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Fully Scalable Methods for
Distributed Tensor Factorization
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Abstract—Given a high-order large-scale tensor, how can we decompose it into latent factors? Can we process it on commodity
computers with limited memory? These questions are closely related to recommender systems, which have modeled rating data
not as a matrix but as a tensor to utilize contextual information such as time and location. This increase in the order requires
tensor factorization methods scalable with both the order and size of a tensor. In this paper, we propose two distributed tensor
factorization methods, CDTF and SALS. Both methods are scalable with all aspects of data and show a trade-off between
convergence speed and memory requirements. CDTF, based on coordinate descent, updates one parameter at a time, while
SALS generalizes on the number of parameters updated at a time. In our experiments, only our methods factorized a 5-order
tensor with 1 billion observable entries, 10M mode length, and 1K rank, while all other state-of-the-art methods failed. Moreover,
our methods required several orders of magnitude less memory than their competitors. We implemented our methods on
MAPREDUCE with two widely-applicable optimization techniques: local disk caching and greedy row assignment. They speeded
up our methods up to 98.2x and also the competitors up to 5.9x.

Index Terms—Tensor Factorization, Tensor Completion, Distributed Computing, MapReduce, Hadoop

1 INTRODUCTION

ECOMMENDATION problems can be viewed as
Rcompleting a partially observable user-item ma-
trix whose entries are ratings. Matrix factorization
(MF), which decomposes the input matrix into a user
factor matrix and an item factor matrix such that their
product approximates the input matrix, is one of the
most widely-used methods for matrix completion [1],
[2], [3]. To handle web-scale data, efforts were made
to find distributed methods for MF [3], [4], [5].

On the other hand, there have been attempts to
improve the accuracy of recommendation by using
additional contextual information such as time and
location. A straightforward way to utilize such extra
factors is to model rating data as a partially observable
tensor where additional modes correspond to the
extra factors. Similar to the matrix completion, tensor
factorization (TF), which decomposes the input tensor
into multiple factor matrices and a core tensor, has
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TABLE 1: Summary of scalability results. The factors which
each method is scalable with are checked. CDTF and SALS
are the only methods scalable with all the factors.

CDTEF, SALS ALS PSGD  FLEXIFACT
(Proposed) [14], [3] [10] [11]
Order v v v
Observations v v v v
Mode Length v v
Rank v v
Machines v v

been used for tensor completion [6], [7], [8], [9].

As more extra information becomes available, a
necessity for TF algorithms scalable with the order as
well as the number of entries in a tensor has arisen.
A promising way to find such algorithms is to extend
distributed MF algorithms to higher orders. However,
the extensions of existing methods [3] [10] [11] have
limited scalability, as we explain in Section 2.3.

In this paper, we propose Coordinate Descent for
Tensor Factorization (CDTF) and Subset Alternating
Least Square (SALS), distributed tensor factorization
methods scalable with all aspects of data. CDTF
applies coordinate descent, which updates one param-
eter at a time, to TF. SALS, which includes CDTF as a
special case, generalizes on the number of parameters
updated at a time. These two methods have distinct
advantages: CDTF is more memory efficient and ap-
plicable to more loss functions, while SALS converges
faster to a better solution.

Our methods can be used in any applications han-
dling large-scale partially observable tensors, includ-
ing social network analysis [12] and Web search [13].

The main contributions of our study are as follows:
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Fig. 1: Scalability comparison of tensor factorization methods on the Hadoop cluster. 0.0.m. : out of memory, o.o0.t. : out
of time (takes more than a week). Only our proposed CDTF and SALS scaled up to the largest scale 54 (details are in
Table 4), and they showed a trade-off: CDTF was more memory-efficient, and SALS ran faster. The scalability of ALS,
PSGD, and FLEXIFACT with five reducers was limited due to their high memory requirements. In particular, ALS and
PSGD required 186GB for S4, which is 493 of 387MB that CDTF required. The scalability of FLEXIFACT with 40 reducers
was limited because of its rapidly increasing communication cost.

o Algorithm. We propose CDTF and SALS, scal-
able tensor factorization algorithms. Their dis-
tributed versions are the only methods scalable
with all the following factors: the order and size
of data, the number of parameters, and the num-
ber of machines (see Table 1).

o Analysis. We analyze our methods and their
competitors in the general N-order setting in
the following aspects: computational complex-
ity, communication complexity, memory require-
ments, and convergence speed (see Table 3).

o Optimization. We implement our methods on
MAPREDUCE with two widely-applicable op-
timization techniques: local disk caching and
greedy row assignment. They speeded up not
only our methods (up to 98.2x) but also the
competitors (up to 5.9x) (see Figure 10).

« Experiment. We empirically confirm the supe-
rior scalability of our methods and their several
orders of magnitude less memory requirements
than the competitors. Only our methods success-
fully analyzed a 5-order tensor with 1 billion
observable entries, 10M mode length, and 1K
rank, while all others failed (see Figure 1).

Our open-sourced code and the data we used are
available at http://www.cs.cmu.edu/~kijungs/codes/
cdtf. In Section 2, we present preliminaries for tensor
factorization. In Section 3, we describe our proposed
CDTF and SALS methods. In Section 4, we present
the optimization techniques used in our implemen-
tations on MAPREDUCE. In Section 5, we provide
experimental results. After reviewing related work in
Section 6, we conclude in Section 7.

2 NOTATIONS AND PRELIMINARIES

In this section, we describe notations (summarized in
Table 2); and the preliminaries of tensor factorization
and its distributed algorithms.

2.1 Tensor and the Notations

Tensors are multi-dimensional arrays that generalize
vectors (1-order tensors) and matrices (2-order ten-
sors) to higher orders. Like rows and columns in

TABLE 2: Table of symbols.

Symbol  Definition
X input tensor (€ RI1x12--xIn)
Tiy iy (%1, ..., in)th entry of X
N order of X
I, length of the nth mode of X
A nth factor matrix (€ RInxK)
ag.:?c (in, k)th entry of A(™)
rank of X
Q set of indices of observable entries of X
QE:> subset of Q whose nth mode’s index is i,
mSn set of rows of A(™) assigned to machine m
R residual tensor (€ RI1x12--xIn)
Tir.in (%1, ..., in)th entry of R
M number of machines (reducers on MAPREDUCE)
Tout number of outer iterations
Tin number of inner iterations
A(=Xa) regularization parameter for factor matrices
Ab regularization parameter for bias terms
C number of parameters updated at a time
1o initial learning rate

a matrix, an N-order tensor has N modes, whose
lengths are denoted by I; through Iy, respectively.
We denote tensors with variable order N by boldface
Euler script letters (e.g., X). Matrices and vectors are
denoted by boldface capitals (e.g., A) and boldface
lowercases (e.g., a), respectively. We denote the entry
of a tensor by the symbolic name of the tensor with its
indices in subscript. For example, the (i1,72)th entry
of A is denoted by a;,;,, and the (i1, ..., ix)th entry of
X is denoted by z;, ;,. The i;th row of A is denoted
by a;, ., and the isth column of A is denoted by a.;,.

2.2 Tensor Factorization

Our definition of tensor factorization is based on
PARAFAC Decomposition [15], the most popular de-
composition method. We use L, regularization, whose
weighted form has been used in many recommender
systems [1], [2], [3]. Other decomposition and regu-
larization methods are also considered in Section 3.5.

