝐾3×𝐾4 using sliced matrices for the first and the
second mode when 𝐾3 = 2 and 𝐾4 = 2.

After slicing the tensor X𝑟 into the matrices X::𝑘3 ...𝑘𝑁 , we decompose the sliced matrix using

randomized SVD [59] with sparse embedding matrix [14, 34] (line 4 in Algorithm 4).

X::𝑘3 ...𝑘𝑁 ≃ U::𝑘3 ...𝑘𝑁 Σ::𝑘3 ...𝑘𝑁 VT

::𝑘3 ...𝑘𝑁
(6)

where U::𝑘3 ...𝑘𝑁 (∈ R𝐼1×𝑟 ) is a left singular vector matrix, Σ::𝑘3 ...𝑘𝑁 (∈ R𝑟×𝑟 ) is a singular value

matrix, and V::𝑘3 ...𝑘𝑁 (∈ R𝐼2×𝑟 ) is a right singular vector matrix. Note that the number 𝑟 of singular

values is much smaller than the dimensionalities 𝐼1 and 𝐼2. By computing Equation (6) for all sliced

matrices, we achieve high efficiency in terms of time and space, to obtain factor matrices and core

tensor. In the following initialization and iteration phases, we describe how to perform Tucker

decomposition efficiently with the SVD results of sliced matrices rather than the raw input tensor.

3.3 Initialization Phase
The initialization phase, which initializes factor matrices of a given tensor X, enables the iteration

phase to reduce the number of iterations by providing a good starting point of the ALS algorithm.

The main challenge is how to handle the SVD results for efficient initialization of the factor matrices.

Truncated HOSVD has provided good initial factor matrices to compute Tucker decomposition

based on ALS approach [31]. However, truncated HOSVD has limitations in efficiently initializing

factor matrices using the SVD results because it cannot avoid reconstructing the reordered tensor

for the mode 𝑖 = 3, 4, ..., 𝑁 using the SVD results. To avoid reconstructing the reordered tensor using

the SVD results, we apply Sequentially Truncated Higher-Order SVD (ST-HOSVD) [57], which is a

variant of HOSVD. Note that ST-HOSVD obtains factor matrix A(𝑖 ) which contains left singular

vectors of mode-𝑖 matricization ofX×1 A(1)T×2 A(2)T · · · ×𝑖−1 A(𝑖−1)T. Applying ST-SHOVD allows

us to efficiently initialize factor matrices using the results of the approximation phase, in contrast

to HOSVD. The detail is described in initializing factor matrices for the remaining modes.

D-Tucker initializes factor matrices by obtaining the left singular vectors efficiently using the SVD

results. For the first mode, we efficiently obtain the factor matrix by reusing the SVD results from

the approximation phase. For the second mode, we efficiently compute mode-1 product between

the first factor matrix and the SVD results by carefully ordering matrix multiplications, and then

obtain the initial factor matrix. For the remaining modes, we process a small tensor computed

by 𝑛-mode products between the SVD results and the factor matrices of the first and the second

modes. These enable D-Tucker to achieve high efficiency in term of time and space. Note that

we use standard SVD [7] in the initialization phase since the randomized SVD can decrease the

effectiveness of the initialization. We describe the initialization of the first two modes corresponding

to the dimensionalities 𝐼1 and 𝐼2, and then describe those of remaining modes [35].
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Algorithm 5: Initialization phase of D-Tucker

Input: SVD results U𝑙 , Σ𝑙 , and V𝑙 for 𝑙 = 1, 2, ..., 𝐿

where 𝐿 is the number of sliced matrices

Output: initialized factor matrices A(𝑖 ) (𝑖 = 1, 2, ..., 𝑁 )
Parameters: rank 𝐽𝑖 (𝑖 = 1, 2, ..., 𝑁 )
1: perform SVD of

[
U1Σ1; · · · ;U𝐿Σ𝐿

]
≃ UΣVT

2: A(1) ← U
3: compute Y(2),𝑖𝑛𝑡𝑒𝑟 = A(1)T

[
U1; · · · ;U𝐿

]
4: Y𝑟𝑒𝑢𝑠𝑒 ← Y(2),𝑖𝑛𝑡𝑒𝑟
5: Y(2),𝑖𝑛𝑡𝑒𝑟 ← Y(2),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
}𝐿
𝑙=1
)

6: Y← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (Y(2),𝑖𝑛𝑡𝑒𝑟 , [𝐽1, 𝐼2, 𝐾3, · · · , 𝐾𝑁 ])
7: A(2) ← 𝐽2 leading singular vectors of Y(2)
8: for 𝑖 ← 3 to 𝑁 do
9: if 𝑖 = 3 then
10: Y𝑟𝑒𝑢𝑠𝑒 ← Y𝑟𝑒𝑢𝑠𝑒𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
A(2) }𝐿

𝑙=1
)

11: Y← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (Y𝑟𝑒𝑢𝑠𝑒 , [𝐽1, 𝐽2, 𝐾3, · · · , 𝐾𝑁 ])
12: else
13: Y← Y𝑟𝑒𝑢𝑠𝑒 ×𝑖−1 A(𝑖−1)T

14: end if
15: A(𝑖 ) ← 𝐽𝑖 leading singular vectors of Y(𝑖 )
16: Y𝑟𝑒𝑢𝑠𝑒 ← Y

17: end for

First mode. Our goal is to initialize the factor matrix of the first mode as left singular vectors

of mode-1 matricization ofX. A naive approach would compute SVD of mode-1 matricization ofX.

However, this approach requires heavy computation and high memory usage since it directly deals

with large-scale dense tensor. Our idea is to avoid reconstructing X from the SVD results of sliced

matrices, initializing the factor matrix of the first mode. Without the reconstruction, we reduce the

computational cost and memory usage.

As shown in Fig. 2, we represent mode-1 matricized matrix X(1) of the reordered tensor X𝑟 as

follows:

X(1) =
[
X::1,...,1; · · · ;X::𝐾3,...,𝐾𝑁

]
=

[
X1; · · · ;X𝑙 ; · · · ;X𝐿

]
where 𝐿 is equal to 𝐾3 × · · · × 𝐾𝑁 , and the index 𝑙 is defined as in Equation (7).

𝑙 = 1 +
𝑁∑︁
𝑖=3

(
(𝑘𝑖 − 1)

𝑖−1∏
𝑚=3

𝐾𝑚

)
(7)

where𝐾𝑚 is the dimensionality of mode-𝑚, 𝑁 is the order of the input tensor, and

∏𝑖−1
𝑚=3 𝐾𝑚 is equal

to 1 if 𝑖 − 1 < 𝑚. Note that we represent a sliced matrix as X𝑙 with the index 𝑙 instead of X::𝑘3 ...𝑘𝑁

for brevity. Using the SVD of sliced matrices, the mode-1 matricized matrix X(1) is expressed as

follows:

X(1) =
[
X1; · · · ;X𝑙 ; · · · ;X𝐿

]
≃

[
X̃1; · · · ; X̃𝑙 ; · · · ; X̃𝐿

]
(8)

where X̃𝑙 is a representation of U𝑙Σ𝑙VT

𝑙
. The computational cost to explicitly reconstruct the

matrices X̃𝑙 for 𝑙 = 1..𝐿 from SVD results and to obtain left singular vectors of X(1) is expensive
in terms of time and space. D-Tucker obtains left singular vectors of the first mode without the

reconstruction of X̃𝑙 . The main idea is to carefully decouple U𝑙Σ𝑙 and VT

𝑙
, and perform SVD of a
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concatenated matrix consisting of U𝑙Σ𝑙 for 𝑙 = 1..𝐿. The above idea allows us to efficiently obtain

left singular vectors of the concatenated matrix based on block structure [21, 23]. Performing SVD

of the concatenated matrix (∈ R𝐼1×(𝑟×𝐾3×···×𝐾𝑁 ) ) consisting of U𝑙Σ𝑙 for 𝑙 = 1..𝐿 is more efficient

than SVD of the mode-1 matricized matrix X(1) (∈ R𝐼1×(𝐼2×𝐾3×···×𝐾𝑁 ) ) (line 1 in Algorithm 5).

X(1) ≃
[
U1Σ1; · · · ;U𝐿Σ𝐿

]
× (𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Vl}𝐿𝑙=1))

T ≃ UΣVT (𝑏𝑙𝑘𝑑𝑖𝑎𝑔({V𝑙 }𝐿𝑙=1))
T

(9)

where UΣVT
is the SVD result of the concatenated matrix

[
U1Σ1; · · · ;U𝐿Σ𝐿

]
, and the number 𝐿

of sliced matrices is equal to 𝐾3 × · · · × 𝐾𝑁 . 𝑏𝑙𝑘𝑑𝑖𝑎𝑔({V𝑙 }𝐿𝑙=1) ∈ R
𝐼2𝐿×𝑟𝐿

is a block diagonal matrix

consisting of V𝑙 ∈ R𝐼2×𝑟 for 𝑙 = 1, ..., 𝐿:

𝑏𝑙𝑘𝑑𝑖𝑎𝑔({V𝑙 }𝐿𝑙=1) =


V1 O · · · O
O V2 · · · O
... O

. . .
...

O O · · · V𝐿


(10)

U and VT (𝑏𝑙𝑘𝑑𝑖𝑎𝑔({V𝑙 }𝐿𝑙=1))
T
are column orthogonal and Σ has the property of singular value

matrix, and thus the last term of Equation (9) has the SVD form. Therefore we obtain the initial

factor matrix A(1) = U (line 2 in Algorithm 5).

Second mode. Our goal is to initialize the factor matrix of the second mode as left singular

vectors of mode-2matricization ofX×1A(1)T like ST-HOSVD. As in the first mode, a naive approach

would compute SVD of mode-2 matricization of X ×1 A(1)T, but it has the same problems of heavy

computational cost and high memory requirement. Our idea is to compute X ×1 A(1)T without

reconstructing X from a set of SVD results of sliced matrices, and then compute SVD of mode-2

matricization of X ×1 A(1)T. By avoiding the reconstruction, we reduce the computational cost and

memory usage to compute X ×1 A(1)T.
To compute 𝑛-mode product for mode-1, we exploit SVD results computed from the approxima-

tion phase, instead of the given tensor, and then obtain left singular vectors for the second mode.

In detail, we perform matrix multiplication between A(1)T and mode-1 matricized matrix described

in Equation (8) as follows:

A(1)TX(1) ≃ A(1)T
[
U1Σ1VT

1
; · · · ;U𝐿Σ𝐿VT

𝐿

]
=

(
A(1)T

[
U1; · · · ;U𝐿

] )
𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
}𝐿
𝑙=1
)

= Y(2),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
}𝐿
𝑙=1
)

(11)

where Y(2),𝑖𝑛𝑡𝑒𝑟 = A(1)T
[
U1; · · · ;U𝐿

]
, 𝐿 is equal to 𝐾3× · · ·×𝐾𝑁 , and 𝑏𝑙𝑘𝑑𝑖𝑎𝑔({ΣlVT

𝑙
}𝐿
𝑙=1
) is a block

diagonal matrix consisting of ΣlVT

𝑙
. In Equation (11), Y(2),𝑖𝑛𝑡𝑒𝑟 is computed, and then multiplied

with the block diagonal matrix. After reshaping the result of Y(2),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙 VT

𝑙
}𝐿
𝑙=1
) as a

tensor Y of the size 𝐽1 × 𝐼2 × 𝐾3 × · · · × 𝐾𝑁 , we compute left singular vectors of mode-2 matricized

matrix Y(2) to initialize A(2) (lines 3 to 7 in Algorithm 5).

Remaining modes. For mode 𝑖 = 3, ..., 𝑁 , our goal is to initialize A(𝑖 ) as left singular vectors of
mode-𝑖 matricization Y(𝑖 ) ofX×1 A(1)T×2 A(2)T · · · ×𝑖−1 A(𝑖−1)T. For a mode-𝑖 , explicitly computing

X×1 A(1)T ×2 A(2)T · · · ×𝑖−2 A(𝑖−2)T is inefficient since it is computed for the previous mode-(𝑖 − 1).
Our idea is to reuse the result of X ×1 A(1)T ×2 A(2)T · · · ×𝑖−2 A(𝑖−2)T to initialize the factor matrix

of the mode-𝑖 .

