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Abstract. When recommending personalized top-k items to users, how
can we recommend them diversely while satisfying users’ needs? Aggre-
gately diversified recommender systems aim to recommend a variety of
items across whole users without sacrificing the recommendation accu-
racy. They increase the exposure opportunities of various items, which in
turn increase the potential revenue of sellers as well as user satisfaction.
However, it is challenging to tackle aggregate-level diversity with matrix
factorization (MF), one of the most common recommendation models,
since skewed real-world data lead to the skewed recommendation results
of MF.
In this work, we propose DivMF (Diversely Regularized Matrix Factor-
ization), a novel matrix factorization method for aggregately diversified
recommendation. DivMF exploits novel coverage regularizer and skew-
ness regularizer which consider the top-k recommendation results of an
MF model to aggregately diversify the recommendation results. We also
propose a carefully designed training algorithm for effective training. Ex-
tensive experiments on real-world datasets show that DivMF gives the
state-of-the-art performance, improving up to 34.7% aggregate-level di-
versity in the similar level of accuracy, and up to 27.6% accuracy in the
similar level of aggregate-level diversity compared to the best competi-
tors.

Keywords: Diversified Recommendation · Aggregate-level Diversity ·

Matrix Factorization

1 Introduction

When recommending personalized top-k items to users, how can we recom-
mend them diversely while satisfying users’ needs? Customers heavily rely on
recommender systems [10,12,15] to choose items due to the flood of information
nowadays. Thus, it is desired to expose as many items as possible to users to
maximize the potential revenue of sales platforms [2] while improving users’ ex-
perience [3]. Achieving aggregate-level diversity means fairly distributing items
for the overall recommendation results. It requires that the results are of high
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Fig. 1. Comparison of three different recommendation results. Note that all three
results achieve high accuracy by recommending the ground-truth item to each user.
However, the aggregate-level diversities (i.e., coverage and non-skewness) of the results
(I), (II), and (III) are significantly different. Aggregately diversified recommendation
aims to achieve high coverage and non-skewness while maintaining high accuracy as in
the result (III).

coverage and low skewness; coverage indicates the proportion of recommended
items among all items, and skewness indicates the degree of unfair frequencies
of recommended items. Fig. 1 demonstrates the coverage and non-skewness of
three different recommendation results. Note that all three results achieve high
accuracy but only the result (III) obtains high aggregate-level diversity by rec-
ommending every item twice. In other words, only the result (III) achieves a
high aggregate-level diversity, recommending each item by the same amount,
maximizing the potential revenue of sales platforms.

Matrix factorization (MF) [16] is the most widely used collaborative filtering
method due to its powerful scalability and flexibility [13, 19]. However, the tra-
ditional MF has a limitation in achieving high aggregate-level diversity on real-
world data because it is vulnerable to the skewness of data [23]. To overcome this
problem, previous works on aggregately diversified recommendation rerank the
recommendation lists or recommendation scores of a given MF model [1,5,14,17].
However, these approaches do not give the best diversity since they focus only
on post-processing the results of MF, which is already trained with skewed data.
Thus, it is desired to deal with aggregate-level diversity in the training process
of MF to achieve both high accuracy and diversity.

In this work, we propose Diversely Regularized Matrix Factorization (Di-
vMF), a novel approach for aggregately diversified recommendation. DivMF
regularizes a recommendation model in its training process so that more diverse
items appear uniformly on top-k recommendations. DivMF effectively maxi-
mizes the coverage and non-skewness of the recommendation by utilizing two
regularizers: coverage and skewness regularizers both of which consider the item
occurrences in top-k recommendation list. This allows the model to achieve opti-
mal aggregate-level diversity in the training process. We also propose a carefully
designed training algorithm that first focuses on accuracy and then on diversity,
and an unmasking mechanism for accurate and effective learning of DivMF.
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Our contributions are summarized as follows:
– Method. We propose DivMF, a method for aggregately diversified recom-

mendation. DivMF provides a new way to accurately and efficiently optimize
an MF model to achieve both high accuracy and aggregate-level diversity for
top-k recommendation.