Definition 1 (Partially Observable Tensor Factorization):
Given an N-order tensor X(€ RI*Iz--xIN) with
observable entries {z;,  iy|(i1,..,in) € Q}, the
rank K factorization of X is to find factor matrices
{A(M € RI=*K|1 < < N} that minimize (1).


http://www.cs.cmu.edu/~kijungs/codes/cdtf
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TABLE 3: Summary of distributed tensor factorization algorithms for partially observable tensors. The performance
bottlenecks that prevent each algorithm from handling web-scale data are marked by asterisks (*). Only our proposed
SALS and CDTF methods have no bottleneck. Communication complexity is measured by the number of parameters that
each machine exchanges with the others. For simplicity, we assume that workload of each algorithm is equally distributed
across machines, that the length of every mode is equal to I, and that T3, of SALS and CDTF is set to one.

Algorithm Computational complexity Communication complexity Memory Convergence speed
(per iteration) (per iteration) requirements

CDTF O(|QIN2K/M) O(NIK) O(NT) Fast

SALS O(QINK(N + C)/M + NIKC? /M) O(NIK) O(NIC) Fastest

ALS [14], [3] O(QINK(N + K)/M + NIK3/M)* O(NIK) O(NIK)* Fastest

PSGD [10] O(|QINK/M) O(NIK) O(NIK)* Slow*
FLEXIFACT [11] O(|Q|NK/M) O(MN—2NIK)* O(NIK/M) Fast
AW, ANy = c{™ is a length K vector whose entries are

K N 2 N )
> ( ZH ‘”L) +A3 1AM
(31,5.ees iN)EQ k=1n=1 et

@
The loss function (1) depends only on the observable
entries. Each factor matrix A(™) corresponds to the la-
tent feature vectors of the objects that the nth mode of
X represents, and Y1 | []_, agf,)c corresponds to the
interaction among the features. Note that this problem
is non-identifiable in that (1) may have many global
minima corresponding to different factor matrices.

2.3 Distributed Methods for Tensor Factorization

In this section, we explain how widely-used dis-
tributed optimization methods are applied to partially
observable tensor factorization (see Section 6 for dis-
tributed methods applicable only to fully observable
tensors). Their performances are summarized in Ta-
ble 3. Note that only our proposed CDTF and SALS
methods, which are described in Sections 3 and 4,
have no bottleneck in any aspects. The preliminary
version of CDTF and SALS appeared in [16].

2.3.1 ALS: Alternating Least Square

ALS is a widely-used technique for fully observ-
able tensor factorization [14] and was used also for
partially observable tensors [17]. However, previous
ALS approaches for partially observable tensors have
scalability issues since they repeatedly estimate all
unobservable entries, which can be far more than
observed entries depending on data. Fortunately, a
recent ALS approach for partially observable matrices
[3] is extensible for tensors, and is parallelizable. This

extended method is explained in this section.

ALS updates factor matrices one by one while
keeping all other matrices fixed. When all other fac-
tor matrices are fixed, minimizing (1) is analytically
solvable in terms of the updated matrix. We update
each factor matrix A(™ row by row, by the following
rule, exploiting the independence between rows:

[a E:;, ,aEZ}{]T ~ argmin LAWY, .. A™)
@) el T
inp 1’ an
= (B + L)'l @
where BE:’) is a K by K matrix whose entries are
l l
(B£7L>)k1k2 = Z (H az(-ll-l H GEILQ),VM, ka,

’iN)EQ(-n) l#n l#n

(l)
Ill AN H az,lc

l#n

(c ("))k

and Iy is the K by K identity matrix. Q ) denotes
the subset of Q2 whose nth mode’s 1ndex is ipn. This
update rule is a special case of (9), which is proved
in Theorem 1 in Section 3.3.1, since ALS is a special
case of SALS (see Section 3.2).

Updating a row, ag . for example, using (2)
takes O(|Q |K(N + K) + K‘g), which consists of
o(|©; n)|NK) to calculate [, ,, a i )1 through [, a ; o

for all the entries in QE") (\Q )|K?) to build B
O(|Q§”)|K) to build c§” , and O(K?’) to invert BE").
Thus, updating every row of every factor matrix
once, which corresponds to a full ALS iteration, takes
O(QINK(N + K) + K3 )| I,).

In distributed environments, updating each factor
matrix can be parallelized without affecting the cor-
rectness of ALS by distributing the rows of the factor
matrix across machines and updating them simulta-
neously. The parameters updated by each machine
are broadcast to all other machines. The number of
parameters each machine exchanges with the others is
O(K,) for each factor matrix A(™) and O(K Zg:l I,)
per iteration. The memory requirements of ALS, how-
ever, cannot be distributed. Since the update rule (2)
possibly depends on any entry of any fixed factor
matrix, every machine is required to load all the
fixed matrices into its memory. This high memory re-
quirements of ALS, O(K Y2, I,,) memory space per
machine, have been noted as a scalablhty bottleneck
even in matrix factorization [4], [5].

2.3.2 PSGD: Parallelized Stochastic Gradient Descent

PSGD [10] is a distributed algorithm based on stochas-
tic gradient descent (SGD). In PSGD, the observable
entries of X are randomly divided into M machines
which run SGD independently using the assigned
entries. The updated parameters are averaged after
each iteration. For each observable entry z;, .y, agf,)c
for all n and k, whose number is N K, are updated at

once by the following rule :

(n)
al™ ™ 9 Ay i — Ty Ha<l) 3)
ink 7 ik T 21 0| iy L ik

where 7, iy = Ti iy — Zé 1Hl lagl It takes
O(NK) to calculate r;, ,, and [/, %;c for all k.
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Once they are calculated, since [lizna EZZL can be

calculated as (Hz 1 (l)) /al i» calculating (3) takes
O(1), and thus updating all the N K parameters takes
O(NK). If we assume that X entries are equally
distributed across machines, the computational com-
plexity per iteration is O(|Q|NK/M). Averaging pa-
rameters can also be distributed, and in the process,

O(K Zn 1 In) parameters are exchanged by each ma-
chine. Like ALS, the memory requirements of PSGD
cannot be distributed, i.e., all the machines are re-
quired to load all the factor matrices into their mem-
ory. Thus, O(K S_N_ I,,) memory space is required
per machine. Moreover, PSGD tends to converge
slowly due to the non-identifiability of (1).

2.3.3 FlexiFaCT: Flexible Factorization of Coupled Tensors

FLEXIFACT [11] is another SGD-based algorithm that
remedies the high memory requirements and slow
convergence of PSGD. FLEXIFACT divides X into M~
blocks. Each M disjoint blocks not sharing common
fibers (i.e.,, rows in a general nth mode) compose
a stratum. FLEXIFACT processes one stratum of X
at a time by distributing the M blocks composing
a stratum across machines and processing them in-
dependently. The update rule is the same as (3),
and the computational complexity per iteration is
O(|QINK/M), as in PSGD. However, contrary to
PSGD, averaging is unnecessary since a set of param-
eters updated by each machine is disjoint with the
sets updated by the others. In addition, the memory
requirements of FLEXIFACT are distributed among
the machines. Each machine only needs to load the
parameters related to the block it processes, whose
number is (K ZT]:/:I I,,)/M, into its memory at a time.
However, FLEXIFACT suffers from high communica-
tion cost. After processing one stratum, each machine
sends the updated parameters to the machine which
updates them using the next stratum. Each machine
exchanges at most (K ZNZQ I,)/M parameters per
stratum and MYN"2K Y ", I, per iteration where
MN-1 is the number of strata. Thus, the communi-
cation cost increases exponentially with the order of
X and polynomially with the number of machines.