Now, we describe how to obtain the factor matrix of the third mode, and then the factor matrix

of the modes 𝑖 = 4, 5, ..., 𝑁 . For mode-3, the goal is to obtainX ×1 A(1)T ×2 A(2)T, and perform SVD.
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Algorithm 6: Iteration phase of D-Tucker

Input: SVD results U𝑙 , Σ𝑙 , and V𝑙 ( 𝑙 = 1, 2, ..., 𝐿),

factor matrices A(𝑖 ) (𝑖 = 1, ..., 𝑁 ), and core tensor G

Output: updated factor matrices A(𝑖 ) (𝑖 = 1, ..., 𝑁 ), and core tensor G

Parameters: Rank 𝐽𝑖 (𝑖 = 1, ..., 𝑁 )
1: for 𝑖 ← 1 to 2 do
2: if 𝑖 = 1 then
3: Y(1),𝑖𝑛𝑡𝑒𝑟 ← A(2)T

[
V1; · · · ;V𝐿

]
4: Y(1),𝑖𝑛𝑡𝑒𝑟 ← Y(1),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙UT

𝑙
}𝐿
𝑙=1
)

5: Y← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (Y(1),𝑖𝑛𝑡𝑒𝑟 , [𝐼1, 𝐽2, 𝐾3, · · · , 𝐾𝑁 ])
6: else
7: Y(2),𝑖𝑛𝑡𝑒𝑟 ← A(1)T

[
U1; · · · ;U𝐿

]
8: Y𝑟𝑒𝑢𝑠𝑒 ← Y(2),𝑖𝑛𝑡𝑒𝑟
9: Y(2),𝑖𝑛𝑡𝑒𝑟 ← Y(2),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
}𝐿
𝑙=1
)

10: Y← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (Y(2),𝑖𝑛𝑡𝑒𝑟 , [𝐽1, 𝐼2, 𝐾3, · · · , 𝐾𝑁 ])
11: end if
12: Y← Y ×3 A(3)T · · · ×𝑁 A(𝑁 )T

13: A(𝑖 ) ← 𝐽𝑖 leading singular vectors of Y(𝑖 )
14: end for
15: Y𝑟𝑒𝑢𝑠𝑒 ← Y𝑟𝑒𝑢𝑠𝑒𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
A(2) }𝐿

𝑙=1
)

16: Y𝑟𝑒𝑢𝑠𝑒 ← 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (Y𝑟𝑒𝑢𝑠𝑒 , [𝐽1, 𝐽2, 𝐾3, · · · , 𝐾𝑁 ])
17: for 𝑖 ← 3 to 𝑁 do
18: Y← Y𝑟𝑒𝑢𝑠𝑒 ×3 A(3)T · · · ×𝑖−1 A(𝑖−1)T ×𝑖+1 A(𝑖+1)T · · · ×𝑁 A(𝑁 )T

19: A(𝑖 ) ← 𝐽𝑖 leading singular vectors of Y(𝑖 )
20: end for
21: G← Y𝑟𝑒𝑢𝑠𝑒 ×3 A(3)T · · · ×𝑁 A(𝑁 )T

The following equation re-expresses the mode-1 matricization of X ×1 A(1)T ×2 A(2)T.

A(1)TX(1)𝑏𝑙𝑘𝑑𝑖𝑎𝑔({A(2) }𝐿𝑙=1) ≃
(
A(1)T

[
U1; · · · ;U𝐿

] )
𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
A(2) }𝐿

𝑙=1
)

= Y(2),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
A(2) }𝐿

𝑙=1
)

(12)

Note that we save Y𝑟𝑒𝑢𝑠𝑒 =
(
A(1)T

[
U1; · · · ;U𝐿

] )
to reuse when computing Equation (12) (line 4

in Algorithm 5). After computing Equation (12), we 1) reshape the result as a tensor Y of size

𝐽1 × 𝐽2 × 𝐾3 × · · · × 𝐾𝑁 , 2) perform SVD of Y(3) , and 3) store Y as Y𝑟𝑒𝑢𝑠𝑒 for remaining modes

(lines 10, 11, 15, and 16 in Algorithm 5).

Next, factor matrices for mode 𝑖 = 4, 5, ..., 𝑁 are initialized by using the result of the previous

mode. For mode 𝑖 , we compute Y𝑟𝑒𝑢𝑠𝑒 ×𝑖−1 A(𝑖−1)𝑇 , and then perform SVD of mode-𝑖 matricization

of Y𝑟𝑒𝑢𝑠𝑒 ×𝑖−1 A(𝑖−1)𝑇 . Since Y(𝑖 ) is much smaller than an input tensor X, we efficiently initialize

factor matrices A(𝑖 ) for 𝑖 = 3, ..., 𝑁 . This is the reason why we apply ST-HOSVD, not HOSVD

which requires high computational costs to compute left singular vectors for the remaining modes

𝑖 = 3, ..., 𝑁 . HOSVD needs to perform SVD of mode-𝑖 matricization of X. Then, we initialize the

factor matrix A(𝑖 ) as the left singular vectors of the SVD result (line 15 in Algorithm 5).

3.4 Iteration Phase
The goal of the iteration phase is to alternately update factor matrices and compute core tensor by

efficiently computing 𝑛-mode products in lines 4 and 8 of Algorithm 2. As described in Section 2.4, a

naive ALS approach is much inefficient in terms of time and space due to large intermediate tensor
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including the input tensor. Furthermore, increasing the number of iterations affect the overall

running time. Therefore, the main challenge of the iteration phase is how to reduce the number

of flops by minimizing the intermediate data. Our ideas to tackle the challenge are to 1) exploit

the special structure of SVD results, 2) careful ordering of matrix multiplications, and 3) avoid

redundant computations for the first and second modes.

Our ideas allow D-Tucker to be less affected by the number of iterations, and to avoid rapid

growth of computational time as the number of iterations increases, due to the small amount of

computations.We describe how to update 1) the factor matrices of the first twomodes corresponding

to the dimensionalities 𝐼1 and 𝐼2, and 2) those of other modes and the core tensor. Note that we use

standard SVD [7] for stable convergence in the iteration phase.

First mode. Consider updating the first factor matrix A(1) . We use the initialized factor matrices

and SVD results of the sliced matrices for A(1) . Following line 4 of Algorithm 2, we efficiently

compute 𝑛-mode product for mode-2 using SVD results obtained in the approximation phase instead

of the given tensor, and then perform products for remaining modes 3, 4, ..., 𝑁 . We matricize the

tensor along mode-2 with the sliced matrices as follows:

X(2) =
[
XT

1
; · · · ;XT

𝑙
; · · · ;XT

𝐿

]
≃

[
X̃T
1
; · · · ; X̃T

𝑙
; · · · ; X̃T

𝐿

]
After that, we perform matrix multiplication between A(2)T and the mode-2 matricized matrix as

follows:

A(2)TX(2) ≃ A(2)T
[
V1Σ1UT

1
; · · · ;V𝐿Σ𝐿UT

𝐿

]
=

(
A(2)T

[
V1; · · · ;V𝐿

] )
𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙UT

𝑙
}𝐿
𝑙=1
)

= Y(1),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙UT

𝑙
}𝐿
𝑙=1
)

(13)

where Y(1),𝑖𝑛𝑡𝑒𝑟 = A(2)T
[
V1; · · · ;V𝐿

]
, 𝐿 is equal to 𝐾3× · · ·×𝐾𝑁 , and 𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙UT

𝑙
}𝐿
𝑙=1
) is a block

diagonal matrix consisting of Σ𝑙UT

𝑙
. In Equation (13), we compute Y(1),𝑖𝑛𝑡𝑒𝑟 , and multiply it with

the block diagonal matrix. Then, we reshape the result of Y(1),𝑖𝑛𝑡𝑒𝑟 𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙 UT

𝑙
}𝐿
𝑙=1
) as Y of size

𝐼1 × 𝐽2 × 𝐾3 × · · · × 𝐾𝑁 (lines 3 to 5 in Algorithm 6). After that, we perform the remaining 𝑛-mode

products with Y for 𝑛 = 3, 4, ..., 𝑁 , and then update the factor matrix A(1) by computing SVD of

mode-1 matricized matrix Y(1) (lines 12 and 13 in Algorithm 6).

Second mode. Next, to update A(2) , we compute 𝑛-mode product for mode-1 using SVD results

obtained in the approximation phase instead of the given tensor. Then, we perform 𝑛-mode products

for remaining modes 3, 4, ..., 𝑁 . As in Equation (11), we performmatrix multiplication between A(1)T

and the mode-1 matricized matrix which is the matricization of the tensor along mode-1 with the

sliced matrices in Equation (8). For efficiency, we compute Equation (11) with the following order:

1) Y(2),𝑖𝑛𝑡𝑒𝑟 = A(1)T
[
U1; · · · ;U𝐿

]
, 2) multiply it with the block diagonal matrix 𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
}𝐿
𝑙=1
),

and 3) reshape the result of Y(2),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔 ({Σ𝑙 VT

𝑙
}𝐿
𝑙=1
) as Y (∈ R𝐽1×𝐼2×𝐾3×···×𝐾𝑁 ) (lines 7, 9,

and 10 in Algorithm 6). Note that Y(2),𝑖𝑛𝑡𝑒𝑟 is reused when computing A(𝑖 ) for 𝑖 = 3, 4, ..., 𝑁 and the

core tensor (line 8 in Algorithm 6). We update A(2) by performing the remaining 𝑛-mode products

with Y for 𝑛 = 3, 4, ..., 𝑁 , and computing SVD of mode-2 matricized matrix Y(2) (lines 12 and 13 in

Algorithm 6).

Remainingmodes and core tensor. Consider updating factor matrices A(𝑖 ) for all 𝑖 = 3, 4, ..., 𝑁 ,

and the core tensor G. The mode-1 matricization of X ×1 A(1)T ×2 A(2)T is given by Equation (12).

In computing Equation (12), reusing the saved Y(2),𝑖𝑛𝑡𝑒𝑟 at line 8 of Algorithm 6 allows us to avoid

redundant computation, sufficiently reducing computational costs; the reason is that Y(2),𝑖𝑛𝑡𝑒𝑟
is much smaller than the input tensor X and the SVD results of sliced matrices. We compute

Y(2),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
A(2) }𝐿

𝑙=1
) and reshape the result Y𝑟𝑒𝑢𝑠𝑒 of size 𝐽1 × 𝐽2 × 𝐾3 · · · × 𝐾𝑁 once,

which is reused to compute factor matrices A(𝑖 ) for 𝑖 = 3, 4, ..., 𝑁 and the core tensor G (lines 15
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Table 2. Time and space costs of D-Tucker and competitors. Space cost indicates the requirement for updating
factor matrices and the core tensor. Boldface denotes the optimal complexities. 𝐼 denotes the two largest
dimensionalities, 𝐾 is the remaining dimensionalities, 𝑀 is the number of iterations, 𝐽 is the dimensionality
of the core tensor, and 𝑁 is the order of the given tensor.

Algorithm Time Space

D-Tucker O(I2KN−2 +MNIKN−2J2) 𝑂 (𝐼𝐾𝑁−2 𝐽 )
Tucker-ALS [30] 𝑂 (𝑀𝑁𝐼 2𝐾𝑁−2 𝐽 ) 𝑂 (𝐼 2𝐾𝑁−2)
MACH [56] 𝑂 (𝑀𝑁𝐼 2𝐾𝑁−2 𝐽 ) 𝑂 (𝐼 2𝐾𝑁−2)
RTD [11] 𝑂 (𝑀𝑁𝐼 2𝐾𝑁−2) 𝑂 (𝐼 2𝐾𝑁−2)

Tucker-ts [34] 𝑂 (𝑁𝐼 2𝐾𝑁−2 +𝑀𝑁 (𝐼 𝐽𝑁 + 𝐽 2𝑁 )) 𝑂 (𝑁𝐼 𝐽𝑁 + 𝐽 2𝑁 )
Tucker-ttmts [34] 𝑂 (𝑁𝐼 2𝐾𝑁−2 +𝑀𝑁 (𝐼 𝐽 2𝑁−2 + 𝐽 2𝑁−2)) 𝑂 (𝑁𝐼 𝐽𝑁 + 𝐽 2𝑁−1)

and 16 in Algorithm 6). For 𝑖 = 3, ..., 𝑁 , we update A(𝑖 ) by performing the remaining 𝑛-mode

products, and SVD of Y(𝑖 ) (lines 17 to 20 in Algorithm 6). In addition, we update the core tensor by

performing 𝑛-mode products between the reshaped tensor Y𝑟𝑒𝑢𝑠𝑒 (∈ R𝐽1× 𝐽2×𝐾3 · · ·×𝐾𝑁 ) and A(𝑛)T for

all 𝑛 = 3, 4, ..., 𝑁 (line 21 in Algorithm 6).

3.5 Theoretical Analysis
We theoretically analyze the time complexity, the space complexity, and the error of D-Tucker, as

summarized in Table 2. For brevity, we assume 𝐼1 = 𝐼2 = 𝐼 , 𝐾1 = 𝐾2 = ... = 𝐾𝑁 = 𝐾 , 𝑟 = 𝐽1 = 𝐽2 =

... = 𝐽𝑁 = 𝐽 .

Time complexity.We analyze the time complexities of D-Tucker in Theorem 1.