– Theory. We theoretically prove that DivMF provides an optimal solution
to maximize the aggregate-level diversity in top-k recommendation.

– Experiments. Extensive experiments show that DivMF achieves up to
34.7% higher aggregate-level diversity in the similar level of accuracy, and
up to 27.6% higher accuracy in the similar level of aggregate-level diver-
sity in personalized top-k recommendation compared to the best competi-
tors, resulting in the state-of-the-art performance (see Fig. 2). The code and
datasets are available at https://github.com/snudatalab/DivMF.

2 Aggregately Diversified Recommendation

In recent years, diversification has attracted increasing attention in recom-
mendation research [11, 25]. We focus on increasing diversity at the aggregate-
level. Aggregate-level diversity considers the diversity in the overall recommen-
dation results of all users to improve the potential profit of service platforms [2].

Aggregately diversified recommendation aims to improve two aspects of rec-
ommendation: coverage and non-skewness. Coverage is the total number of unique
items recommended at least once. Non-skewness is the balance between frequen-
cies of recommended items. The details of their evaluation are as follows.
– Coverage. Coverage measures how many different items a recommendation

result contains from the whole items. It is defined as follows:

Coverage =
∣∣Uu∈UL(u)

∣∣/∣∣I∣∣, (1)

where k is the number of items recommended, and L(u) is the set of recom-
mended items for user u. U and I are sets of users and items, respectively.
Coverage ranges from 0 to 1, and a higher value represents better coverage.

– Gini index. Gini index measures the inequality between item frequencies
in recommendation results. It is defined as follows:

Gini =
1

|I| − 1

|I|∑
j=1

(2j − |I| − 1)pj , (2)

where pj is the j-th least value in { f(i)∑
j∈I f(j)

|i ∈ I} and f(i) indicates the

frequency of item i in the recommendation results for whole users. Gini index
ranges from 0 to 1, and a lower value represents better non-skewness.

3 Proposed Method

In this section, we propose DivMF (Diversely Regularized Matrix Factor-
ization), a matrix factorization method for accurate and aggregately diversified
recommendation.

https://github.com/snudatalab/DivMF
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3.1 Overview

We address the following challenges to achieve high performance of aggre-
gately diversified recommendation:
– Coverage maximization. Matrix factorization (MF) is prone to obtain-

ing top-k recommendations with low coverage where only a few items are
recommended. How can we train MF to recommend every item at least once?

– Non-skewed frequency. MF is liable to achieving skewed top-k recom-
mendations. How can we train MF to recommend all items with similar
frequencies?

– Non-trivial optimization. It is difficult to simultaneously handle both
accuracy and diversity which are disparate criteria. How can we train MF
to optimize both the accuracy and diversity?
The main ideas to address the challenges are as follows:

– Coverage regularizer. The coverage regularizer evenly balances the rec-
ommendation scores at the item-level, enabling us to recommend each item
to at least one user.

– Skewness regularizer. The skewness regularizer equalizes all the recom-
mendation scores to assist the coverage regularizer to make the model rec-
ommends all items by the same numbers of times.

– Careful training. We carefully design a training algorithm which first fo-
cuses on accuracy and then on diversity. This allows a model to be trained
stably and efficiently, despite the conflict between accuracy and diversity.
We also propose an unmasking mechanism for effective training.

3.2 Definition of Diversity Regularizer

Coverage Regularizer We design a coverage regularizer to maximize the cov-
erage. Focusing on the recommended items in the score matrix, we mask the
scores of non-recommended items for each user to zero. After masking, a column
filled with zeros corresponds to an item that is not recommended to any user.
Hence, the coverage regularizer is required to distribute the remaining values in
the masked matrix among all columns. In the following, we show how we con-
struct the coverage regularizer from the fact that the equality condition of the
arithmetic-geometric mean inequality states the equal distribution of values.