3 PROPOSED METHODS

In this section, we propose two scalable tensor fac-
torization algorithms: CDTF (Section 3.1) and SALS
(Section 3.2). After analyzing their theoretical proper-
ties (Section 3.3), we discuss how these methods are
parallelized in distributed environments (Section 3.4)
and applied to diverse loss functions (Section 3.5).

3.1 Coordinate Descent for Tensor Factorization

3.1.1 Update Rule

Coordinate descent for tensor factorization (CDTF) is
a tensor factorization algorithm based on coordinate

Algorithm 1: Serial version of CDTF

Input : X, K, A
Output: A(™) for all n

1 initialize R and A for all n
2 for outer iter = 1..T,y; do
fork=1.K do
compute R using (5)
for inner iter = 1..T;,, do
forn =1..N do
for i, = 1..1,, do
L L update aE:L

® N v R W

using (6)

9 update R using (7)

descent and extends CCD++ [5] to higher orders. Co-
ordinate descent (CD) is a widely-used optimization
technique for minimizing a multivariate function. CD
igms with an initial guess of parameters (i.e., vari-
s) and iterates over I}iarame’cers for updatmg each
parameter at a time. When CD updates a parameter,
it minimizes the loss function with respect to the
updated parameter, while fixing all other parameters
at their current values. This one-dimensional mini-
mization problem is usually solved easier than the
original problem. CD usually iterates over parameters
multiple times, decreasing the loss function mono-
tonically until convergence. CDTF applies coordinate
descent to tensor factorization, whose parameters are
the entries of factor matrices (i.e., A() through A(N))
and loss function is (1). CDTF updates an entry of a
factor matrix at a time by assigning the optimal value
minimizing (1). Equation (1) becomes a quadratic
q}lllatlon in terms of the updated parameter when all

er parameters are fixed. This leads to the following
update rule for each parameter aEZI)C:
agf) — arg min L(A® ..., AM)
a{™,

l l
e (e o) o)
einN)EQST

= - (4)

A+ Z(zl ..... zN)EQ(") ]'_'[l#"( 5;;)2
where 7, iy = Ziy iy — Zé 1 Hl 1 ”S Computing
(4) from the beginning takes O(\Q \NK ), but we

can reduce it to O(|QE:) |N) by maintaining a residual
tensor R up-to-date instead of calculating its entries
every time. To maintain R up-to-date, after updating
each parameter ag:?« we update the entries of R in

{riy in (i1, ..in) € Q(n)} by the following rule:

n)yold _ (n l
Tiy..in — Tiq.. AN + (( ( )) En;c) Hl;ﬁ 513@’

(n) )old

where (a; ;) is the old parameter value.

3.1.2 Update Sequence

Column-wise Order. The update sequence of param-
eters is another important part of coordinate descent.

CDTF adopts the following column-wise order:

(1) (1) (N) (N) (1) (1) (N) (N)
((“11- a111) gy a1N1)) ((%K“- IlK)"'(alK I INY

1 N 1 N
all ) a2 )

where we update the entries in, for example, the kth
column of a factor matrix and then move on to the
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kth column of the next factor matrix. After the kth
columns of all the factor matrices are updated, the
(k + 1)th columns of the matrices are updated.

In this column-wise order, we can reduce the num-
ber of R updates. Updating, for example, the kth
columns of all the factor matrices is equivalent to the
rank-one factorization of tensor R whose (11, .y in)th
entry is 7, in = Tiy..in — Zs kHl 1 a . R can be
computed from R by the followmg rule:

Piy.iy < Tig.iy T H:j_l ai:in )
which takes O(N) for each entry and O(|Q2N) for
entire R. Once R is computed, we can compute the
rank-one factorization (i.e., updating agzb,i for all n and
in,) without updating R. This is because the entries of
R do not depend on the parameters updated during
the rank-one factorization. Each parameter agf,)c is
updated in O(|Q§:)|N ) by the following rule:

l
)> Piyin m;i)

iN)eQ(”)

. 6
,,,,, R T
We need to update R only once per rank-one factor-
ization by the following rule:
TR @)
ioin < Tigoiy oy Tk
which takes O(|Q2|N) for entire R as in (5).

Inner Iterations. The number of updates on R
can be reduced further by repeating the update of,
for example, the kth columns multiple times before
moving on to the (k+1)th columns. Since the repeated
computation (i.e.,, rank-one factorization) does not
require to update R, if the number of the repetitions is
T;n, R needs to be updated only once per T;,, times of
rank-one factorization. With T},, times of iteration, the
update sequence at column level changes as follows:

(@l..aly?) e (@l aly)) e @l ali)) e

Algorithm 1 descnbes the serial version of CDTF
with T,,; times of outer iteration. We initialize the
entries of A(Y) to zero and those of all other factor
matrices to random values, which makes the initial
value of R equal to X. Instead of computing R (line 4)
before rank-one factorization, the entries of R can
be computed while computing (6) and (7). This can
result in better performance on a disk-based system
like MAPREDUCE by eliminating disk I/O operations
required to compute and store R.

3.2 Subset Alternating Least Square

Subset alternating least square (SALS), another scal-
able tensor factorization algorithm, generalizes CDTF
in terms of the number of parameters updated at a
time. Figure 2 depicts the difference among CDTF,
SALS, and ALS. Unlike CDTEF, which updates each
column of factor matrices entry by entry, and ALS,
which updates all K columns row by row, SALS
updates each C' (1 < C < K) columns row by row.

5
L £ P S—
O | [ [ [ [ ] ||
Fixed Fixed
AM™ AM AM
(a) CDTF (b) SALS (c) ALS

Fig. 2: Update rules of CDTF, SALS, and ALS. CDTF
updates each column of factor matrices entry by entry,
SALS updates each C' (1 < C < K) columns row by row,
and ALS updates all K columns row by row.

Algorithm 2: Serial version of SALS

Input : X, K, A
Output: A(™) for all n

1 initialize R and A for all n
2 for outer iter = 1..T,y do
for split iter = 1.. ]’%'\ do
choose k1, ..., k¢ (from columns not updated yet)
compute R using (8)
for inner iter = 1..T;,, do

forn = 1..N do

for i, = 1..1,, do
L L update al™ .. agn)

ikt Yin ke

© ® N W R W

using (9)

10 | update R using (10)

SALS contains CDTF (C = 1) and ALS (C = K)
as special cases. In other words, SALS and ALS are
similar in that, when they update a factor matrix,
they fix all other factor matrices at the current values
and update the factor matrix in a row-wise manner
by assigning the row vector minimizing (1) given
all other parameters. However, SALS and ALS are
different in that, when they update a row of a factor
matrix, ALS updates all the K entries in the row at a
time, while SALS updates only C(< K) entries in the
row fixing the other (K —C) entries. Our experimental
results in Section 5 show that, with proper C, SALS
enjoys both the high scalability of CDTF and the fast
convergence of ALS although SALS requires more
memory space than CDTEF.