Lemma 1. The approximation phase of D-Tucker takes𝑂 (𝐼 2𝐾𝑁−2) where 𝐼 is the largest dimension-
ality, and 𝐾 is the remaining dimensionality. □

Proof. See the proof in Appendix A.1. □

Lemma 2. The initialization phase of D-Tucker takes 𝑂 (𝐼𝐾𝑁−2 𝐽 2) where 𝐼 is the largest dimen-
sionality, 𝐾 is the remaining dimensionality, and 𝐽 is the rank. □

Proof. See the proof in Appendix A.2. □

Lemma 3. The time complexity of an iteration at the iteration phase is 𝑂 (𝑁𝐼𝐾𝑁−2 𝐽 2) where 𝑁 is
the order of a given tensor, 𝐼 is the largest dimensionality, 𝐾 is the remaining dimensionality, and 𝐽 is
the rank. □

Proof. See the proof in Appendix A.3. □

Theorem 1. The total time complexity of D-Tucker is 𝑂 (𝐼 2𝐾𝑁−2 𝐽 +𝑀𝑁𝐼𝐾𝑁−2 𝐽 2) where𝑀 is the
number of iteration, 𝑁 is the order of a given tensor, 𝐼 is the largest dimensionality, 𝐾 is the remaining
dimensionality, and 𝐽 is the rank. □

Proof. See the proof in Appendix B.1. □

Note that the time complexity of the approximation phase of D-Tucker is proportional only

to the size 𝐼 2𝐾𝑁−2 of the input tensor without any parameters such as rank 𝐽 and order 𝑁 . Also,

D-Tucker is less affected by the number of iterations because the time complexity 𝑂 (𝑁𝐼𝐾𝑁−2 𝐽 2)
per iteration of the iteration phase is much smaller than the time complexity 𝑂 (𝐼 2𝐾𝑁−2) of the
approximation phase: 𝐼 is much larger than 𝑁 𝐽 2 since 𝐼 ≫ 𝐽 and 𝐼 ≫ 𝑁 . Thus, D-Tucker avoids

rapid growth of computational time as the number of iterations increases.
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Space complexity.We analyze space requirements of D-Tucker for initializing and updating

factor matrices.

Theorem 2. D-Tucker requires 𝑂 (𝐼𝐾𝑁−2 𝐽 ) space for initializing and updating factor matrices. □

Proof. See the proof in Appendix B.2. □

Note that the original input tensor requires 𝑂 (𝐼 2𝐾𝑁−2) space. Thanks to the reordering in the

approximation phase, the space complexity of D-Tucker is 𝐼/𝐽 times smaller than directly using

the raw input tensor. Without the reordering, the compression rate would worsen; e.g., if we have

decomposed sliced matrices of size 𝐼 × 𝐾𝑛 , the compression rate would have decreased to 𝐾𝑛/𝐽 ,
which is worse than 𝐼/𝐽 since 𝐼 > 𝐾𝑛 > 𝐽 .

4 PROPOSED METHOD FOR ONLINE TENSORS: D-TUCKERO
4.1 Overview
We propose D-TuckerO, an efficient Tucker decomposition method in an online streaming set-

ting. Our goal is to design D-TuckerO to efficiently update factor matrices and core tensor for a

new incoming tensor slice. The main challenges that need to be tackled for an efficient Tucker

decomposition method in an online streaming setting are as follows:

(1) Preventing the increase of costs over time. How can we prevent increasing the compu-

tational cost and space cost as tensors continuously arrive over time?

(2) Accelerating updates. How can we accelerate the update process for each incoming time

slice?

We address the challenges with the following main ideas:

(1) Avoiding explicit computations with X𝑜𝑙𝑑 and A(𝑁 )
𝑜𝑙𝑑

enables D-Tucker to update factor

matrices and core tensor without increasing the costs whereX𝑜𝑙𝑑 andA(𝑁 )
𝑜𝑙𝑑

are a pre-existing

tensor and a pre-existing temporal factor matrix, respectively.

(2) Applying the approximation phase for an incoming time slice accelerates the update
procedure for factor matrices and core tensor.

As shown in Algorithm 7, D-TuckerO efficiently updates factor matrices when a new incoming

tensor is given.We present an efficient update procedure for each new incoming tensor in Section 4.2,

and then describe how to apply the approximation phase to the update procedure in Section 4.3.

Lastly, we analyze the time and space complexities of D-TuckerO. For brevity, we set the last mode

𝑁 as the temporal mode when an 𝑁 -order tensor repeatedly comes.

4.2 Efficient Update for Time Slice
Our goal is to update factor matrices and the core tensor for a new incoming tensor slice X𝑛𝑒𝑤 .

D-TuckerO alternately updates factor matrices, and core tensor as in ALS algorithm; D-TuckerO

updates the 𝑛-th factor matrix while fixing the other factor matrices and core tensor. We present

how to update the temporal factor matrix A(𝑁 ) and then factor matrices of non-temporal modes.

Temporal Mode. Consider updating the temporal factor matrix A(𝑁 ) . A naive approach is to

update it by computing lines 4 and 5 in Tucker-ALS. However, dealing with an accumulated tensor

X is impractical since the size of the tensor X increases over time. To efficiently update the factor

without dealing with the accumulated tensor, we only update a part of the temporal factor matrix,

i.e., A(𝑁 )
𝑖𝑛𝑐

, corresponding to 𝑡𝑛𝑒𝑤 . Lemma 4 describe an update rule for A(𝑁 )
𝑖𝑛𝑐

.
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Algorithm 7: Update phase of D-TuckerO

Input: a time slice X𝑛𝑒𝑤 ∈ R𝐼1×𝐼2×𝐾3×···×𝐾𝑁 −1×𝑡𝑛𝑒𝑤
, a pre-existing setA of factor matrix A(𝑛)

𝑜𝑙𝑑

(𝑛 = 1, ..., 𝑁 ), and core tensor G𝑜𝑙𝑑 , a set of P(𝑛)
𝑜𝑙𝑑

, Q(𝑛)
𝑜𝑙𝑑

for 𝑛 = 1, ..., 𝑁 − 1, P(𝑁+1)
𝑜𝑙𝑑

, and Q(𝑁+1)
𝑜𝑙𝑑

Output: updated factor matrices A(𝑛)𝑛𝑒𝑤 (𝑛 = 1, ..., 𝑁 ) and core tensor G𝑛𝑒𝑤
Parameters: Rank 𝐽𝑖 (𝑖 = 1, ..., 𝑁 )
1: obtain SVD results U𝑙 , Σ𝑙 , and V𝑙 ( 𝑙 = 1, 2, ..., 𝐿) of X𝑛𝑒𝑤 using the approximation phase.

2: obtain A(𝑁 )𝑛𝑒𝑤 by computing Equation (14) with the SVD results of X𝑛𝑒𝑤
3: for 𝑛 ← 1 to 𝑁 − 1 do
4: obtain A(𝑛)𝑛𝑒𝑤 by computing Equation (15) with the SVD results of X𝑛𝑒𝑤

5: update P(𝑛)
𝑜𝑙𝑑
← P(𝑛)

𝑜𝑙𝑑
+ P(𝑛)𝑛𝑒𝑤 by Equation (19)

6: update Q(𝑛)
𝑜𝑙𝑑
← Q(𝑛)

𝑜𝑙𝑑
+ Q(𝑛)𝑛𝑒𝑤 by Equation (23)

7: end for
8: obtain G𝑛𝑒𝑤 by computing Equation (24) with the SVD results of X𝑛𝑒𝑤

9: update P(𝑁+1)
𝑜𝑙𝑑

← P(𝑁+1)
𝑜𝑙𝑑

+ P(𝑁+1)𝑛𝑒𝑤 by Equation (25)

10: update Q(𝑁+1)
𝑜𝑙𝑑

← Q(𝑁+1)
𝑜𝑙𝑑

+ Q(𝑁+1)𝑛𝑒𝑤 by Equation (26)

Lemma 4 (Update rule for temporal mode). When fixing all non-temporal factor matrices,
A(𝑁 )
𝑖𝑛𝑐

is updated as follows:

A(𝑁 )
𝑖𝑛𝑐
← X(𝑁 ),𝑛𝑒𝑤

(
⊗𝑁−1
𝑘=1

(
A(𝑘 )𝑇

)†)
G†(𝑁 ) (14)

where † indicates a pseudo-inverse of a matrix, and (⊗𝑁−1
𝑘=1

(
A(𝑘 )𝑇

)†) indicates the entire Kronecker
product of

(
A(𝑘 )𝑇

)† for 𝑘 = 𝑁 − 1, 𝑁 − 2, ..., 2, 1. □

Proof. See the proof in Appendix A.4. □

Since A(𝑁 )
𝑜𝑙𝑑

is already computed at the previous step, we only compute A(𝑁 )
𝑖𝑛𝑐

using X𝑛𝑒𝑤 , G(𝑁 ) ,
and A(𝑛) for 𝑛 = 1, 2, ..., 𝑁 − 1. In updating the temporal factor matrix A(𝑁 ) , we exploit G(𝑁 ),𝑜𝑙𝑑
and A(𝑛)

𝑜𝑙𝑑
for 𝑛 = 1, 2, ..., 𝑁 − 1 to compute G(𝑁 ) and (⊗𝑁−1𝑘=1

(
A(𝑘 )𝑇

)†), respectively. In Equation (14),

we compute 1)

(
A(𝑘 )𝑇

)†
for 𝑘 = 1, ..., 𝑁 − 1, 2) the Kronecker product, and 3) matrix multiplication

between X(𝑁 ),𝑛𝑒𝑤 , the result of the Kronecker product, and G†(𝑁 ),𝑜𝑙𝑑 in Equation (14).

Non-temporal Modes. Our goal is to update A(𝑛) when a new incoming tensor X𝑛𝑒𝑤 is given.

By avoiding explicit computations withX𝑜𝑙𝑑 and A(𝑁 )
𝑜𝑙𝑑

whose size increases over time, we efficiently

update A(𝑛) . We first introduce an update rule for A(𝑛) , and then provide details on efficiently

computing A(𝑛) based on the rule.

Lemma 5 (Update rule for non-temporal mode). When fixingA(𝑘 ) for𝑘 = 1, ..., 𝑛−1, 𝑛+1, ..., 𝑁 ,
A(𝑛)𝑛𝑒𝑤 is updated as follows:

A(𝑛)𝑛𝑒𝑤 ← P(𝑛)
(
Q(𝑛)

)−1
(15)

where P(𝑛) and Q(𝑛) are equal to X(𝑛) (⊗𝑁𝑘≠𝑛A(𝑘 ) )G𝑇
(𝑛) and

(
G(𝑛) (⊗𝑁𝑘≠𝑛 (A

(𝑘 )𝑇A(𝑘 ) ))G𝑇(𝑛)
)
, respec-

tively. □

Proof. See the proof in Appendix A.5. □

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2022.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

111:18 Jun-Gi Jang and U Kang

To update A(𝑛) , we compute P(𝑛) and Q(𝑛) in Equation (15). However, a naive computation for

Equation (15) is impractical since the size of X(𝑛) and A(𝑁 ) increases over time. To achieve the

efficiency, we avoid explicit computations with X(𝑛),𝑜𝑙𝑑 and A(𝑁 )
𝑜𝑙𝑑

decoupled from X(𝑛) and A(𝑁 ) ,
respectively, in P(𝑛) and Q(𝑛) .

We now describe details on efficient computations of P(𝑛) and Q(𝑛) . Given P(𝑛) , we divide it into
P(𝑛)
𝑜𝑙𝑑

and P(𝑛)𝑛𝑒𝑤 where P(𝑛)
𝑜𝑙𝑑

and P(𝑛)𝑛𝑒𝑤 are equal to Equations (17) and (18), respectively.

P(𝑛) =
[
X(𝑛),𝑜𝑙𝑑 X(𝑛),𝑛𝑒𝑤

]
×

([
A(𝑁 )
𝑜𝑙𝑑

A(𝑁 )
𝑖𝑛𝑐

]
⊗ (⊗𝑁−1

𝑘≠𝑛
A(𝑘 ) )

)
G𝑇(𝑛) (16)

=

(
X(𝑛),𝑜𝑙𝑑 (A(𝑁 )𝑜𝑙𝑑

⊗ (⊗𝑁−1
𝑘≠𝑛

A(𝑘 ) ))G𝑇(𝑛)
)

(17)

+
(
X(𝑛),𝑛𝑒𝑤 (A(𝑁 )𝑖𝑛𝑐

⊗ (⊗𝑁−1
𝑘≠𝑛

A(𝑘 ) ))G𝑇(𝑛)
)

(18)

= P(𝑛)
𝑜𝑙𝑑
+ P(𝑛)𝑛𝑒𝑤 (19)

We only compute P(𝑛)𝑛𝑒𝑤 for Equation (19) as P(𝑛)
𝑜𝑙𝑑

is computed and stored at the previous step. P(𝑛)

is used as P(𝑛)
𝑜𝑙𝑑

at the next step.

Next, we efficiently compute Q(𝑛) ; we divide Q(𝑛) into Q(𝑛)
𝑜𝑙𝑑

and Q(𝑛)𝑛𝑒𝑤 which are equal to

Equations (21) and (22), respectively.

Q(𝑛) = G(𝑛)

( [
A(𝑁 )𝑇
𝑜𝑙𝑑

A(𝑁 )𝑇
𝑖𝑛𝑐

] [
A(𝑁 )
𝑜𝑙𝑑

A(𝑁 )
𝑖𝑛𝑐

])
⊗

(
⊗𝑁−1
𝑘≠𝑛
(A(𝑘 )𝑇A(𝑘 ) )

)
G𝑇(𝑛) (20)

= G(𝑛)
(
(A(𝑁 )𝑇

𝑜𝑙𝑑
A(𝑁 )
𝑜𝑙𝑑
) ⊗ (⊗𝑁−1

𝑘≠𝑛
(A(𝑘 )𝑇A(𝑘 ) ))

)
G𝑇(𝑛) (21)

+ G(𝑛)
(
(A(𝑁 )𝑇

𝑖𝑛𝑐
A(𝑁 )
𝑖𝑛𝑐
) (⊗𝑁−1

𝑘≠𝑛
(A(𝑘 )𝑇A(𝑘 ) ))

)
G𝑇(𝑛) (22)

= Q(𝑛)
𝑜𝑙𝑑
+ Q(𝑛)𝑛𝑒𝑤 (23)

Similar to P(𝑛) , Q(𝑛)
𝑜𝑙𝑑

is computed and stored at the previous step. We only compute Q(𝑛)𝑛𝑒𝑤 for

Equation (23). Q(𝑛) is also used as Q(𝑛)
𝑜𝑙𝑑

at the next step.