Assume that R̂ = [r̂ui] ∈ R|U|×|I| is the recommendation score matrix where
r̂ui is a dot product between user u’s embedding and item i’s embedding. For u ∈
U, consider S = [sui] where Su = softmax(R̂u), which means (su1, ..., su|I|) =
softmax(r̂u1, ..., r̂u|I|). Then, we keep top-k elements of each row in S while
masking others to zero to construct a matrix T = [tui]. Note that the nonzero
tui implies that the top-k recommendation list of user u includes item i. Then,
the coverage regularizer Regcov is defined as follows:

Regcov = − log

(∏
i∈I

∑
u∈U

tui

)
= −

∑
i∈I

log

(∑
u∈U

tui

)
.

This regularizer is useful to maximize coverage, as shown in Theorem 1.
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Theorem 1. If Regcov is minimized, then coverage is maximized.

Proof.
∑

u∈U tui ≤
∑

u∈U sui for all i ∈ I since 0 ≤ tui ≤ sui for all u ∈ U and
i ∈ I. Thus, using the fact that

∑
i∈I sui = 1 for all u ∈ U,∑

i∈I

∑
u∈U

tui ≤
∑
i∈I

∑
u∈U

sui =
∑
u∈U

∑
i∈I

sui = |U|.

We thus obtain

exp(−Regcov) =
∏
i∈I

∑
u∈U

tui ≤ (
|U|
|I| )

|I|, (3)

from the arithmetic geometric mean inequality. Equality holds if and only if for
all i,

∑
u∈U tui = |U|/|I|. In this case, every column of T has at least one nonzero

element. Thus, every item is included in at least one user’s top-k recommendation
list, so the coverage is 1. ut

Skewness Regularizer Although the condition to minimize the coverage reg-
ularizer guarantees the coverage of the model to be 1, this does not guarantee
the non-skewness to be maximized. For example, assume that (t11, t21, ..., t|U|1) =

( 1
2 ,

1
2 , 0, 0, ..., 0) and (t12, t22, ..., t|U|2) = (1

3 ,
1
3 ,

1
3 , 0, 0, ..., 0). In this case,

∑
u∈U tu1 =∑

u∈U tu2 but the item 1 is recommended twice while the item 2 is recommended
three times. In other words, it is possible to meet the equality condition of Equa-
tion (3) even if the non-skewness of the model is not maximized, since the value
of each nonzero element could vary.

To address this problem, we propose a skewness regularizer. Since the problem
occurs because of the variance of nonzero elements, we design the skewness
regularizer to equalize values of nonzero tui. After equalization,

∑
u∈U tui and∑

u∈U tuj would be equal if and only if items i and j are recommended for the
same number of times, so the coverage regularizer would also optimize the non-
skewness in recommendation lists.

Let T′ = [t′ui] be a row-normalized T which means t′ui = tui/
∑

j∈I tuj . The
skewness regularizer Regskew is defined as follows:

Regskew =
∑
u∈U

∑
i∈I

t′ui log t′ui = −
∑
u∈U

entropy(Tu).

Since each entropy function is maximized if and only if nonzero elements of each
Tu are equal, Regskew is minimized if and only if all nonzero elements of each
row of T are equal.

Diversity Loss Function Finally, we define the loss function for aggregate-
level diversity in DivMF as Ldiv(R̂) = Regcov + Regskew. This loss function
satisfies the Theorem 2.

Theorem 2. If Ldiv(R̂) is minimized, then coverage and non-skewness are both
maximized.
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Proof. The condition to minimize Regcov is
∑

u∈U tui = |U|/|I| for every item
i, and the condition to minimize Regskew is that nonzero elements of Tu are
equal for every user u. Thus, the condition to minimize Regcov + Regskew is
that each row of T contains k nonzero elements with value of 1

k , and each

column of T contains |U|k|I| nonzero elements. In this case, every item appears in

the recommendation results with equal frequency. Therefore, both coverage and
non-skewness are maximized if Ldiv(R̂) is minimized. ut

3.3 Model Training

Objective Function and Training Algorithm In order to maximize accu-
racy and aggregate-level diversity of recommendation results simultaneously, we
propose the following objective function.