Algorithm 2 describes the procedure of SALS.
Line 4, where C columns are randomly chosen, and
line 9, where C parameters are updated simultane-
ously, are the major differences from CDTEF. Updating
C columns (k1, ..., k¢) of all the factor matrices (lines 7
through 9) is equivalent to the rank-C factorization
of R whose (iy, ..., iN)th entry is 7, iy = Tiy iy —
Dok (ko ko) HN E . R can be computed from R
by the following rule (hne 5):

Tilmi =Tii...in +Z H el E:LC (8)
which takes O(NC) for each entry and O(|QNC) for

entire R. After computing R, the parameters in the C
columns are updated row by row as follows (line 9):

[ai"iﬂ ...70,5”;€C}T < arg min LAW . AD)
" " (@™ al™ T
inky % ke
= (B{ + o) e ©
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(n)

where B, ” is a C by C matrix whose entries are
l l
(BEZ))CMH = Z (H aglaecl aEILCQ )7 VCl, C2
l#n

in)eai™ #n

cgf) is a length C' vector whose entries are

A O]
(Piroin | | @i,

l#n

(ein)e =

in

), Ve

and I is the C by C identity matrix. The correctness
of this update rule is proved in Section 3.3.1. Com-
puting (9) takes O(|Q(" |C(N + C) + C3), which con-

sists of O(|Q(")|NC’) to compute [],, a ELLI through
(n)

[lizna HZL for all the entries in Q; (|Q§:)|CQ)
to build Bf:), (|Q§:)|C’) to build cE:), and O(C?)
to compute the inverse. Instead of computing the
inverse, the Cholesky decomposition, which also takes
O(C?), can be used for speed and numerical stability.
After repeating this rank-C' factorization 7j, times
(line 6), R is updated by the following rule (line 10):

Tiyoiy & Tiqoiny — Z H Zﬂkc (10)

which takes O(|QNC) for the entlre IR as in (8).

3.3 Theoretical Analysis
3.3.1 Convergence Analysis

We prove that CDTF and SALS monotonically de-
crease the loss function (1) until convergence.

Theorem 1 (Correctness of SALS): The update rule
(9) minimizes (1) with respect to the updated param-
eters. That is,

argmin - LAD,, A™) = (B 4 AIc)Tel™.
@™ a7 "
inky’” @ inko
Proof:
%_O,VC,ISC<C
9a; .,

(n)

’Lnks‘

>

(it min) Q™)

- %

[T ik,

l#n

(=l

Tzl AN | |

e )

l#n
O]

(n)
) + )\ai:kc

”kc
(i1, vin)€QL™) l#n
& (B + AL )[agngﬂ,. sal T =, 0

This theorem also proves the correctness of CDTF,
which is a special case of SALS, and leads to the
following convergence property.

Theorem 2 (Convergence of CDTF and SALS): In
CDTF and SALS, the loss function (1) decreases
monotonically.

Proof: By Theorem 1, every update in CDTF and
SALS minimizes (1) in terms of updated parameters.
Thus, the loss function never increases. |

3.3.2 Complexity Analysis

In this section, we analyze the computational and
space complexity of CDTF and SALS.

Theorem 3 (Computational complexity of SALS): The
computational complexity of SALS (Algorithm 2) is
O(Tout|UNT; K (N + C) + T Tin KC2 SN | 1,).

Proof: As explained in Section 3.2, updating each
C parameters (ai”,)Cl ,agjl,)gc) using (9) (line 9 of
Algorithm 2) takes O(|Q )|C(C + N) + C3); and
both computing R (line 5) ‘and updating R (line 10)
take O(|QINC). Thus, updating all the entries in C
columns (lines 8 through 9) takes O(|QC(C' + N) +
I,C3), and the rank C factorization (hnes 7 through
9) takes O(|QNC(N +C)+C3 SN I,,). As a result,
an outer iteration, which repeats the rank C' factoriza-
tion T}, K/C times and both R and R updates K/C
t1mes takes O(|QNT;, K(N+C)+ T, KC2 SN 1)+

O(|QY NK), where the second term is dommated O

Theorem 4 (Space complexity of SALS): The memory
requirement of SALS (Algorithm 2) is O(C Z I,).

Proof: Since R computation (line 5 of Algo-
rithm 2), rank C factorization (lines 7 through 9), and
R update (line 10) all depend only on the C columns
of the factor matrices, the number of whose entries
is 022;1 I,,, the other (K — C) columns need not
be loaded into the memory. Thus, the columns of
the factor matrices can be loaded by turns depending
on (ki, ..., k¢) values. Moreover, updating C' columns
(lines 8 through 9) can be processed by streaming the
entries of R from disk and processing them one by
one instead of loading them all at once because the
entries of BE:) and cgf) in (9) are the sum of the values
calculated independently from each R entry. Likewise,
R computation and R update can also be processed
by streaming R and R, respectively. O

These theorems are applied to CDTF, which is a
special case of SALS.

Theorem 5 (Computational complexity of CDTE): The
computational complexity of CDTF (Algorithm 1) is
O(Tout |Q|N2EnK)

Theorem 6 (Space complexity of CDTF): The
memory requirement of CDTF (Algorithm 1) is

O, In).

3.4 Parallelization in Distributed Environments

In this section, we describe the distributed versions
of CDTF and SALS. We assume a distributed en-
vironment where machines do not share memory,
such as in MAPREDUCE. The extension to shared-
memory systems, where the only difference is that
we do not need to broadcast updated parameters, is
straightforward. The method to assign the rows of the
factor matrices to machines (i.e., to decide ,,,.5,, for all
n and m) is explained in Section 3.4.3, and until then,
we assume that the row assignments are given.
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X
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(a) Machine 1 (b) Machine 2 (c) Machine 3 (d) Machine 4

Fig. 3: Work and data distribution of CDTF and SALS in
distributed environments when an input tensor is a 3-order
tensor and the number of machines is four. We assume that
the rows of the factor matrices are assigned to the machines
sequentially. The colored region of A(™) (the transpose of
A™) in each sub-figure corresponds to the parameters
updated by each machine, resp., and that of X corresponds
to the data distributed to each machine.

Algorithm 3: Distributed version of CDTF

Input : X, K, A\, nSy for all m and n
Output: A(™) for all n

1 distribute the ,, entries of X to each machine m
2 Parallel (P): initialize the ,,2 entries of R
3 P: initialize A(") for all n
4 for outer iter = 1.. Ty do
fork=1.K do

P: compute the ,,,Q entries of R

for inner iter = 1..T;,, do

forn =1.N do

P: update mafj,? using (6)
P: broadcast ma*T,;

© ® N o«

10

1 P: update the ,,,Q entries of R using (7)

3.4.1 Distributed Version of CDTF

Work and Data Distribution. Since the update rule

(6) for each parameter al(.:,)f does not depend on the
other parameters in its column aiz), updating the
parameters in a column can be distributed across mul-
tiple machines and processed simultaneously without
affecting the updated results and thus correctness

(Theorem 2). For each column ai’,z), machine m up-

dates the assigned parameters, mas,i) = {QEZI)J% S
mSn . At matrix level, ,,S,, rows of each factor ma-
trix A are updated by machine m. The entries of
X necessary to update the assigned parameters are
distributed to each machine. That is, X entries in
Q= UY, (Uz’nemsn Qg:)) are distributed to each
machine m, and the machine maintains and updates
R entries in ,, .