Core tensor. After updating factor matrices, we update the core tensor with Lemma 6. By

avoiding explicit computations with X𝑜𝑙𝑑 and A(𝑁 )
𝑜𝑙𝑑

, we efficiently update G. We first derive an

equation for updating the core tensor, and then describe how to efficiently update it.

Lemma 6 (Update rule for core tensor). When fixing all factor matrices, we update the core
tensor with the following equation:

G(𝑁 ) =
(
Q(𝑁+1)

)−1
P(𝑁+1) (24)

where P(𝑁+1) and Q(𝑁+1) are equal to A(𝑁 )𝑇X(𝑁 ) (⊗𝑁−1𝑘=1
A(𝑘 ) (A(𝑘 )𝑇A(𝑘 ) )−1) and

(
A(𝑁 )𝑇A(𝑁 )

)
,

respectively. Note that (𝑁 + 1) in P(𝑁+1) and Q(𝑁+1) corresponds to the core tensor. □

Proof. See the proof in Appendix A.6. □

A naive computation for Equation (24) is expensive due to X and A(𝑁 ) corresponding to 𝑡𝑡𝑜𝑡𝑎𝑙 .
Therefore, we precisely divide P(𝑁+1) and Q(𝑁+1) to avoid computing the terms related toX𝑜𝑙𝑑 and
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A(𝑁 )
𝑜𝑙𝑑

. P(𝑁+1) is divided as follows:

P(𝑁+1) = A(𝑁 )𝑇X(𝑁 )

(
⊗𝑁−1
𝑘=1

(
A(𝑘 )𝑇

)†)
=

( [
A(𝑁 )𝑇
𝑜𝑙𝑑

A(𝑁 )𝑇
𝑖𝑛𝑐

] [
X(𝑁 ),𝑜𝑙𝑑
X(𝑁 ),𝑛𝑒𝑤

] ) (
⊗𝑁−1
𝑘=1

(
A(𝑘 )𝑇

)†)
= A(𝑁 )𝑇

𝑜𝑙𝑑
X(𝑁 ),𝑜𝑙𝑑

(
⊗𝑁−1
𝑘=1

(
A(𝑘 )𝑇

)†)
+ A(𝑁 )𝑇

𝑖𝑛𝑐
X(𝑁 ),𝑛𝑒𝑤

(
⊗𝑁−1
𝑘=1

(
A(𝑘 )𝑇

)†)
= P(𝑁+1)

𝑜𝑙𝑑
+ P(𝑁+1)𝑛𝑒𝑤

(25)

Similar to updating the factor matrices of the non-temporal modes, we only compute P(𝑁+1)𝑛𝑒𝑤 for

updating the core tensor since P(𝑁+1)
𝑜𝑙𝑑

is already computed at the previous step.

Next, we divide Q(𝑁+1) into Q(𝑁+1)
𝑜𝑙𝑑

and Q(𝑁+1)𝑛𝑒𝑤 .

Q(𝑁+1) = A(𝑁 )𝑇A(𝑁 ) =
[
A(𝑁 )𝑇
𝑜𝑙𝑑

A(𝑁 )𝑇
𝑖𝑛𝑐

] [
A(𝑁 )
𝑜𝑙𝑑

A(𝑁 )
𝑖𝑛𝑐

]
=

(
A(𝑁 )𝑇
𝑜𝑙𝑑

A(𝑁 )
𝑜𝑙𝑑

)
+

(
A(𝑁 )𝑇
𝑖𝑛𝑐

A(𝑁 )
𝑖𝑛𝑐

)
= Q(𝑁+1)

𝑜𝑙𝑑
+ Q(𝑁+1)𝑛𝑒𝑤

(26)

Then, we compute Q(𝑁+1)𝑛𝑒𝑤 , and obtain Q(𝑁+1) ; note that Q(𝑁+1)
𝑜𝑙𝑑

is already computed at the previous

step.

4.3 Applying Approximation Phase
The objective of applying the approximation phase is to accelerate the update process for each

incoming time slice. The main ideas are to 1) approximate a time slice by performing randomized

SVD of each sliced matrix of a time slice and 2) update factor matrices and a core tensor with the

SVD results of the time slice instead of the time slice X𝑛𝑒𝑤 . We accelerate computing Equation (14)

for the temporal mode, the computation of P(𝑛) for non-temporal modes, and P(𝑁+1) for the core
tensor.

Temporal Mode. To obtain the factor matrix A(𝑁 )
𝑖𝑛𝑐

of the temporal mode, we first apply the

approximation phase for a new incoming tensor X𝑛𝑒𝑤 and then efficiently compute Equation (14).

With the temporal mode fixed to the last mode, we assume that dimensionalities of an incoming

tensor X𝑛𝑒𝑤 ∈ R𝐼1×𝐼2×···×𝑇 are sorted in descending order.

To apply the approximation phase to Equation (14), we start from re-expressing the term X(𝑁 ),𝑛𝑒𝑤
(⊗𝑁−1

𝑘=1

(
A(𝑘 )𝑇

)†) in tensor form. Referring to Equation (5), we can rewrite the term as follows:

X𝑛𝑒𝑤 ×1
(
A(1)

)†
· · · ×𝑁−1

(
A(𝑁−1)

)†
Since the above equation has the same form as line 4 of Algorithm 2 for the 𝑁 -th mode, computing

it is the same as computing the 𝑁 -th factor matrix in the iteration phase of D-Tucker. D-TuckerO

first performs randomized SVD of each sliced matrix of a time slice X𝑛𝑒𝑤 where the size of a sliced

matrix is 𝐼1 × 𝐼2. Then, we compute the termX𝑛𝑒𝑤 ×1
(
A(1)

)† ×2 (
A(2)

)†
. The mode-1 matricization

of the term is given by the following equation.

Y𝑖𝑛𝑡𝑒𝑟 =
((

A(1)
)† [

U1; · · · ;U𝐿
] )
× 𝑏𝑙𝑘𝑑𝑖𝑎𝑔

(
{Σ𝑙VT

𝑙

(
A(2)𝑇

)†
}𝐿
𝑙=1

)
(27)

We compute

(
A(1)

)† [
U1; · · · ;U𝐿

]
and 𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙

(
A(2)𝑇

)†}𝐿
𝑙=1
) , respectively; then, Y𝑖𝑛𝑡𝑒𝑟 is

obtained by multiplying the two results. After that, we perform 𝑛-mode products between Y𝑖𝑛𝑡𝑒𝑟

and

(
A(𝑛)

)†
for 𝑛 = 3, 4, ..., 𝑁 − 1. Lastly, A(𝑁 )

𝑖𝑛𝑐
is updated by multiplying the mode-𝑁 matricization

of the result of the 𝑛-mode products and G†(𝑁 ) .
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Non-temporal Modes. For a mode 𝑛 except for 𝑁 , the goal is to efficiently compute P(𝑛)𝑛𝑒𝑤 =

(X(𝑛),𝑛𝑒𝑤 (A(𝑁 )𝑖𝑛𝑐
⊗ (⊗𝑁−1

𝑘≠𝑛
A(𝑘 ) ))G𝑇

(𝑛) ) for updating the 𝑛-th factor matrix. Due to the expensive

computations with X𝑛𝑒𝑤 as in Tucker-ALS, we apply the approximation phase to reduce the

computational cost of computing P(𝑛)𝑛𝑒𝑤 . We perform randomized SVD of each sliced matrix of a

new incoming time slice X𝑛𝑒𝑤 where the size of a sliced matrix is 𝐼1 × 𝐼2, and then compute P(𝑛)𝑛𝑒𝑤

using the SVD results.

To obtain P(𝑛)𝑛𝑒𝑤 , we compute (X(𝑛),𝑛𝑒𝑤 (A(𝑁 )𝑖𝑛𝑐
⊗ (⊗𝑁−1

𝑘≠𝑛
A(𝑘 ) )), and then multiply it with G𝑇

(𝑛) .

Before applying the approximation phase, we re-express (X(𝑛),𝑛𝑒𝑤 (A(𝑁 )𝑖𝑛𝑐
⊗ (⊗𝑁−1

𝑘≠𝑛
A(𝑘 ) )) in tensor

form as follows:

X𝑛𝑒𝑤 ×1 A(1)𝑇 · · · ×𝑛−1 A(𝑛−1)𝑇 ×𝑛+1 A(𝑛+1)𝑇 · · · ×𝑁 A(𝑁 )𝑇
𝑖𝑛𝑐

(28)

Since the above equation has the same form as line 4 of Algorithm 2 for the 𝑛-th mode, computing

it is the same as computing the 𝑛-th factor matrix in the iteration phase of D-Tucker. By using

the SVD results of each sliced matrix of the time slice X𝑛𝑒𝑤 , we compute Equation (28) in the

same way as computing an 𝑛-th factor matrix in the iteration phase of D-Tucker. Then, we obtain

P(𝑛)𝑛𝑒𝑤 by performing matrix multiplication between the mode-𝑛 matricized version of the result of

Equation (28) and G𝑇(𝑛) . After that, we update the 𝑛-th factor matrix using P(𝑛)𝑛𝑒𝑤 .

Core tensor. To efficiently update the core tensorG, we focus on accelerating the computation for

the matrix P(𝑁+1)𝑛𝑒𝑤 since the matrices P(𝑁+1)
𝑜𝑙𝑑

and Q(𝑁+1)
𝑜𝑙𝑑

are already computed and the computational

cost of Q(𝑁+1)𝑛𝑒𝑤 is relatively low. For P(𝑁+1)𝑛𝑒𝑤 = A(𝑁 )𝑇
𝑖𝑛𝑐

X(𝑁 ),𝑛𝑒𝑤
(
⊗𝑁−1
𝑘=1

(
A(𝑘 )𝑇

)†)
, directly using

X(𝑁 ),𝑛𝑒𝑤 is inefficient, so we apply the approximation phase. We first re-express P(𝑁+1)𝑛𝑒𝑤 in tensor

form:

X𝑛𝑒𝑤 ×1 A(1)† · · · ×𝑁−1 A(𝑁−1)† ×𝑁 A(𝑁 )𝑇
𝑖𝑛𝑐

(29)

P(𝑁+1)𝑛𝑒𝑤 is obtained by computing the above equation in the following order: computing 1) Equa-

tion (27) for X𝑛𝑒𝑤 ×1
(
A(1)

)† ×2 (
A(2)

)†
, 2) 𝑛-mode products with A(𝑛)† for 𝑛 = 3, ..., 𝑁 − 1, and 3)

𝑛-mode product with A(𝑁 )𝑇
𝑖𝑛𝑐

. Note that we use the SVD results of X𝑛𝑒𝑤 in Equation (27), thereby

we reduce the computational cost to update the core tensor compared to using X𝑛𝑒𝑤 . After that,

we compute Equation (24) using P(𝑁+1)𝑛𝑒𝑤 .

4.4 Theoretical Analysis
Theorem 3. Given a time slice X𝑛𝑒𝑤 of size 𝐼 2 × 𝐾𝑁−3 × 𝑇𝑛𝑒𝑤 , the total time complexity of D-

TuckerO to update factor matrices and core tensor is𝑂 (𝐼 2𝐾𝑁−3𝑇𝑛𝑒𝑤 +𝑁𝐼𝐾𝑁−3𝑇𝑛𝑒𝑤 𝐽 2) where 𝑁 is the
order of a given tensor, 𝐼 is the largest dimensionality, 𝐾 is the remaining dimensionality, and 𝐽 is the
rank.

Proof. See the proof in Appendix B.3. □

Theorem 4. D-TuckerO requires 𝑂 (𝐼𝐾𝑁−3𝑇𝑛𝑒𝑤 𝐽 ) space for updating factor matrices when a new
incoming tensor X of the size 𝐼1 × 𝐼2 × 𝐾𝑁−3 ×𝑇𝑛𝑒𝑤 is given.

Proof. See the proof in Appendix B.4. □

5 EXPERIMENT
In this section, we experimentally evaluate the performance of D-Tucker and D-TuckerO. We

answer the following questions:
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Table 3. Description of real-world tensor datasets for evaluating the performance of static Tucker decomposi-
tion methods.

Dataset Order Dimensionality Rank

Brainq
1
[36] 3 (360, 21764, 9) (10, 10, 5)

Boats
2
[58] 3 (320, 240, 7000) (10, 10, 10)

Air Quality
3

3 (30648, 376, 6) (10, 10, 5)
HSI

4
[17] 4 (1021, 1340, 33, 8) (10, 10, 10, 5)

Table 4. Description of real-world tensor datasets for evaluating the performance of streaming Tucker
decomposition methods.

Dataset Order Dimensionality Rank

Stock 3 (3028, 4, 200) (10, 4, 10)
FMA

5
[15, 16] 3 (7994, 1025, 200) (10, 10, 10)

Traffic
6
[45] 3 (1084, 96, 200) (10, 10, 10)

Absorb
7

4 (192, 288, 30, 200) (10, 10, 10, 10)

• Q1. Time cost and reconstruction error (Section 5.2). How quickly does D-Tucker

obtain factor matrices and core tensor compared to other competitors, while having low

reconstruction error?