Ltotal(θ; R) = Lacc(R̂) + Ldiv(R̂),

where Ltotal(·) is the total loss to be minimized, Lacc(·) and Ldiv(·) are losses for
accuracy and aggregate-level diversity, respectively, R is the observed interaction
matrix, R̂ is the recommendation score matrix, and θ is the parameter to be
optimized. We use BPR loss function as an accuracy loss since it is known to
show the best performance in top-k recommendation [21]. Thus,

Lacc(R̂) =
∑

u∈U,(i,j)∈Z(u)

log
(

1 + exp
(
R̂uj − R̂ui

))
,

where Z(u) = {(i, j)|Rui = 1,Ruj = 0}.
A challenge in minimizing the loss Ltotal is that directly minimizing Ltotal

or optimizing Lacc and Ldiv in an iterative, alternating fashion leads to poor
performance (see Section 4.4). We presume that this problem happens because
the gradients of accuracy loss and diversity regularizer cancel each other out.
The accuracy loss tries to increase the gap between recommendation scores of
high scored items and low scored items, while the diversity regularizer tries to
decrease the gap. Thus, the net gradient is not large enough to prevent the model
from being trapped in bad local optima.

Our idea to avoid this issue is to train DivMF model with only accuracy loss
Lacc until the accuracy converges, and then train the model with the diversity
regularizer Ldiv. In this way, the gradients of accuracy loss and diversity regu-
larizer do not cancel each other out since the optimizer minimizes only one loss
at a time. To adjust the trade-off between accuracy and diversity, we control the
number nep of epochs to optimize Ldiv, since the model achieves higher diversity
and lower accuracy as we increase nep.

Unmasking Mechanism Gradients from Ldiv(R̂) do not flow directly into
unrecommended items since T masks |I|− k items with the lowest scores in S of
each user. Thus, a straightforward gradient descent with Ldiv(R̂) has limitation
to find new items for diversity, optimizing only k scores of initially selected items.
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We propose an unmasking mechanism to overcome this problem. The idea is
to keep additional unmasked elements in each row of S when building T. In this
way, rarely recommended items have an opportunity to be unmasked. DivMF
finds new rarely recommended items by a gradient descent with this unmasking
mechanism. DivMF unmasks a fixed number of the highest-scored items other
than already recommended items during each iteration of training, which is the
best unmasking scheme as experimentally shown in Section 4.5.

4 Experiments

We perform experiments to answer the following questions:
Q1. Diversity and accuracy (Section 4.2). Does DivMF show high aggregate-

level diversity without sacrificing the accuracy of recommendation?
Q2. Regularizer (Section 4.3). How do the diversity regularization terms

Regcov and Regskew of DivMF help improve the diversity of DivMF?
Q3. Training algorithm (Section 4.4). Does the training algorithm of DivMF

prevent the training from being trapped in bad local optima?
Q4. Unmasking mechanism (Section 4.5). How does the unmasking mech-

anism of DivMF affect the performance?

4.1 Experimental Setup

We introduce our experimental setup including datasets, evaluation protocol,
baseline approaches, evaluation metrics, and the training process.

Datasets. We use five real-world rating datasets as summarized in Table 1.
We preprocess extremely sparse datasets (Yelp, Gowalla, and Epinions) as core-
15 following a previous work [17]. In other words, we make the datasets in-
clude only users and items that have at least 15 interactions. MovieLens-10M
and MovieLens-1M datasets [9] contain movie ratings constructed by the Grou-
pLens research group. Yelp-15 contains 15-core restaurant rating data collected
from a restaurant review site with the same name. Epinions-15 [18] contains 15-
core rating data of products constructed from a general consumer review site.
Gowalla-15 [4] contains 15-core data of a friendship network of users constructed
from a location-based social networking website. We remove the rating scores of
datasets and obtain user-item interaction data which indicate whether the user
has rated the item or not.