The sets of X entries sent to the machines are not
disjoint (i.e., ym, 2N, Q2 # 0), and each entry of X can
be sent to N machines at most. Thus, the computa-
tional cost for computing R and updating R increases
up to N times in distributed environments. However,
since this cost is dominated by the others, the overall
asymptotic complexity remains the same. Figure 3
shows an example of work and data distribution.

Communication. In order to update the parameters,
for example, in the kth column of a factor matrix using
(6), the kth columns of all other factor matrices are
required. Therefore, after updating the kth column of
a factor matrix, the updated parameters are broadcast

Algorithm 4: Distributed version of SALS

Input : X, K, \, Sy for all m and n
Output: A(™ for all n

1 distribute the ,,,Q entries of X to each machine m

2 Parallel (P): initialize the ,, entries of R

3 P: initialize A(™) for all n

4 for outer iter = 1..T,y; do

5 for split iter = 1(%'\ do

6 choose (k1, ..., k¢) (from columns not updated yet)
7 P: compute the ,,,2 entries of R

8 for inner iter = 1..T;,, do

9 forn = 1..N do

10 P: update {aEZLP lin € mSn,1 <c<C}
using (9) )

1 P: broadcast {az(:;ccﬁ" € mSn,1<c<C}

12 | P: update the , (2 entries of R using (10)

to all other machines so that they can be used to
update the kth column of the next factor matrix.
The broadcast parameters are also used to update
the entries of R using (7). Therefore, after updating
the assigned parameters in aiz), each machine m
broadcasts |,,,Sy,| parameters and receives (I,, — |1, Sn|)
parameters from the other machines. The number of
parameters each machine exchanges with the other
machines is 22]21 I,, per rank-one factorization and
KT;, 25:1 I,, per outer iteration. Algorithm 3 depicts
the distributed version of CDTEF.

3.4.2 Distributed Version of SALS

SALS is also parallelized in distributed environments
without affecting its correctness. The work and data
distribution of SALS is exactly the same as that of
CDTF, and the only difference between two methods
is that in SALS each machine updates and broadcasts
C columns at a time.

Algorithm 4 describes the distributed version of
SALS. After updating the assigned parameters in
C columns of a factor matrix A(™ (line 10), each
machine m sends C|,,S,| parameters and receives
C(I, — |mSn|) parameters (line 11), and thus each ma-
chine exchanges C'S_Y_ I,, parameters during rank
C factorization (lines 9 through 11). Since this factor-
ization is repeated T;, K/C times, the total number of
parameters each machine exchanges is KTj, Zﬁle I,
per outer iteration, as in CDTF.

3.4.3 Row Assignment

The running time of the parallel steps in the dis-
tributed versions of CDTF and SALS depends on the
longest running time among all machines. Specifically,
the running time of lines 6, 9, and 11 in Algorithm 3
and lines 7, 10, and 12 in Algorithm 4 are proportional
to max,, |,,Q")| where ,,, Q") = Ui.e. s, Qf: . Line 10
in Algorithm 3 and line 11 in Algorithm 4 are pro-
portional to max,, |,Sy|. Therefore, it is important to
assign the rows of the factor matrices to the machines
(i.e., to decide ,,S,) such that |,,Q| and |,,S,| are
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Algorithm 5: Greedy row assignment in CDTF and SALS

Input : X, M
Output: Sy, for all m and n

1 initialize |, 2| to O for all m
2 forn =1..N do

3 initialize ,», Sy to 0 for all m

4 initialize \WQ(")\ to 0 for all m

5 calculate |QE:)| for all ip,

6 foreach iy (in decreasing order of |2; n>|) do

7 find m with |, Sn| < f 2] and the smallest \nLQ( )|

8 (in case of a tie, choose the machme with smaller |,,, Sy, |,
and if still a tie, choose one with smaller |,,,2|)

9 add ipn to mSn

10 add [™| to [mQ(™)| and |, €|

evenly distributed among all the machines. For this
purpose, we design a greedy assignment algorithm
which aims to minimize max,y, |,,22™)| under the con-
dition that |,,.S,| is completely even (i.e., |nSn| =
I,/M for all n where M is the number of machines).
For each factor matrlx A(”) we sort its rows in the
decreasing order of \Q \ and assign the rows one by
one to the machine m that satisfies lmSn| < [In/M]
and has the smallest |,,Q"| currently. Algorithm 5
describes the details of the algorithm. The effects of
greedy row assignment on actual running times are
described in Section 5.5. In the section, the greedy row
assignment is compared with the two baselines:

« Sequential row assignment : Indices of the rows
in each mode are divided into M sequential
ranges, and the rows whose indices belong to
the same range are assigned to the same machine
(ie., mSn = {in € N|Xm=l) < Laxmy)

« Random row assignment : Each row in each mode
is assigned to a randomly chosen machine.

3.5 Loss Functions and Updates

In this section, we discuss how CDTF and SALS
are applied to minimize various loss functions which
have been found useful in previous studies. We specif-
ically consider the PARAFAC decomposition with L,
and weighted-L; regularization and non-negativity
constraints. Coupled tensor factorization and factor-
ization using the bias model are also considered.

3.5.1 PARAFAC with L, Regularization

L, regularization, which leads to sparse factor ma-
trices, can be used in the PARAFAC decomposition
instead of L, regularization. Sparser factor matrices
are easier to interpret as well as require less storage.
With L; regularization, we use the following loss
function instead of (1):

Liasso(AM, . AN =
K N 2 N
DR GRS 9 A S S
(i15--,iN ) EQ k=1n=1 n=1

(11)
To minimize (11), CDTF (see Section 3.1), which
updates one parameter at a time while fixing the

others, uses the equation (12), instead of the original

equation (6), for updating each parameter aEZ,)C:

( ) < arg min LLGSSO(A(U .,A(N>)
afm
A—g)/d ifg>A
—(A+g)/d ifg<-A (12)
0 otherwise

. !
where g = =23, in)Eal (T‘il...m [Lisn az%) and

d = 22 (i1,0emsin) €O Hl?én( Z(lli) The proof of this
update rule can be found in Theorem 7 in [18]. If we
simply replace (6) with (12), Algorithms 1 and 3 can
be used to minimize (11) without other changes.

However, SALS is not directly applicable to (11)
since a closed form solution for minimizing the loss
function with respect to C' parameters dose not exist
if C > 2. Although an iterative or suboptimal update
rule can be used instead of (9), this is beyond the
scope of this paper.

3.5.2 PARAFAC with Weighted Lo Regularization
Weighted L, regularization [3] has been used in many
recommender systems based on matrix factorization
[1], [2], [3] since it effectively prevents overfitting. Ap-
plying this method to the PARAFAC decomposition
results in the following loss function:

LAWY, . ANy =

ST

(41,5, 'LN)GQ k=1n=1

+ AZ Z 2071 Nl 1

n=1i,=1
CDTF and SALS can be used to minimize (13) if A in
(6) and (9) is replaced with )\|Q§:) |. This can be proved
also by replacing A in Theorem 1 and its proof with
)\|Q£n) |. With these changes, Algorithms 1, 2, 3, and 4
can be used to minimize (13) without other changes.