• Q2. Effectiveness of the initialization phase (Section 5.3). How much does the initial-

ization phase reduce the number of iterations in D-Tucker?

• Q3. Efficiency of the iteration phase (Section 5.4). How efficient is the iteration phase

of D-Tucker compared to other methods?

• Q4. Space cost (Section 5.5). How much space does D-Tucker require to obtain factor

matrices and core tensor compared to other competitors?

• Q5. Scalability (Section 5.6). How well does D-Tucker scale up with regard to dimension-

ality, rank, order, and a number of iterations?

• Q6. Running time and error in online streaming setting (Section 5.7). For each new

incoming tensor, how efficiently does D-TuckerO update factor matrices and core tensor?

• Q7. Size of a time slice in an online streaming setting (Section 5.8). How efficiently

does D-TuckerO handle an incoming tensor slice of various sizes?

5.1 Experimental Settings
We describe experimental settings for the datasets, competitors, and environments.

Machine.We use a workstation with a single CPU (Intel Xeon E5-2630 v4 @ 2.2GHz), and 512GB

memory.

Dataset. For static Tucker decomposition, we use four real-world tensors in Table 3 for evaluating

the performance. Brainq dataset
1
[36] contains fMRI information consisting of (word, voxel, person;

measurement). Boats dataset
2
[58] contains gray scale videos in the form of (height, width, frame;

value). Air quality dataset
3
contains air pollutant information in Korea, in the form of (timestamp in

second, location, atmospheric pollutants; measurement). HSI dataset
4
[17] contains hyperspectral

1
http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html

2
http://changedetection.net/

3
https://www.airkorea.or.kr

4
https://personalpages.manchester.ac.uk/staff/d.h.foster/Hyperspectral_images_of_natural_scenes_04.html
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images of natural scenes in the form of (spatial dimension (x), spatial dimension (y), spectral

dimension, scene index; value).

For online streaming decomposition, we use four real-world tensors described in Table 4. Stock

dataset contains features of stocks over 200 days in South Korea. The features consist of (adjusted

opening price / previous day’s adjusted closing price), (adjusted highest price / previous day’s

adjusted closing price), (adjusted lowest price / previous day’s adjusted closing price), and (adjusted

closing price / previous day’s adjusted closing price). FMA dataset
5
[15, 16] is a song dataset

whose form is (song, frequency, time; value). Each song is represented as an image of a log-power

spectrogram. Traffic dataset
6
[45] contains traffic volume measurements from 1, 084 sensors over

200 days, and each sensor yields 96 observations per day. Absorb dataset
7
is a 4-order tensor

containing aerosol absorption; the form is (longitudes, latitudes, altitude, time; measurement). Note

that the original values in this data are so small that we use a tensor multiplied by 10.

Competitors. We compare D-Tucker with static Tucker decomposition methods based on ALS

approach. All the methods including D-Tucker are implemented in MATLAB (R2019b).

• D-Tucker [24]: we use randomized SVD [14] in the approximation phase using the im-

plementation of Malik and Becker [34], standard SVD (svds() function in MATLAB) in the

initialization and iteration phases, and Tensor Toolbox [6] for tensor operations such as

𝑛-mode product and matricization.

• Tucker-ALS: Tucker decomposition method based on ALS. We use the implementation in

Tensor Toolbox [6].

• MACH [56]: Tucker decomposition method which samples entries of an input tensor and

runs Tucker-ALS for the sampled tensor. We run Tucker-ALS in Tensor Toolbox [6] after

sampling elements of a tensor.

• Randomized Tucker Decomposition (RTD) [11]: Tucker decomposition using a ran-

domized algorithm. We use the Matlab code provided by authors.

• Tucker-ts, Tucker-ttmts [34]: Tucker-ts is a Tucker decomposition method using tensor

sketch designed to approximate the solution of a large least-squares problem. Tucker-ttmts

is a variant of Tucker-ts for better efficiency. We use the Matlab code
8
provided by authors.

We also compare D-TuckerO with the following streaming Tucker decomposition methods in an

online streaming setting:

• D-TuckerO: We leverage Tensor Toolbox [6] for tensor operations such as 𝑛-mode product

and matricization.

• Tucker-ALS: Tucker decomposition method based on ALS. We use the implementation in

Tensor Toolbox [6].

• Tucker-ts, Tucker-ttmts [34]: Tucker-ts and Tucker-ttmts are easily adapted to online

streaming settings.

• DTA (Dynamic Tensor Analysis): DTA finds factor matrices and core tensor to fit to newly

arrived tensors. We use the Matlab code
9
provided by authors.

• STA (Streaming Tensor Analysis): STA is an approximation version of DTA that finds factor

matrices and core tensor to fit to newly arrived tensors. We use the Matlab code
9
provided

by authors.

Parameters. We use the following parameters.

5
https://github.com/mdeff/fma

6
https://github.com/florinsch/BigTrafficData

7
https://www.earthsystemgrid.org/

8
https://github.com/OsmanMalik/tucker-tensorsketch

9
http://www.cs.cmu.edu/~jimeng/code/tensorCode.zip
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Fig. 3. D-Tucker achieves the best performance in terms of error, running time, and memory usage. (a)
(b) Comparison for the tradeoff between running time and error; D-Tucker is up to 38.4× faster than the
second-fastest competitor while having a similar error. (c) Space cost of D-Tucker. D-Tucker initializes and
updates factor matrices and core tensor by using up to 17.2× smaller space than competitors except for Boats
dataset. Note that, for Boats dataset, D-Tucker requires 2× higher space than Tucker-ttmts which has 7.5×
higher error than our method.

• Number of threads: we use a single thread.
• Max number of iterations: we set the maximum number of iterations to 50.

• Rank: the dimensionality 𝐽𝑛 of the 𝑛th mode of a core tensor is set to 10. We set it to 4

and 5, respectively, when the dimensionality is smaller than 5 and 10, respectively. We also

set the rank 𝐽 of randomized SVD to 10 which is the same as the dimensionality 𝐽𝑛 of core

tensor.

• Tolerance: the iteration stops when the variation of the error

√
∥X∥2F−∥G∥

2

F
∥X∥F [28] is less than

𝜖 = 10
−4

except in Section 5.3 where we vary it.

We set other parameters of competitors based on their original papers. To compare running time,

we run each method 10 times for D-Tucker and D-TuckerO, and report the average.

Reconstruction error. In a static setting, we evaluate the accuracy in terms of reconstruction

error defined as

∥X− ˆX∥2F
∥X∥2F

where X is an input tensor and
ˆX is the reconstruction of the output of

Tucker decomposition.

In an online streaming setting, wemeasure the two kinds of errors, global and local reconstruction

errors. The global reconstruction error is defined as

√︂∑𝑇
𝑖=1 ∥X𝑖− ˆX𝑖 ∥2F∑𝑇

𝑖=1 ∥X𝑖 ∥2F
where X𝑖 is a tensor obtained

at time 𝑖 and ˆX𝑖 is a reconstructed tensor from factor matrices and core tensor of D-TuckerO.

The global error indicates how well the results of a Tucker decomposition method represent an

accumulated tensor over time. The local reconstruction error is defined as

√︃
∥X𝑛𝑒𝑤− ˆX𝑛𝑒𝑤 ∥F
∥X𝑛𝑒𝑤 ∥F . In

contrast to the global error, the local error indicates how well the results of a Tucker decomposition

method represent a new incoming tensor.
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Fig. 4. The initialization phase of D-Tucker helps reduce the number of iterations and thus the total running
time. (a-d) The number of iterations with the initialization phase is up to 1.7×, 1.4×, 1.4×, and 1.1× smaller
than those without the initialization phase for Brainq, Boats, Air quality, and HSI datasets, respectively. (e)
The average ratio of the running time in the initialization phase compared to the total running time does not
exceed 20% for all the datasets.

5.2 Time Cost and Reconstruction Error (Q1)
We measure the running time and the reconstruction error of D-Tucker and competitors. As shown

in Fig. 3(a) and 3(b), D-Tucker achieves the best trade-offs between the time and error, achieving

up to 38.4× faster running time than Tucker-ts, Tucker-ttmts, and MACH with smaller or similar

reconstruction errors. Tucker-ALS and RTD have smaller reconstruction errors for Air quality and

HSI datasets, but they are at least 3.4× and 42× slower than D-Tucker, respectively.

5.3 Effectiveness of the Initialization Phase (Q2)
We show that the initialization phase of D-Tucker provides a good starting point for the iteration

step, by measuring the number of iterations in the iteration phase. We vary the error tolerance

𝜖 in the iteration phase from 10
−4

to 10
−8
. As shown in Fig. 4, the number of iterations with the

initialization phase is up to 1.7× smaller than that without the initialization phase. The initialization

phase allows D-Tucker to reduce the total running time since the running time of the initialization

phase is less than the reduction time of the iteration phase. Moreover, the average ratio of the

initialization phase’s running time to the total running time in D-Tucker does not exceed 20%. This

indicates that the initialization phase of D-Tucker reduces the number of iterations significantly

with little additional overhead on the total running time.

5.4 Efficiency of the Iteration Phase (Q3)
We investigate the number of iterations and the running time per iterations. In Fig. 5, For each

iteration, D-Tucker is at least 4.6× faster than competitors on all datasets except for Boat dataset,

and consumes smaller number of iterations than the competitors. Although Tucker-ttmts is faster

than D-Tucker at each iteration, it requires larger number of iterations than D-Tucker; hence, the

total running time of D-Tucker is 4.5× longer than that of Tucker-ttmts at iteration phase. For the

number of iterations, Fig. 5(b) shows that D-Tucker requires smaller number of iteration than all

the competitors except for Tucker-ALS on 3-order datasaets; however, the difference is quite small

considering the running time per iteration.

5.5 Space Cost (Q4)
We investigate the memory requirements of D-Tucker and competitors for initializing and updating

factor matrices and core tensor. Fig. 3(c) shows that D-Tucker requires up to 17.2× smaller space

than the second best methods Tucker-ts and Tucker-ttmts in terms of memory usage. For Boats
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Fig. 5. In the iteration phase, D-Tucker is the most efficient compared to competitors. (a) The running time of
each iteration of D-Tucker is up to 6.6× faster than those of competitors except for the Boats dataset. For
the Boats dataset, Tucker-ttmts achieves the fastest running time per iteration, but requires much larger
number of iterations, and has much higher error than D-Tucker. (b) The number of iterations of D-Tucker
is in general smaller than others; while there are cases D-Tucker requires more number of iterations, the
difference is negligible considering the running time per iteration.

dataset, Tucker-ts, and Tucker-ttmts require small space since this dataset has the following setting

where the two methods operate well: 1) order 𝑁 and rank 𝐽 are very small, and 2) dimensionalities

𝐼 and 𝐾 are very large. Note that D-Tucker has 7.5× less error than Tucker-ttmts while requiring

2.1× more space than Tucker-ttmts.

5.6 Scalability (Q5)
We investigate the scalability of D-Tucker and competitors with regard to dimensionality, target

rank, order, and number of iterations in Fig. 6. In sum, D-Tucker is the most scalable with the

smallest running time. Since the time complexities of Tucker-ts and Tucker-ttmts are proportional

to 𝐽𝑁 , they are not scalable for the target rank, and order of an input tensor. RTD operates for all

the given experimental settings, but RTD is much slower than D-Tucker. MACH and Tucker-ALS

also operate for all the given experimental settings, but they are at least 2× slower than D-Tucker.

Furthermore, they become much slower than D-Tucker as the number of iteration increases (e.g.,

when setting smaller tolerance 𝜖 or when converging slowly in real-world datasets). The details of

scalability experiments are as follows.

Dimensionality. For investigating the scalability related to dimensionality, we generate syn-

thetic 3-order tensors of true rank 𝐽𝑡𝑟𝑢𝑒 = 10, while increasing the total dimensionality 𝐼1𝐼2𝐾3 from

10
6
to 10

10
(dimensionality list: {(102, 102, 102), (103, 102, 102), (103, 103, 102), (103, 103, 103), (104, 103,

10
3)}). As shown in Fig. 6(a), D-Tucker is the fastest for various dimensionalities, and runs at least

2.7× faster than all competitors.

Target rank. For investigating the scalability related to target rank, we generate synthetic

3-order tensors of size 𝐼1 = 𝐼2 = 𝐾3 = 10
3
and true rank 𝐽𝑡𝑟𝑢𝑒 = 10, while varying the target rank

from 10 to 50. As shown in Fig. 6(b), D-Tucker is the fastest for various target ranks. Tucker-ts and

Tucker-ttmts provide the worst scalabilities since their time complexities are proportional to 𝐽𝑁 .
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Fig. 6. Scalability of D-Tucker compared to other Tucker decomposition methods. O.O.M.: out of memory. For
clarity, we show 4 groups of methods having similar tendencies. Note that D-Tucker is the most scalable with
the smallest running time: for all settings, D-Tucker is at least 2.1× faster than competitors. Tucker-ts and
Tucker-ttmts have limited scalability with respect to the target rank and the order. RTD has good scalability
for all aspects, but it is up to 76× slower than D-Tucker. MACH and Tucker-ALS are also scalable for all
aspects, but they are at least 2× slower than D-Tucker. Furthermore, their performance gaps compared to
D-Tucker become even worse when the number of iteration increases.