Evaluation Protocol. We employ leave-one-out protocol where one of each
user’s interaction instances is removed for testing. If the dataset includes times-
tamp, the latest instance of each user is removed, and if not, randomly sampled
instances are removed.

Baselines. We compare DivMF with existing methods for aggregately di-
versified recommendation.
– Kwon. Kwon et al. [1] adjust recommendation scores of items based on their

frequencies to achieve aggregate level diversity.
– Karakaya. Karakaya et al. [14] replace items on recommendation lists with

infrequently recommended similar items.
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Table 1. Summary of datasets.

Dataset Users Items Interactions Density(%)

Yelp-15 1 69,853 43,671 2,807,606 0.0920
Gowalla-15 2 34,688 63,729 2,438,708 0.1111
Epinions-15 3 5,531 4,286 186,995 0.7888
MovieLens-10M 4 69,878 10,677 10,000,054 1.3403
MovieLens-1M 5 6,040 3,706 1,000,209 4.4684

1 https://www.yelp.com/dataset
2 https://snap.stanford.edu/data/loc-gowalla.html
3 http://www.trustlet.org/downloaded_epinions.html
4 https://grouplens.org/datasets/movielens/10m/
5 https://grouplens.org/datasets/movielens/1m/

– Fairmatch. Fairmatch [17] utilizes a maximum flow problem to find impor-
tant items.

– UImatch. UImatch [5] assigns recommendation capacity to each item and
greedily constructs recommendation lists.
Evaluation metrics. We evaluate the performance of the methods in two

categories: accuracy and diversity. Accuracy metric checks whether a model rec-
ommends correct items or not, and diversity metrics evaluate aggregated diver-
sity of the recommendation. For each experiment, a list of recommendation to
each user is created and evaluated by the following metrics.
– Accuracy.
• nDCG@k. nDCG@k measures the overall accuracy of the top-k recom-

mendation. It ranges from 0 to 1, where the value 0 indicates the lowest
accuracy and the value 1 represents the highest accuracy.

– Diversity.
• Coverage@k. The coverage of the top-k recommendation.
• Negative Gini index@k. The negative value of the Gini index of the

top-k recommendation.
Training Details. We first train the MF model until convergence.Then,

we apply each baseline and DivMF on the trained MF model. We min-max
normalize the recommendation scores for Kwon and Karakaya since they need
prediction ratings on a finite scale. We use reverse prediction scheme [1] and set
TH = 0.8, TR = 0.9 for Kwon. We vary t in {30, 50, 75, 100} and set α = 0.5
for FairMatch. We unmask 50 items in Epinions-15 dataset, 100 items in ML-
1M/ML-10M datasets, and 500 items in Gowalla-15/Yelp-15 datasets to apply
DivMF. All the models are trained with Adam optimizer with learning rate
0.001, l2 regularization coefficient 0.0001, β1 = 0.9, and β2 = 0.999. We vary k
in {5, 10} for all datasets.

4.2 Diversity and Accuracy (Q1)

We show the change of accuracies and diversities of DivMF and the competi-
tors on five real-world datasets in Fig. 2. For each method, we adjust hyperpa-
rameters to mark points on the plot and connect them to obtain the trade-off
curve. We mark the point with the highest accuracy and the highest diversity

https://www.yelp.com/dataset
https://snap.stanford.edu/data/loc-gowalla.html
http://www.trustlet.org/downloaded_epinions.html
https://grouplens.org/datasets/movielens/10m/
https://grouplens.org/datasets/movielens/1m/
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Fig. 2. Accuracy-diversity trade-off curves of top-5 and top-10 recommendations on
five real-world datasets. DivMF achieves the highest aggregate-level diversity while
sacrificing minimal accuracy.

in each plot as the ‘best’ point of the plot. Note that DivMF achieves the high-
est diversity while sacrificing the least accuracy compared to other baselines
considering the balance of coverage and non-skewness.