(13)

3.5.3 PARAFAC with Non-negativity Constraint

The constraint that factor matrices have only non-
negative entries has been adopted in many applica-
tions [11], [19] because the resulting factor matrices
are easier to inspect. To minimize (1) under this non-
negativity constraint, CDTF (see Section 3.1) updates
each parameter aE”}C by assigning the nonnegative
value minimizing (1) when the other parameters are

fixed at their current values. That is,

-9
5n3€ — ar(%)rrilon L(A >, ...,A(N)) = max m,O) ,
" (14)
. !
where g = —2 Z(il’”_’m)eﬂw (T“il cin Lin az(',i) and
!

= 22(1,1’__471.1\,)6952) [I4n(a Z()) See Theorem 8 in
[18] for the proof of this update rule. Algorithms 1
and 3 can be used to minimize (1) under the non-
negativity constraint if we simply replace (6) with (14).
However, SALS cannot be directly used with the
non-negativity constraint since a closed form solution
for minimizing (1) with respect to C' parameters does
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not exist under the constraint if C' > 2. Although
an iterative or suboptimal update rule can be used
instead of (9), this is beyond the scope of this paper.

3.5.4 Coupled Tensor Factorization

The joint factorization of tensors sharing common
modes (e.g., user-movie rating data and a social net-
work among users) can provide a better understand-
ing of latent factors [11], [20]. Suppose that an N,-
order tensor X and an N -order tensor Y share thelr
first mode without loss of generality. The coupled
factorization of them decomposes X into factor ma-
trices ;A through , A=) and Y into ,A(") through
AW under the condition that ,A(") =/ A®). The
oss function of the coupled factorization is the sum
of the loss function in each separate factorization (i.e.,
equation (1)) as follows:

LCoupled(a:A(l)7 “eey xA(NI)z yA(U» weey I/A(Ny)) =
LAY, AN 4 L AW, Ay — N, AW
(15)
where — ||, A1) |2 prevents the shared matrix from

being regularized twice.

The update rule for the entries in the non-shared
factor matrices are the same as that in separate fac-
torization. When updating the entries in the shared
matrix, however, we should consider both tensors.
In SALS (see Section 3.2), if L(,AM, .., ,AM=)) is

minimized at [agll,)ﬁ,..., Elll)ﬁc]T = (wBZ(-ll) + /\Ic)_lmcgi)
and L(,AW ..  ANY) is minimized at (yBZ(-ll) +
)\IC)_lycl(-ll) (see (9) for the notations), Lcoupied 1S
minimized at (ngll) + yBgll) + Me) " (,c (1) + yc(l)),
given the other parameters. That is, to minimize (15),

SALS updates each C parameter [agll)Cl . Ell,lc]T in
the shared factor matrix by the followmg rule:
1 1 T
@iy afiie]”
arg min LCoupled(zA(l), e IA(NL), yA(1> A(Ny))
WD a0 gr
irky? i ko

= (B +,BY + 2Ie) (el +,elV)  (16)
See Theorem 9 and Algorithm 6 in [18] for the proof
of this update rule and the pseudocode for coupled
tensor factorization. CDTF, a special case of SALS,
also can be used for minimizing (15) in the same way.

3.5.5 Bias Model

The PARAFAC decomposition (see Section 2.2) cap-
tures interactions among modes that lead to different
entry values in X. In recommendation problems, how-
ever, much of the variation in entry values (i.e., rates)
is explained by each mode solely. For this reason, [3]
added bias terms, which capture the effect of each
mode, in their matrix factorization model. Likewise,
we can add bias vectors {b(™ € RI"|1 < n < N} to
(1) resulting in the following loss function:

Lpias(AY . AW pM  p)) =
N K N 2
S O S 9 | )
(i1,...,iN)EQ n=1 k=1n=1

N
+Aa ) [IAf )IIF+/\bZHb( ll, 7)

n=1 n=1

where ;1 denotes the average entry value of X, and
Aa and Ay denote the regularization parameters for
factor matrices and bias terms, respectively.

With (17), each (i1,...ix)th entry of the residual
tensor IR is redefined as 7i,. i, = Xi.iy — W —
>V Zﬂ S Dy Eni At each outer iteration,
we first %pdate factor matrices by either CDTF or
SALS and then update bias vectors in the CDTF
manner. That is, we update each parameter b( ") ata
time, while fixing the other parameters at their Current

values, by the following update rule:

b™ + arg min Lpias(A", .., AN M p™)
b{™
= > Tuea/Ow 100D, (18)

where 7, iy = Tiy.in +b§:). The proof of this update
rule can be found in Theorem 10 in the supplementary
document [18]. After updating each bg:), the entries of
Rin {ri, iy |(i1, i) € 2} should be updated by
the following rule:

Tiyoin < Tigoiy + (b(:))(’ld -

(b(”))old

b (19)

where is the old parameter value. Algo-
rithm 7 in [18] gives the detailed pseudocode of SALS
for the bias model. It includes CDTF for the bias
model as a special case.

4 OPTIMIZATION ON MAPREDUCE

In this section, we describe the optimization tech-
niques used to implement CDTF and SALS on
MAPREDUCE, which is one of the most widely used
distributed platforms. Theses techniques can also be
applied to diverse distributed algorithms, including
ALS, FLEXIFACT, and PSGD. The effect of these tech-
niques on actual running time is in Section 5.5.

4.1 Local Disk Caching

The typical MAPREDUCE implementation of CDTF
and SALS without local disk caching runs each paral-
lel step (e.g., parameter (aiz)) update, R update, and
R computation in Algorithm 3) as a separate MAPRE-
DUCE job, which incurs redistributing data across
machines. Repeatedly redistributing data is extremely
inefficient in SALS and CDTF due to their highly
iterative nature. We avoid this inefficiency by caching
data to local disk once they are distributed. In our
implementation of CDTF and SALS with local disk
caching, X entries are distributed across machines
and cached in their local disk during the map and
reduce stages (see Algorithm 8 in the supplementary
document [18] for the detailed pseudocode); and the
rest of CDTF and SALS runs in the close stage
(cleanup stage in Hadoop) using the cached data.

4.2 Direct Communication

In MAPREDUCE, it is generally assumed that reducers
run independently and do not communicate directly
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TABLE 4: Scale of synthetic datasets. B: billion, M: million,
K: thousand. The length of every mode is equal to I.

| s1 S2 (default) S3 S4
N 2 3 4 5
I 300K M 3M 10M
1 30M 100M 300M 1B
K 30 100 300 1K

with each other. However, CDTF and SALS require
updated parameters to be broadcast to other reducers.
We circumvent this problem by adapting the direct
communication method used in FlexiFaCT [11]. Each
reducer writes the parameters that it updated to the
distributed file system, and the other reducers read
these parameters from the distributed file system. See
Section 2.2 of [18] for details including a pseudocode.

4.3 Greedy Row Assignment

We also apply the greedy row assignment, explained
in Section 3.4.3, to our MAPREDUCE implementations.
See Section 2.3 of [18] for the detailed MAPREDUCE
implementation of the greedy row assignment.

5 EXPERIMENTS

Our experimental results answer the questions below:
e Q1: Data scalability (Section 5.2). How do
CDTF, SALS, and their competitors scale with re-
gard to the order, number of observations, mode
length, and rank of an input tensor?

o Q2: Machine scalability (Section 5.3). How do
CDTF, SALS, and their competitors scale with
regard to the number of machines?