The running times of all competitors except Tucker-ts and Tucker-ttmts scale with regard to target

ranks, but they are at least 2.1× slower than D-Tucker.

Order. For investigating the scalability related to order 𝑁 , we generate synthetic 𝑁 -order tensors

of true rank 𝐽𝑡𝑟𝑢𝑒 = 10, while varying the order from 3 to 7. We set dimensionalities of synthetic

tensors to 𝐼1 = 10
3
, 𝐼2 = 10

2
, and 𝐾𝑖 = 10 for 𝑖 = 3, 4, ..., 7. In Fig. 6(c), D-Tucker is the fastest

for various orders of input tensors. Since the time and memory complexities of Tucker-ts and

Tucker-ttmts are proportional to 𝐽 2𝑁 , they are 5883× slower than D-Tucker, and cannot deal with

6 and 7-order tensors. Although all competitors except Tucker-ts and Tucker-ttmts can process

higher order tensors, they are at least 2.1× slower than D-Tucker.

Number of iterations.We generate synthetic 3-order tensors of size 𝐼1 = 𝐼2 = 𝐾3 = 10
3
with

true rank 𝐽𝑡𝑟𝑢𝑒 = 10. Then we evaluate the running time varying the number of iterations from 5 to

25. As shown in Fig. 6(d), D-Tucker is the fastest for varying numbers of iterations. In addition,

the running time of D-Tucker is not affected much by the number of iterations while those of

all competitors except Tucker-ts and Tucker-ttmts are affected much by the number of iterations.

Note that the running time of Tucker-ts and Tucker-ttmts are 3.6× slower than that of D-Tucker

although those are less affected by the number of iterations than D-Tucker.

5.7 Streaming Setting (Q6)
We compare D-TuckerO with streaming Tucker decomposition methods. We initially construct

factor matrices and a core tensor using the first 20% of a whole tensor, and then measure the

running time of updating a new incoming tensor at each time point. In addition, we set 𝑡𝑛𝑒𝑤 of

each time slice to 10.

Running Time. As shown in Fig. 7, we compare the running time of D-TuckerO with those

of competitors. For the 3-order datasets, D-TuckerO is up to 6.1× faster than the second-fastest

competitor Tucker-ttmts as shown in Fig. 7(a) to 7(c). Also, D-TuckerO is at least 2.9× faster than

the competitors for Absorb dataset which is a 4-order tensor. In addition, the running time of

D-TuckerO does not increase over time since it is proportional to the size of a new incoming tensor,

not the accumulated tensor.
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Fig. 7. Running time of D-TuckerO and competitors over time. D-TuckerO outperforms competitors when
we compare the running time of updating factor matrices and core tensor for each new incoming tensor.
D-TuckerO is up to 6.1× faster than the second fastest method, and the running time does not increase over
time.
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Fig. 8. Global and local errors in an online streaming setting. D-TuckerO achieves comparable global and
local errors with Tucker-ALS which is a static version of Tucker decomposition.

Error.Wemeasure global and local reconstruction errors of D-TuckerO and competitors. Fig. 8(a)

to 8(d) show the results for global reconstruction errors, and Fig. 8(e) to 8(h) show the results

for local reconstruction errors. As shown in Fig. 8(a) to 8(d), D-TuckerO has comparable global

errors with Tucker-ALS which performs Tucker decomposition for accumulated tensors, while DTA

and STA have higher global errors than D-TuckerO. These results indicate that updated results

of D-TuckerO sufficiently contain global patterns of an accumulated tensor. As shown in Fig. 8(e)

to 8(h), the local errors of D-TuckerO are close to those of Tucker-ALS which is a static version of
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Fig. 9. We measure the running time of D-TuckerO, varying the size of a time slice. The running time of
D-TuckerO increases near-linearly as the size of a time slice increases. Note that a slope equal to 1 indicates
linear scalability.

Tucker decomposition since updated results of D-TuckerO sufficiently contains information of a

new incoming tensor. In addition, the approximation phase of D-TuckerO does not hurt accuracy

much since a time slice of real-world datasets has a low-rank structure.

5.8 Size of Time Slice (Q7)
We evaluate the performance of D-TuckerO, varying the size 𝑡𝑛𝑒𝑤 of a time slice: 10, 20, 40, 80, and

160. Fig. 9 shows that there are near-linear relationships between 𝑡𝑛𝑒𝑤 and the running time of

D-TuckerO in an online streaming setting; for all the four datasets, the slopes are close to 1. This is

because the running time of D-TuckerO is proportional to the size of a new incoming tensor.

6 RELATEDWORK
We describe related works for Tucker decomposition methods and their applications.

Tensor decomposition. De Lathauwer et al. [31] proposed Tucker-ALS (Algorithm 2) which

alternately updates factor matrices and obtains core tensor. A few Tucker decomposition methods

slightly reduce the computational time using efficient matrix operations [5, 33]. Che et al. [11]

applied randomized algorithms for Tucker decomposition. The main challenges of Tucker decom-

position are heavy computational time and large memory requirements due to large-scale dense

tensors. To overcome the challenges, MACH [56] is designed to reduce the computational time

and the memory requirement by sampling input tensors. Also, Malik et al. [34] used a sketch of

input tensors to overcome the challenges. However, there is still plenty of room for improvement

in terms of efficiency. Several Tucker decomposition algorithms [4, 10, 13, 26, 38, 46, 60] have been

developed in parallel and distributed systems as well. Several works [4, 8, 10, 13] optimize 𝑛-mode

product for dense tensors in distributed systems. Other works present Tucker decomposition meth-

ods exploiting the characteristic of sparse tensors in parallel systems [38, 39, 49] and distributed

systems [26, 38]. Contrary to the above methods, D-Tucker efficiently runs on a single machine.

Streaming Tensor Decomposition.Many works [3, 18, 37, 48, 51, 62, 63] have developed CP

decomposition methods in an online streaming setting. RLST (Recursive Least Squares Tracking)

and SDT (Simultaneous Diagonalization Tracking) [37] are adaptive PARAFAC decomposition

methods of a third-order tensor in an online streaming setting. Zhou et al. [63] developed on-

lineCP, a streaming CP decomposition method, while Zhou et al. [62] extend onlineCP for sparse

tensors. Gujral et al. [18] and Smith et al. [48] proposed streaming CP decomposition methods in

parallel systems. Lee et al. [32] proposed a robust tensor factorization that leverages two temporal

characteristics: graduality and seasonality. Ahn et al. [2, 3] proposed tensor factorization methods

by capturing temporal locality patterns. Son et al. [50] proposed a n online tensor factorization
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method by capturing sudden change in data. The main difference between the above methods and

our proposed method is that they focus on developing online versions of CP decomposition while

D-TuckerO is based on Tucker decomposition.

Sun et al. [52] incrementally analyzed temporal tensors over time: they proposed two algorithms,

DTA (dynamic tensor analysis) and STA (streaming tensor analysis). However, the above methods

update factor matrices and core tensor by naively using a new incoming tensor without compression,

thereby efficiency improvement is limited when a new incoming tensor is sufficiently large. In

addition, tucker-ts and tucker-ttmts [34] can be applied to online streaming settings. However, they

fail to avoid increasing the running time over time. Sun et al. [53] proposed a streaming Tucker

decomposition method with a sketching technique in distributed systems, assuming that time slices

are stored in several machines. MAST [51] deals with the scenario in which a given tensor grows

in multiple modes while D-TuckerO runs on the setting where only one mode increases.

Applications of Tensor decomposition. Tucker decomposition has been widely used for

several applications including dimensionality reduction [27, 47], recommendation [12, 40, 44],

clustering [9, 20], image tag refinement [54, 55], phenotype discovery [1, 43, 61], and many oth-

ers [22, 29, 42]. Oh et al. [40] analyzed movie rating data and discovered relations between movie

and time attributes by considering only observable entries. Kim et al. [27] used Tucker decompo-

sition for compressing a deep convolutional neural network. Jang et al. [25] proposed a Tucker

decomposition-based method to efficiently analyze a given time range.

7 CONCLUSIONS
We propose D-Tucker and D-TuckerO, efficient Tucker decomposition methods for large-scale dense

tensors in static and online streaming settings. D-Tucker and D-TuckerO accelerate computing

Tucker decomposition by approximating a given dense tensor, and carefully computing Tucker

results from the approximated tensor. We show D-Tucker provides the fastest running time and

the smallest memory usage. Furthermore, D-TuckerO is also the fastest method to update factor

matrices and core tensor for new incoming tensors. We also provide theoretical analysis for the time

and space complexities of D-Tucker and D-TuckerO. Extensive experiments show that D-Tucker is

up to 38.4× faster, and requires up to 17.2× less space than existing methods with little sacrifice in

accuracy. D-Tucker is also scalable with regard to dimensionality, rank, order, and the number of

iterations. D-TuckerO is up to 6.1× faster than existing methods running in an online streaming

setting, while not increasing the running time over time.

ACKNOWLEDGEMENT
This work was partly supported by the National Research Foundation of Korea(NRF) funded by

MSIT(2022R1A2C3007921), and Institute of Information & communications Technology Planning

& Evaluation(IITP) grant funded by MSIT [No.2021-0-01343, Artificial Intelligence Graduate School

Program (Seoul National University)] and [No.2021-0-02068, Artificial Intelligence Innovation Hub

(Artificial Intelligence Institute, Seoul National University)]. The Institute of Engineering Research

and ICT at Seoul National University provided research facilities for this work.

REFERENCES
[1] Ardavan Afshar, Ioakeim Perros, Evangelos E Papalexakis, Elizabeth Searles, Joyce Ho, and Jimeng Sun. 2018. COPA:

Constrained PARAFAC2 for sparse & large datasets. In CIKM. 793–802.

[2] Dawon Ahn, Jun-Gi Jang, and U Kang. 2022. Time-aware tensor decomposition for sparse tensors. Mach. Learn. 111, 4
(2022), 1409–1430.

[3] Dawon Ahn, Seyun Kim, and U Kang. 2021. Accurate Online Tensor Factorization for Temporal Tensor Streams with

Missing Values. In CIKM. ACM, 2822–2826.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2022.



1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

111:30 Jun-Gi Jang and U Kang

[4] Woody Austin, Grey Ballard, and Tamara G. Kolda. 2016. Parallel Tensor Compression for Large-Scale Scientific Data.

In IPDPS. 912–922.
[5] Brett W. Bader and Tamara G. Kolda. 2006. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping.

ACM Trans. Math. Software 32, 4 (Dec. 2006), 635–653. https://doi.org/10.1145/1186785.1186794

[6] Brett W. Bader, Tamara G. Kolda, et al. 2017. MATLAB Tensor Toolbox Version 3.0-dev. Available online. https:

//www.tensortoolbox.org

[7] James Baglama and Lothar Reichel. 2005. Augmented Implicitly Restarted Lanczos Bidiagonalization Methods. SIAM
J. Scientific Computing 27, 1 (2005), 19–42.

[8] Grey Ballard, Alicia Klinvex, and Tamara G. Kolda. 2019. TuckerMPI: A Parallel C++/MPI Software Package for

Large-scale Data Compression via the Tucker Tensor Decomposition. CoRR abs/1901.06043 (2019).

[9] Xiaochun Cao, Xingxing Wei, Yahong Han, and Dongdai Lin. 2015. Robust Face Clustering Via Tensor Decomposition.

IEEE Trans. Cybernetics 45, 11 (2015), 2546–2557.
[10] Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Xing Liu, Prakash Murali, Yogish Sabharwal, and Dheeraj

Sreedhar. 2017. On Optimizing Distributed Tucker Decomposition for Dense Tensors. In IPDPS. 1038–1047.
[11] Maolin Che and Yimin Wei. 2019. Randomized algorithms for the approximations of Tucker and the tensor train

decompositions. Adv. Comput. Math. 45, 1 (2019), 395–428.
[12] Dongjin Choi, Jun-Gi Jang, and U Kang. 2019. S3CMTF: Fast, accurate, and scalable method for incomplete coupled

matrix-tensor factorization. PloS one 14, 6 (2019), e0217316.
[13] Jee W. Choi, Xing Liu, and Venkatesan T. Chakaravarthy. [n. d.]. High-performance dense tucker decomposition on

GPU clusters. In SC. 42:1–42:11.
[14] Kenneth L Clarkson and David P Woodruff. 2017. Low-rank approximation and regression in input sparsity time.

JACM 63, 6 (2017), 54.

[15] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. 2017. FMA: A Dataset for Music Analysis.

In 18th International Society for Music Information Retrieval Conference (ISMIR). arXiv:1612.01840 https://arxiv.org/

abs/1612.01840

[16] Michaël Defferrard, Sharada P. Mohanty, Sean F. Carroll, and Marcel Salathé. 2018. Learning to Recognize Musical

Genre from Audio. In The 2018 Web Conference Companion. ACM Press. https://doi.org/10.1145/3184558.3192310

arXiv:1803.05337

[17] David H. Foster, Kinjiro Amano, Sérgio M C Nascimento, and Michael J. Foster. 2006. Frequency of metamerism in

natural scenes. Optical Society of America. Journal A: Optics, Image Science, and Vision 23, 10 (10 2006), 2359–2372.

https://doi.org/10.1364/JOSAA.23.002359

[18] Ekta Gujral, Ravdeep Pasricha, and Evangelos E. Papalexakis. 2018. SamBaTen: Sampling-based Batch Incremental

Tensor Decomposition. In SDM. SIAM, 387–395.