4.3 Regularizer (Q2)

To verify the impact of coverage regularizer and skewness regularizer, we
examine how much the diversity of top-5 recommendation results improves. We
compare DivMF, DivMF-Regskew, and DivMF-Regcov on ML-1M and Gowalla-
15 datasets; DivMF-Regskew and DivMF-Regcov are DivMF without the skew-
ness regularizer and the coverage regularizer, respectively. For the fair compari-
son, we train each model until the nDCG is dropped by 5% compared to MF.

Fig. 3 shows that DivMF increases both the coverage and the non-skewness
the most, compared to other models. This verifies that both regularizers con-
tribute to improving the aggregate-level diversity.

4.4 Training Algorithm (Q3)

To prove the effectiveness of our training algorithm, we compare top-5 recom-
mendation performances of DivMF and DivMF alter on ML-1M dataset during
training. Instead of sequentially optimizing accuracy loss and diversity loss as in
DivMF, DivMF alter alternately optimizes two losses.
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Fig. 3. Diversities of DivMF and its variants on ML-1M dataset compared to MF
when nDCG is decreased by 5%. DivMF improves diversity the most.

Fig. 4 shows that DivMF significantly increases the diversity compared to
DivMF alter while sacrificing a similar amount of accuracy. This proves that our
training algorithm prevents the model from being trapped in bad local optima.

Similar

accuracy
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increased
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Negative Gini
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Fig. 4. Change of nDCG and Gini index of DivMF and DivMF alter during training
on ML-1M dataset. DivMF improves diversity better by avoiding bad local optima.

4.5 Unmasking Mechanism (Q4)

To find the best unmasking policy for DivMF, we compare three policies: No
unmasking, Top, and Random on ML-1M dataset. In addition to top-k items,
Top unmasks n items with the highest prediction scores while Random unmasks
random n items. We set n = 100 since it shows the best performance in both
schemes. No unmasking does not unmask any item other than top-k items.

Fig. 5 shows performances of the three policies in top-5 recommendation. We
have two observations. First, No unmasking fails to increase aggregate-level di-
versity, while Top and Random further improve both coverage and non-skewness.
Second, Top performs better than Random since it achieves higher coverage while
non-skewnesses of the two schemes are comparable in the case. In summary, Top
is the best unmasking scheme to achieve high aggregate-level diversity.

5 Related Works

Individually diversified recommendation. Individually diversified rec-
ommendation recommends diversified items to each user [25]. Maximizing in-
dividual diversity can maximize item novelty in each user’s view, but it may
recommend already known items in overall recommendation list for all users.
Thus, maximizing individual-level diversity does not guarantee the improvement
in aggregate-level diversity [1].

Fair recommendation. Fair recommendation aims to design an algorithm
that makes fair predictions devoid of discrimination [8]. Fairness in recommen-
dation could be observed between different item groups [6] or between distinct
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Fig. 5. Accuracy-coverage (left) and accuracy-negative Gini index (right) trade-off
curves of different unmasking policies. ‘Top’ shows the best overall performance.

items with similar attributes [20]. Aggregately diversified recommendation does
not require any group or attribute of items, which is the main difference com-
pared to the fair recommendation.

Popularity debiased recommendation. Popularity debiased recommen-
dation aims to improve the quality of recommendation for long-tail items. Tra-
ditional recommender systems tend to show poor accuracy for infrequently ap-
pearing items because of the skewness in dataset [22]. There are researches to
eliminate the popularity bias to achieve high accuracy in recommending long-tail
items as well as popular items [7, 24]. Aggregately diversified recommendation
focuses on increasing the frequencies of long tail items instead of their accuracies,
which is the main difference from popularity debiased recommendation.

6 Conclusion

We propose DivMF, a matrix factorization method which maximizes aggregate-
level diversity while sacrificing minimal accuracy in top-k recommendation. Di-
vMF exploits coverage regularizer and skewness regularizer for MF via a care-
fully designed training algorithm. Experiments on five real-world datasets show
that DivMF achieves the state-of-the-art performance in aggregately diversified
recommendation, outperforming the best competitor with up to 34.7% reduced
Gini index in the similar level of accuracy and up to 27.6% higher nDCG in
the similar level of diversity. Future works include extending DivMF for other
recommendation models beyond the matrix factorization.