¢ Q3: Convergence (Section 5.4). How quickly and
accurately do CDTF, SALS, and their competi-
tors factorize real-world tensors?

¢ Q4: Optimization (Section 5.5). How much do
local disk caching and greedy row assignment
improve the speed of CDTF and SALS? Can
these techniques be applied to other methods?

o Q5: Effects of C and T}, (Section 5.6) How do
the number of columns updated at a time (C)
and the number of inner iterations (77;,,) affect the
convergence of SALS and CDTE?

All experiments are focused on distributed methods,
which are the most suitable to achieve our purpose of
handling large-scale data. We compared our methods
with ALS, FLEXIFACT, and PSGD, all of which can be
parallelized in distributed environments, as explained
in Section 2.3. Serial methods (e.g., [17], [21]) and
methods not directly applicable to partially observ-
able tensors (e.g., [22], [23]) were not considered.

5.1 Experimental Settings

We ran experiments on a 40-node Hadoop cluster.
Each node had an Intel Xeon E5620 2.4GHz CPU. The
maximum heap size per reducer was set to 8GB.

We used both synthetic (Table 4) and real-world
(Table 5) datasets most of which are available at http://

TABLE 5: Summary of real-world datasets.

\ Movielensy Netflixs Yahoo-musicy
N 4 3 4
I 71,567 2,649,429 1,000,990
Ip) 65,133 17,770 624,961
I3 / I4 169 / 24 74 / - 133 / 24
Y] 9,301,274 99,072,112 252,800,275
[ test 698,780 1,408,395 4,003,960
K 20 40 80
A= Aa) 0.01 0.02 1.0
Ab 1.0 0.02 1.0
70 0.01 0.01 10~5% (FLEXIFACT)
10—4 (PSGD)

www.cs.cmu.edu/~kijungs/codes/cdtf. Synthetic ten-
sors were created as synthetic matrices were created
in [24]. That is, we first created ground-truth factor
matrices with random entries. Then, we randomly
sampled |(2| entries of the created tensor and set each
sampled entry z;, i, to 6+ S0 T, al(-:,)c where §
denotes random noise with mean 0 and variance 1.
The real-world tensors are preprocessed as follows:

« Movielens,!: Movie rating data from Movie-
Lens, an online movie recommender service. We
converted them into a four-order tensor where
the third and fourth modes correspond to (year,
month) and hour-of-day when the movie was
rated, respectively. The rates range from 1 to 5.

« Netflix;%: Movie rating data used in Netflix prize.
We regarded them as a three-order tensor where
the third mode is (year, month) when the movie
was rated. The rates range from 1 to 5.

« Yahoo-music,*: Music rating data used in KDD
CUP 2011. We converted them into a four-order
tensor in the same way as we did for Movielens,.
The rates range from 0 to 100.

All the methods were implemented in Java with
Hadoop 1.0.3. The local disk caching, the direct com-
munication, and the greedy row assignment (see Sec-
tion 4) were applied to all the methods if possible. All
our implementations used weighted L, regularization
(see Section 3.5.2). For CDTF and SALS, T;, was set
to 1 and C was set to 10, unless otherwise stated.
The learning rate of FLEXIFACT and PSGD at tth
iteration was set to 27y/(1+1t), as in the open-sourced
FLEXIFACT*. The number of reducers was set to 5 for
FLEXIFACT, 20 for PSGD, and 40 for the other meth-
ods, each of which leaded to the best performance on
the machine scalability test in Section 5.3.

5.2 Data Scalability
5.2.1 Scalability with Each Factor (Figures 4-7)

We measured the scalability of CDTF, SALS, and
the competitors with regard to the order, number
of observations, mode length, and rank of an input
tensor. When measuring the scalability with regard to

1. http://grouplens.org/datasets /movielens

2. http:/ /www.netflixprize.com

3. http:/ /webscope.sandbox.yahoo.com/catalog.php?datatype=c
4. http:/ /alexbeutel.com/1/flexifact/
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Fig. 4: Scalability w.r.t. order. FLEXIFACT was not scalable
with order, while the other methods, including CDTF and
SALS, were scalable with order.
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Fig. 5: Scalability w.r.t. the number of observations. All
methods, including CDTF and SALS, were scalable with
the number of observable entries.

a factor, the factor was scaled up from S1 to 54 while
all other factors were fixed at S2 in Table 4.

As seen in Figure 4, FLEXIFACT did not scale with
the order because of its communication cost, which
increases exponentially with the order. ALS and PSGD
were not scalable with the mode length and the rank
due to their high memory requirements as Figures 6
and 7 show. They required up to 11.2GB, which is 48x
of 234MB that CDTF required and 10x of 1,147MB
that SALS required. Moreover, the running time of
ALS increased rapidly with rank owing to its cubically
increasing computational cost.

Only SALS and CDTF were scalable with all the
factors, as summarized in Table 1. Their running times
increased linearly with all the factors except the order,
with which they increased slightly faster due to the
quadratically increasing computational cost.

5.2.2 Ouverall scalability (Figure 1 in Section 1)

We measured the scalability of the methods by scaling
up all the factors simultaneously from S1 to S4. The
scalability of FLEXIFACT with five machines, ALS,
and PSGD was limited owing to their high memory
requirements. ALS and PSGD required about 186GB
to handle S4, which is 493x of 387MB that CDTF
required and 100x of 1,912MB that SALS required.
FLEXTFACT with 40 machines did not scale over S2
due to its rapidly increasing communication cost.
Only CDTF and SALS scaled up to S4, and there was
a trade-off between them: CDTF was more memory-
efficient, and SALS ran faster.

5.3 Machine Scalability (Figure 8)

We measured the speed-ups (T5/Tns where Ty, is
the running time with M reducers) and memory

CDTF —e— SALS —&— ALS FlexiFaCT % PSGD v
£60 12 :
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= 30 2 4
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(a) Running time (b) Memory requirements

Fig. 6: Scalability w.r.t. mode length. 0.0.m.: out of memory.
ALS and PSGD did not scale with mode length, while
CDTF, SALS, and FLEXIFACT did.
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Fig. 7: Scalability w.r.t. rank. o.0.m.: out of memory. ALS
and PSGD did not scale with rank, while CDTF, SALS, and
FLEXIFACT did.
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Fig. 8: Machine scalability on the S2 scale dataset. FLEXI-
FACT and PSGD did not scale with the number of machines,
while CDTF, SALS, and ALS did.

requirements of the methods on the 52 scale dataset
by increasing the number of reducers. The speed-
ups of CDTF, SALS, and ALS increased linearly at
the beginning and then flattened out slowly owing
to their fixed communication cost, which does not
depend on the number of reducers (see Table 3). The
speed-up of PSGD flattened out fast, and PSGD even
slightly slowed down at 40 reducers because of the
increased overhead. FLEXIFACT slowed down as the
number of reducers increased because of its rapidly
increasing communication cost. The memory require-
ments of FLEXIFACT decreased as the number of
reducers increased, while the other methods required
the fixed amounts of memory.