[19] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. 2011. Finding Structure with Randomness: Probabilistic

Algorithms for Constructing Approximate Matrix Decompositions. SIAM Rev. 53, 2 (2011), 217–288.
[20] Heng Huang, Chris H. Q. Ding, Dijun Luo, and Tao Li. 2008. Simultaneous tensor subspace selection and clustering:

the equivalence of high order svd and k-means clustering. In SIGKDD. 327–335.
[21] MA Iwen and BW Ong. 2016. A distributed and incremental SVD algorithm for agglomerative data analysis on large

networks. SIAM J. Matrix Anal. Appl. 37, 4 (2016), 1699–1718.
[22] Jun-Gi Jang and U Kang. 2022. DPar2: Fast and Scalable PARAFAC2 Decomposition for Irregular Dense Tensors. In

ICDE. IEEE, 2454–2467.
[23] Jun-Gi Jang, Dongjin Choi, Jinhong Jung, and U Kang. 2018. Zoom-SVD: Fast and Memory Efficient Method for

Extracting Key Patterns in an Arbitrary Time Range. In CIKM. ACM, 1083–1092.

[24] Jun-Gi Jang and U Kang. 2020. D-tucker: Fast and memory-efficient tucker decomposition for dense tensors. In 2020
IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 1850–1853.

[25] Jun-Gi Jang and U Kang. 2021. Fast and Memory-Efficient Tucker Decomposition for Answering Diverse Time Range

Queries. In KDD. 725–735.
[26] Inah Jeon, Evangelos E. Papalexakis, U. Kang, and Christos Faloutsos. 2015. HaTen2: Billion-scale tensor decompositions.

In ICDE. 1047–1058.
[27] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. 2015. Compression of

Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications. CoRR abs/1511.06530 (2015).

arXiv:1511.06530 http://arxiv.org/abs/1511.06530

[28] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and Applications. SIAM Rev. 51, 3 (2009), 455–500.
[29] Tamara G. Kolda and Jimeng Sun. 2008. Scalable Tensor Decompositions for Multi-aspect Data Mining. In ICDM.

363–372.

[30] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. 2000. A Multilinear Singular Value Decomposition. SIAM J.
Matrix Analysis Applications 21, 4 (2000), 1253–1278.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2022.

https://doi.org/10.1145/1186785.1186794
https://www.tensortoolbox.org
https://www.tensortoolbox.org
https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1612.01840
https://doi.org/10.1145/3184558.3192310
https://arxiv.org/abs/1803.05337
https://doi.org/10.1364/JOSAA.23.002359
https://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1511.06530


1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Static and Streaming Tucker Decomposition for Dense Tensors 111:31

[31] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. 2000. On the Best Rank-1 and Rank-(R
1
, R

2
, ... , RN)

Approximation of Higher-Order Tensors. SIAM J. Matrix Analysis Applications 21, 4 (2000), 1324–1342.
[32] Dongjin Lee and Kijung Shin. 2021. Robust Factorization of Real-world Tensor Streams with Patterns, Missing Values,

and Outliers. In ICDE. IEEE, 840–851.
[33] Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, and Richard W. Vuduc. 2015. An input-adaptive and in-place

approach to dense tensor-times-matrix multiply. In SC. 76:1–76:12.
[34] Osman Asif Malik and Stephen Becker. 2018. Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch.

In NeurIPS. 10117–10127.
[35] Rachel Minster, Arvind K. Saibaba, and Misha E. Kilmer. 2019. Randomized algorithms for low-rank tensor decomposi-

tions in the Tucker format. CoRR abs/1905.07311 (2019).

[36] Tom M. Mitchell, Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L. Malave, Robert A. Mason, and

Marcel Adam Just. 2008. Predicting human brain activity associated with the meanings of nouns. Science 320 (May

2008), 1191–1195.

[37] Dimitri Nion and Nicholas D. Sidiropoulos. 2009. Adaptive algorithms to track the PARAFAC decomposition of a

third-order tensor. IEEE Trans. Signal Process. 57, 6 (2009), 2299–2310.
[38] Jinoh Oh, Kijung Shin, Evangelos E. Papalexakis, Christos Faloutsos, and Hwanjo Yu. 2017. S-HOT: Scalable High-Order

Tucker Decomposition. In WSDM. 761–770.

[39] Sejoon Oh, Namyong Park, Jun-Gi Jang, Lee Sael, and U Kang. 2019. High-Performance Tucker Factorization on

Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 30, 10 (2019), 2237–2248.
[40] Sejoon Oh, Namyong Park, Lee Sael, and U. Kang. 2018. Scalable Tucker Factorization for Sparse Tensors - Algorithms

and Discoveries. In ICDE. 1120–1131.
[41] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. 2005. Streaming Pattern Discovery in Multiple Time-Series.

In VLDB. ACM, 697–708.

[42] Ioakeim Perros, Robert Chen, Richard W. Vuduc, and Jimeng Sun. 2015. Sparse Hierarchical Tucker Factorization and

Its Application to Healthcare. In ICDM. 943–948.

[43] Ioakeim Perros, Evangelos E Papalexakis, Fei Wang, Richard Vuduc, Elizabeth Searles, Michael Thompson, and Jimeng

Sun. 2017. SPARTan: Scalable PARAFAC2 for large & sparse data. In KDD. 375–384.
[44] Steffen Rendle and Lars Schmidt-Thieme. 2010. Pairwise interaction tensor factorization for personalized tag recom-

mendation. In WSDM. 81–90.

[45] Florin Schimbinschi, Xuan Vinh Nguyen, James Bailey, Chris Leckie, Hai Vu, and Rao Kotagiri. 2015. Traffic forecasting

in complex urban networks: Leveraging big data and machine learning. In Big Data. IEEE, 1019–1024.
[46] Kijung Shin, Lee Sael, and U. Kang. 2017. Fully Scalable Methods for Distributed Tensor Factorization. IEEE Trans.

Knowl. Data Eng. 29, 1 (2017), 100–113.
[47] Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Papalexakis, and Christos

Faloutsos. 2017. Tensor Decomposition for Signal Processing and Machine Learning. IEEE Trans. Signal Processing 65,

13 (2017), 3551–3582.

[48] Shaden Smith, Kejun Huang, Nicholas D. Sidiropoulos, and George Karypis. 2018. Streaming Tensor Factorization for

Infinite Data Sources. In SDM. SIAM, 81–89.

[49] Shaden Smith and George Karypis. 2017. Accelerating the Tucker Decomposition with Compressed Sparse Tensors. In

Euro-Par 2017 (Lecture Notes in Computer Science, Vol. 10417). Springer, 653–668.
[50] Sangjun Son, Yong-chan Park, Minyong Cho, and U. Kang. 2022. DAO-CP: Data-Adaptive Online CP decomposition

for tensor stream. PLOS ONE 17, 4 (04 2022), 1–18.

[51] Qingquan Song, Xiao Huang, Hancheng Ge, James Caverlee, and Xia Hu. 2017. Multi-Aspect Streaming Tensor

Completion. In KDD. ACM, 435–443.

[52] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. 2006. Beyond streams and graphs: dynamic tensor analysis. In

Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia,
PA, USA, August 20-23, 2006, Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos (Eds.). ACM,

374–383.

[53] Yiming Sun, Yang Guo, Charlene Luo, Joel A. Tropp, and Madeleine Udell. 2019. Low-Rank Tucker Approximation of

a Tensor From Streaming Data. CoRR abs/1904.10951 (2019).

[54] Jinhui Tang, Xiangbo Shu, Zechao Li, Yu-Gang Jiang, and Qi Tian. 2019. Social Anchor-Unit Graph Regularized Tensor

Completion for Large-Scale Image Retagging. IEEE Trans. Pattern Anal. Mach. Intell. 41, 8 (2019), 2027–2034.
[55] Jinhui Tang, Xiangbo Shu, Guo-Jun Qi, Zechao Li, Meng Wang, Shuicheng Yan, and Ramesh C. Jain. 2017. Tri-

Clustered Tensor Completion for Social-Aware Image Tag Refinement. IEEE Trans. Pattern Anal. Mach. Intell. 39, 8
(2017), 1662–1674.

[56] Charalampos E. Tsourakakis. 2010. MACH: Fast Randomized Tensor Decompositions. In SDM. 689–700.

ACM Trans. Knowl. Discov. Data., Vol. 37, No. 4, Article 111. Publication date: August 2022.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

111:32 Jun-Gi Jang and U Kang

[57] Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. 2012. A New Truncation Strategy for the Higher-Order

Singular Value Decomposition. SIAM J. Scientific Computing 34, 2 (2012).

[58] Yi Wang, Pierre-Marc Jodoin, Fatih Murat Porikli, Janusz Konrad, Yannick Benezeth, and Prakash Ishwar. 2014.

CDnet 2014: An Expanded Change Detection Benchmark Dataset. In IEEE Conference on Computer Vision and Pattern
Recognition CVPR Workshops. 393–400.

[59] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. 2008. A fast randomized algorithm for the approxi-

mation of matrices. Applied and Computational Harmonic Analysis 25, 3 (2008), 335–366.
[60] Fan Yang, Fanhua Shang, Yuzhen Huang, James Cheng, Jinfeng Li, Yunjian Zhao, and Ruihao Zhao. 2017. LFTF: A

Framework for Efficient Tensor Analytics at Scale. PVLDB 10, 7 (2017), 745–756.

[61] Kejing Yin, William K Cheung, Benjamin CM Fung, and Jonathan Poon. 2021. Tedpar: Temporally dependent

parafac2 factorization for phenotype-based disease progression modeling. In Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM). SIAM, 594–602.

[62] Shuo Zhou, Sarah M. Erfani, and James Bailey. 2018. Online CP Decomposition for Sparse Tensors. In ICDM. IEEE

Computer Society, 1458–1463.

[63] Shuo Zhou, Xuan Vinh Nguyen, James Bailey, Yunzhe Jia, and Ian Davidson. 2016. Accelerating Online CP Decompo-

sitions for Higher Order Tensors. In KDD. ACM, 1375–1384.

APPENDIX
A PROOFS OF LEMMAS
We provide proof for lemmas described in the proposed method sections (Sections 3 and 4).

A.1 Proof of Lemma 1
Proof. Performing randomized SVD of each sliced matrix takes 𝑂 (𝐼 2) (Algorithm 1). Since the

number of sliced matrices is 𝐾𝑁−2, the time complexity of the approximation phase is 𝑂 (𝐼 2𝐾𝑁−2).
□

A.2 Proof of Lemma 2
Proof. For the first mode, size of

[
U1Σ1; · · · ;U𝑙Σ𝑙

]
is 𝐼×𝐾𝑁−2 𝐽 . Then, performing SVD [7] takes

𝑂 (𝐼𝐾𝑁−2 𝐽 2) for the first mode. For the second mode, it takes 𝑂 (𝐼𝐾𝑁−2 𝐽 2) to compute Y(2),𝑖𝑛𝑡𝑒𝑟
(line 3 of Algorithm 5), 𝑂 (𝐼𝐾𝑁−2 𝐽 2) to compute Y(2),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
}𝐿
𝑙=1
), and 𝑂 (𝐼𝐾𝑁−2 𝐽 2) to

perform SVD of Y(2) . Then, it takes 𝑂 (𝐼𝐾𝑁−2 𝐽 2) to initialize the factor matrix of the second mode.

For the remaining modes, it takes 𝑂 (𝐼𝐾𝑁−2 𝐽 2 + ∑𝑁−3
𝑘=0

𝐾𝑁−2−𝑘 𝐽 3+𝑘 ) to compute the remaining

𝑛-mode products for all 𝑛 = 2, 3, ..., 𝑁 , and 𝑂 (𝐽 ∑𝑁−3
𝑘=0

𝐾𝑁−2−𝑘 𝐽 2+𝑘 ) to compute SVD for all 𝑛 =

3, 4, ..., 𝑁 . For all modes, the dominant term is 𝑂 (𝐼𝐾𝑁−2 𝐽 2) since 𝐼 > 𝐾 > 𝐽 , thus we simplify the

time complexity of the initialization phase as 𝑂 (𝐼𝐾𝑁−2 𝐽 2). □

A.3 Proof of Lemma 3
Proof. For the firstmode, it takes𝑂 (𝐼𝐾𝑁−2 𝐽 2) to computeY(1),𝑖𝑛𝑡𝑒𝑟 andY(1),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙UT

𝑙
}𝐿
𝑙=1
)

in Equation (13), and 𝑂 (𝐼 ∑𝑁−3
𝑘=0

𝐾𝑁−2−𝑘 𝐽 2+𝑘 ) for computing the remaining 𝑛-mode products for all

𝑛 = 3, 4, ..., 𝑁 . We simplify 𝑂 (𝐼 ∑𝑁−3
𝑘=0

𝐾𝑁−2−𝑘 𝐽 2+𝑘 ) as 𝑂 (𝑁𝐼𝐾𝑁−2 𝐽 2) since 𝐽 < 𝐾 . Computational

time of the secondmode is the same as that of the first mode. Before computing for remaining modes,

it takes 𝑂 (𝐼𝐾𝑁−2 𝐽 2 + 𝐾𝑁−2 𝐽 3) to compute Y𝑟𝑒𝑢𝑠𝑒 in line 15 of Algorithm 6. For mode-𝑖 , it takes

𝑂 (−𝐾𝑁−(𝑖−1) 𝐽 𝑖 +∑𝑁−3
𝑘=0

𝐾𝑁−2−𝑘 𝐽 3+𝑘 ) to perform 𝑛-mode products for all 𝑛 = 3, 4, 𝑖 − 1, 𝑖 + 1, ..., 𝑁 .