Acknowledgments

This work was supported by Jung-Hun Foundation. The Institute of Engineering

Research and ICT at Seoul National University provided research facilities for this

work. U Kang is the corresponding author.

References

1. Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using
ranking-based techniques. IEEE TKDE (2012)

2. Brynjolfsson, E., Hu, Y., Simester, D.: Goodbye pareto principle, hello long tail:
The effect of search costs on the concentration of product sales. Management Sci-
ence (2011)



12 Kim J. et al.

3. Brynjolfsson, E., Hu, Y., Smith, M.D.: Consumer surplus in the digital economy:
Estimating the value of increased product variety at online booksellers. Manage-
ment science (2003)

4. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: User movement in
location-based social networks. In: KDD. ACM (2011)

5. Dong, Q., Xie, S.S., Li, W.J.: User-item matching for recommendation fairness.
IEEE Access (2021)

6. Ekstrand, M.D., Kluver, D.: Exploring author gender in book rating and recom-
mendation. UMUAI (2021)

7. Ferraro, A.: Music cold-start and long-tail recommendation: bias in deep represen-
tations. In: RecSys (2019)

8. Gajane, P.: On formalizing fairness in prediction with machine learning. ArXiv
(2017)

9. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. TiiS
(2015)

10. Jeon, H., Jang, J.G., Kim, T., Kang, U.: Accurate bundle matching and generation
via multitask learning with partially shared parameters. Plos one (2023)

11. Jeon, H., Kim, J., Lee, J., Lee, J., Kang, U.: Aggregately diversified bundle
recommendation via popularity debiasing and configuration-aware reranking. In:
PAKDD (2023)

12. Jeon, H., Kim, J., Yoon, H., Lee, J., Kang, U.: Accurate action recommendation
for smart home via two-level encoders and commonsense knowledge. In: CIKM.
ACM (2022)

13. Jeon, H., Koo, B., Kang, U.: Data context adaptation for accurate recommendation
with additional information. In: BigData (2019)

14. Karakaya, M., Aytekin, T.: Effective methods for increasing aggregate diversity in
recommender systems. KAIS (2018)

15. Koo, B., Jeon, H., Kang, U.: Accurate news recommendation coalescing personal
and global temporal preferences. In: PAKDD (2020)

16. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer (2009)

17. Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., Burke, R.: Fair-
match: A graph-based approach for improving aggregate diversity in recommender
systems. In: UMAP. ACM (2020)

18. Massa, P., Souren, K., Salvetti, M., Tomasoni, D.: Trustlet, open research on trust
metrics. SCPE (2008)

19. Park, H., Jung, J., Kang, U.: A comparative study of matrix factorization and
random walk with restart in recommender systems. In: BigData (2017)

20. Patro, G.K., Biswas, A., Ganguly, N., Gummadi, K.P., Chakraborty, A.: Fairrec:
Two-sided fairness for personalized recommendations in two-sided platforms. In:
WebConf (2020)

21. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian
personalized ranking from implicit feedback. In: UAI. AUAI Press (2009)

22. Steck, H.: Item popularity and recommendation accuracy. In: RecSys (2011)
23. Wang, H., Ruan, B.: Matrec: Matrix factorization for highly skewed dataset. In:

BigData (2020)
24. Wei, T., Feng, F., Chen, J., Wu, Z., Yi, J., He, X.: Model-agnostic counterfactual

reasoning for eliminating popularity bias in recommender system. In: KDD (2021)
25. Wu, Q., Liu, Y., Miao, C., Zhao, Y., Guan, L., Tang, H.: Recent advances in

diversified recommendation (2019)


	Diversely Regularized Matrix Factorization for Accurate and Aggregately Diversified Recommendation 