For core tensor, it takes 𝑂 (∑𝑁−3
𝑘=0

𝐾𝑁−2−𝑘 𝐽 3+𝑘 ) to perform 𝑛-mode products for all 𝑛 = 3, 4, ..., 𝑁 .

We simplify the complexity 𝑂 (−𝐾𝑁−(𝑖−1) 𝐽 𝑖 + ∑𝑁−3
𝑘=0

𝐾𝑁−2−𝑘 𝐽 3+𝑘 ) and 𝑂 (∑𝑁−3
𝑘=0

𝐾𝑁−2−𝑘 𝐽 3+𝑘 ) to
𝑂 (𝑁𝐾𝑁−2 𝐽 3) since 𝐾 > 𝐽 . Therefore, the time complexity of one iteration in the iteration phase is

𝑂 (𝐼𝐾𝑁−2 𝐽 2 + 𝑁𝐼𝐾𝑁−2 𝐽 2 + 𝐼𝐾𝑁−2 𝐽 2 +𝐾𝑁−2 𝐽 3 + 𝑁𝐾𝑁−2 𝐽 3). Without loss of generality, we express

the time complexity of the iteration phase as 𝑂 (𝑁𝐼𝐾𝑁−2 𝐽 2) since 𝐼 > 𝐾 > 𝐽 . □
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A.4 Proof of Lemma 4
Proof. The following equation represents the mode-𝑁 matricized version of Equation (4) by

replacing X with X𝑜𝑙𝑑 and X𝑛𝑒𝑤 :

X(𝑁 ) =
[

X(𝑁 ),𝑜𝑙𝑑
X(𝑁 ),𝑛𝑒𝑤

]
≈

[
A(𝑁 )
𝑜𝑙𝑑

G(𝑁 ) (⊗𝑁−1A(𝑛)𝑇 )
A(𝑁 )
𝑖𝑛𝑐

G(𝑁 ) (⊗𝑁−1A(𝑛)𝑇 )

]
where X(𝑁 ) is the mode-𝑁 matricized matrix of an accumulated tensorX, and X(𝑁 ),𝑜𝑙𝑑 and X(𝑁 ),𝑛𝑒𝑤
are the mode-𝑁 matricization of a pre-existing tensor X𝑜𝑙𝑑 and a new incoming tensor slice X𝑛𝑒𝑤 ,

respectively. By fixing the factor matrix A(𝑛) for 𝑛 = 1, 2, ..., 𝑁 − 1, we update the factor matrix

A(𝑁 ) of the temporal mode as follows:[
A(𝑁 )
𝑜𝑙𝑑

A(𝑁 )
𝑖𝑛𝑐

]
=


X(𝑁 ),𝑜𝑙𝑑

(
G(𝑁 ) (⊗𝑁−1𝑘=1

A(𝑘 )𝑇 )
)†

X(𝑁 ),𝑛𝑒𝑤
(
G(𝑁 ) (⊗𝑁−1𝑘=1

A(𝑘 )𝑇 )
)†

By adapting the properties, (AB)† = B†A† and (C ⊗ D)† = C† ⊗ D† to the above equation, we

obtain the following equation:

A(𝑁 )
𝑖𝑛𝑐
← X(𝑁 ),𝑛𝑒𝑤

(
G(𝑁 ) (⊗𝑁−1𝑘=1

A(𝑘 )𝑇 )
)†

= X(𝑁 ),𝑛𝑒𝑤

(
⊗𝑁−1
𝑘=1

(
A(𝑘 )

(
A(𝑘 )𝑇A(𝑘 )

)−1))
G†(𝑁 )

□

A.5 Proof of Lemma 5
Proof. For mode 𝑛, we formulate the loss function 𝐿(𝑛) as follows:

𝐿(𝑛) =
1

2

∥X(𝑛) − A(𝑛)G(𝑛) (⊗𝑁𝑘≠𝑛A(𝑘 ) )𝑇 ∥2 (30)

where (⊗𝑁
𝑘≠𝑛

A(𝑘 ) ) indicates Kronecker products of A(𝑘 ) for 𝑘 = 𝑁, 𝑁 − 1, ..., 𝑛 + 1, 𝑛 − 1, ..., 1. When

fixing A(𝑘 ) for 𝑘 = 1, ..., 𝑛 − 1, 𝑛 + 1, ..., 𝑁 , the partial derivative of the function 𝐿(𝑛) with respect to

A(𝑛) is as follows:
𝜕𝐿(𝑛)

𝜕A(𝑛)
= − X(𝑛) (⊗𝑁𝑘≠𝑛A(𝑘 ) )G𝑇(𝑛) + A(𝑛)G(𝑛) (⊗𝑁𝑘≠𝑛 (A

(𝑘 )𝑇A(𝑘 ) ))G𝑇(𝑛)

To minimize

𝜕𝐿(𝑛)
𝜕A(𝑛) , we set it to zero and compute A(𝑛) as follows:

A(𝑛) = X(𝑛) (⊗𝑁𝑘≠𝑛A(𝑘 ) )G𝑇(𝑛) ×
(
G(𝑛) (⊗𝑁𝑘≠𝑛 (A

(𝑘 )𝑇A(𝑘 ) ))G𝑇(𝑛)
)−1

= P(𝑛)
(
Q(𝑛)

)−1
where P(𝑛) and Q(𝑛) are equal to X(𝑛) (⊗𝑁𝑘≠𝑛A(𝑘 ) )G𝑇(𝑛) and

(
G(𝑛) (⊗𝑁𝑘≠𝑛 (A

(𝑘 )𝑇A(𝑘 ) ))G𝑇(𝑛)
)
, respec-

tively. □

A.6 Proof of Lemma 6
Proof. To update core tensor, we start from the following equation:

G ×1 A(1) · · · ×𝑁 A(𝑁 ) = X
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For each mode 𝑛, we multiply A(𝑛)† = (A(𝑛)𝑇A(𝑛) )−1A(1)𝑇 on both left and right terms. Then, we

obtain the core tensor by computing the following equation:

G = X ×1 A(1)† · · · ×𝑁 A(𝑁 )†

For brevity, we compute the core tensor with mode-𝑁 matricization. We carefully decouple the

computations for A(𝑁 )
𝑜𝑙𝑑

and A(𝑁 )𝑛𝑒𝑤 . It leads to avoiding explicit computations related to A(𝑁 )
𝑜𝑙𝑑

and

X(𝑁 ),𝑛𝑒𝑤 .

G(𝑁 ) = (A(𝑁 )𝑇A(𝑁 ) )−1 × A(𝑁 )𝑇X(𝑁 ) (⊗𝑁−1𝑘=1
A(𝑘 ) (A(𝑘 )𝑇A(𝑘 ) )−1)

=

(
Q(𝑁+1)

)−1
P(𝑁+1)

(31)

where P(𝑁+1) and Q(𝑁+1) are equal to A(𝑁 )𝑇X(𝑁 ) (⊗𝑁−1𝑘=1
A(𝑘 ) (A(𝑘 )𝑇A(𝑘 ) )−1) and

(
A(𝑁 )𝑇A(𝑁 )

)
,

respectively. □

B PROOFS OF THEOREMS
We provide proof for theorems described in the proposed method sections (Sections 3 and 4).

B.1 Proof of Theorem 1
Proof. The total time complexity of D-Tucker is the summation of time complexities for the

three phases: approximation, initialization, and iteration. By Lemmas 1 to 3, the time complexity

is 𝑂 (𝐼 2𝐾𝑁−2 𝐽 + 𝑀𝑁𝐼𝐾𝑁−2 𝐽 2), which is simplified from 𝑂 (𝐼 2𝐾𝑁−2 𝐽 + 𝐼𝐾𝑁−2 𝐽 2 + 𝑀𝑁𝐼𝐾𝑁−2 𝐽 2)
without loss of generality. □

B.2 Proof of Theorem 2
Proof. In the initialization phase, initializing for the first two modes requires 𝑂 (𝐼𝐾𝑁−2 𝐽 ) space

to deal with

[
U1Σ1; · · · ;U𝑙Σ𝑙

]
, mode-2 matricization matrix Y(2) , and related tensors in lines 1

to 7 of Algorithm 5. Initializing for the remaining modes requires 𝑂 (𝐾𝑁−2 𝐽 2) to store Y(i) , Y𝑟𝑒𝑢𝑠𝑒 ,
Y𝑟𝑒𝑢𝑠𝑒 , and related tensors in lines 8 to 17 of Algorithm 5.

The iteration phase requires 𝑂 (𝐼𝐾𝑁−2 𝐽 ) space for matrices Y(2),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑖UT

𝑙
}𝐿
𝑙=1
) and

Y(1),𝑖𝑛𝑡𝑒𝑟𝑏𝑙𝑘𝑑𝑖𝑎𝑔({Σ𝑙VT

𝑙
}𝐿
𝑙=1
) in lines 4 and 9 of Algorithm 6. The dominant term for the remaining

modes is 𝑂 (𝐾𝑁−2 𝐽 2) to store Y𝑟𝑒𝑢𝑠𝑒 in line 16 of Algorithm 6.

Considering 𝐼 > 𝐾 > 𝐽 , the total space complexity is 𝑂 (𝐼𝐾𝑁−2 𝐽 ). □

B.3 Proof of Theorem 3
Proof. There are two dominant terms in the time complexity of D-TuckerO: 1) the approximation

of a new time slice X𝑛𝑒𝑤 , and 2) 𝑛-mode products between the approximation result and factor

matrices A(𝑘 ) (or
(
A(𝑘 )𝑇

)†
). Approximating a new time slice X𝑛𝑒𝑤 require 𝑂 (𝐼 2𝐾𝑁−3𝑇𝑛𝑒𝑤) by

Lemma 1. In addition, the time complexity of updating all factor matrices is 𝑂 (𝑁𝐼𝐾𝑁−3 𝑇𝑛𝑒𝑤 𝐽 2)
since updating them includes 𝑛-mode products between the approximation of X𝑛𝑒𝑤 and A(𝑘 )

(or

(
A(𝑘 )𝑇

)†
) whose complexity is analyzed in Lemma 3. Therefore, the total time complexity of

D-TuckerO for each time slice is 𝑂 (𝐼 2𝐾𝑁−3𝑇𝑛𝑒𝑤 + 𝑁𝐼𝐾𝑁−3𝑇𝑛𝑒𝑤 𝐽 2). □

B.4 Proof of Theorem 4
Proof. The space of of D-TuckerO is determined by storing P(𝑛),𝑜𝑙𝑑 and Q(𝑛),𝑜𝑙𝑑 , and computing

P(𝑛),𝑛𝑒𝑤 andQ(𝑛),𝑛𝑒𝑤 . Space costs of P(𝑛),𝑜𝑙𝑑 andQ(𝑛),𝑜𝑙𝑑 are𝑂 ((𝐼1+𝐼2+(𝑁−3)𝐾) 𝐽 ) and𝑂 ((𝑁−1) 𝐽 2)
for all 𝑛 = 1, ..., 𝑁 − 1, respectively. We perform 𝑛-mode product between G of the size 𝐽𝑁 and

A(𝑛)𝑇A(𝑛) for Q(𝑛),𝑛𝑒𝑤 of the size 𝐽 × 𝐽 . Since the intermediate data are always smaller than G,
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the space cost of Q(𝑛),𝑛𝑒𝑤 is 𝑂 (𝐽𝑁 ) which is the size of G. Additionally, the space cost of P(𝑛),𝑛𝑒𝑤
is 𝑂 (𝐼𝐾𝑁−3𝑇𝑛𝑒𝑤 𝐽 ) since the size of the SVD results of X𝑛𝑒𝑤 is 𝑂 (𝐼𝐾𝑁−3𝑇𝑛𝑒𝑤 𝐽 ), and the size of

intermediate data of P(𝑛),𝑛𝑒𝑤 is always smaller than𝑂 (𝐼𝐾𝑁−3𝑇𝑛𝑒𝑤 𝐽 ). The total space cost to update
factor matrices and core tensor forX𝑛𝑒𝑤 is𝑂 ((𝐼1 + 𝐼2 + (𝑁 − 3)𝐾) 𝐽 + (𝑁 − 1) 𝐽 2 + 𝐽𝑁 + 𝐼𝐾𝑁−3𝑇𝑛𝑒𝑤 𝐽 ).
We simplify the space cost as 𝑂 (𝐼𝐾𝑁−3𝑇𝑛𝑒𝑤 𝐽 ) since the dominant term is to compute P(𝑛),𝑛𝑒𝑤 . □
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