5.4 Convergence (Figure 9)

We compared how quickly and accurately each
method factorizes real-world tensors using the
PARAFAC model (Section 2.2) and the bias model
(Section 3.5.5). Accuracies were measured per itera-
tion by root mean square error (RMSE) on a held-out
test set, which is commonly used by recommender
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Fig. 9: Convergence speed on real-world datasets. (a)-(c)
show the results with the PARAFAC model, and (d)-(e)
show the results with the bias model (Section 3.5.5). SALS
and ALS converged fastest to the best solution, and CDTF

followed them. CDTF and SALS, however, have much
better scalability than ALS as shown in Section 5.2.

systems. We used cross validation for K, A, and 7y,
whose values used are in Table 5. Since the Movielens,
dataset (183MB) is too small to run on Hadoop, we in-
creased its size by duplicating each user 10 times. Due
to the non-convexity of (1), the methods converged to
local minima with different accuracies.

In all datasets, SALS was comparable with ALS,
which converged fastest to the best solution, and
CDTF followed them. CDTF and SALS, however,
have much better scalability than ALS as shown in
Section 5.2. PSGD converged slowest to the worst
solution because of the non-identifiability of (1).

5.5 Optimization (Figure 10)

We measured how our proposed optimization tech-
niques, specifically the local disk caching and the
greedy row assignment, affect the running time of
CDTF, SALS, and the competitors on real-world
datasets. The local disk caching speeded up CDTF
up to 65.7x, SALS up to 15.5x, and the competitors
up to 4.8x. The speed-ups of SALS and CDTF were
the most significant because of their highly itera-
tive nature. Additionally, the greedy row assignment
speeded up CDTF up to 1.5x; SALS up to 1.3x; and
the competitors up to 1.2x compared with the second
best one. It is not applicable to PSGD, which does not
distribute parameters in a row-wise manner.
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Fig. 10: Effects of the optimization techniques on running
times. NC: no caching, LC: local disk caching, SEQ: sequen-
tial row assignment, RAN: random row assignment, GRE:
greedy row assignment (see Section 3.4.3 for the row as-
signment methods). Our proposed optimization techniques
(LC+GRE) significantly speeded up CDTF, SALS, and also
their competitors.

5.6 Effects of C' and T;,, (Figures 11 and 12)

Figure 11 compares the convergence properties of
SALS with different C values when 7T}, is fixed to
one. As C increased, SALS tended to converge to
better solutions (with lower test RMSE) although it
required more memory space proportional to C' (see
Theorem 4). When considering this trade-off, we sug-
gest that C' be set to the largest value where memory
requirements do not exceed the available memory.
We also compared the convergence properties of
CDTF with different T;, values in Figure 12. Al-
though there was an exception (T3, =1 in the Netflixs
dataset), CDTF tended to converge to better solutions
(with lower test RMSE) more stably as 7}, increased.
In SALS with larger C' values, however, the effects
of inner iterations on its convergence property were
marginal (see Figure 14 in the supplementary docu-
ment [18] for the detailed experimental results). We
suggest that C' should be set first as described above.
Then, if C' = 1 (or equivalently CDTF is used), T;,
should be set to a high enough value, which was ten
in our experiments. Otherwise, T,, can be set to one.

6 RELATED WORK

Matrix Factorization. Matrix factorization (MF) has
been successfully used in many recommender sys-
tems [1], [2], [3]. The underlying intuition of MF
for recommendation can be found in [2]. Two major
approaches for large-scale MF are alternating least
squares (ALS) and stochastic gradient descent (SGD).
ALS is inherently parallelizable [3] but has high mem-
ory requirements and computational cost [5]. Efforts
were made to parallelize SGD [4], [10], [25], includ-
ing distributed stochastic gradient descent (DSGD)
[4], which divides a matrix into disjoint blocks and
processes them simultaneously. Recently, coordinate
descent was also applied to large-scale MF [5].

Fully Observable Tensor Factorization. Fully ob-
servable tensor factorization is a basis for many ap-
plications, including chemometrics [14] and signal
processing [26]. Comprehensive survey on tensor fac-
torization can be found in [15], [27]. To factorize large-
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Fig. 11: Effects of the number of columns updated at a time
(C) on the convergence of SALS. SALS tended to converge
to better solutions as C' increased.

scale tensors, several approaches have been proposed.
[22], [23], [28], [29] carefully reorder operations in the
standard ALS or GD algorithm to reduce intermediate
data, while [30] modifies the standard ALS algorithm
itself for the same purpose. In [31], [32], a tensor is
divided into small subtensors, and each subtensor
is factorized. Then, the factor matrices of the entire
tensor are reconstituted from those of subtensors.
In [26], [33], a tensor is compressed before being
factorized. Among these methods, [22], [23], [28], [29],
[31], [32] run on multiple machines in a distributed
way. However, all these methods assume that input
tensors are fully observable without missing entries.
Thus, they are not directly applicable to partially ob-
servable tensors (e.g., rating data where most entries
are missing), which we consider in this work.

Partially Observable Tensor Factorization. The fac-
torization of partially observable tensors (i.e., tensors
with missing entries) has been used in many fields
such as computer vision [34], chemometrics [17], so-
cial network analysis [12], and Web search [13]. Re-
cently, it also has been used in recommender systems
to utilize additional contextual information such as
time and location [6], [7], [8], [9]. Moreover, even
when input tensors are fully observable, [35] suggests
that converting them to partially observable tensors
by random sampling and factorizing the converted
tensors can be computationally and space efficient.
[17] proposes two approaches for partially observable
tensor factorization: (1) combining imputation with
the standard ALS algorithm, and (2) fitting the model
only to observable entries. Since the former approach
has scalability issues, the latter approach has been
taken in gradient-based optimization methods [11],
[21] as well as our methods. [11] is the state-of-
the-art distributed algorithm for partially observable
tensor factorization, but it has limited scalability w.r.t.
the order and the number of machines as shown in
Section 5. Our methods overcome these limitations
by using coordinate descent and its generalization
instead of gradient-based optimization methods. Both
our methods and [11] supports coupled tensor factor-
ization, and [28] also can be used for joint factorization
with a partially observable matrix (see Appendix of
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Fig. 12: Effects of inner iterations (73,) on the convergence
of CDTF (or equivalently SALS with C' = 1). CDTF tended
to converge stably to better solutions as T, increased.

[28]) although [28] itself is a fully observable tensor
factorization method.

MAPREDUCE, Hadoop, and Alternative Frame-
works. In this work, we implement our methods on
Hadoop, an open-source implementation of MAPRE-
DUCE [36], because of its wide availability. Hadoop is
one of the most widely-used distributed computing
frameworks and offered by many cloud services (EC2,
Azure, Google Cloud, etc.) so that it can be used
without any hardware or setup expertise. Due to the
same reason, a variety of data mining algorithms,
including matrix and tensor factorization [4], [11],
have been implemented on Hadoop. However, its
limited computational model and inefficiency due to
the repeated redistribution of data also have been
pointed out as problems [5], [37]. We address this
problem by implementing local disk caching and
broadcast communication on the application level
without modifying Hadoop itself. Another, possibly
simpler, solution is to use other implementations of
MAPREDUCE [38], [39] or Spark [40], which support
local disk caching and broadcast communication as
native features. Especially, Spark has gained rapid
adoption due to its fast speed and rich features.

7 CONCLUSION

In this paper, we propose two distributed algorithms
for high-order and large-scale tensor factorization:
CDTF and SALS. They decompose a tensor with a
given rank through a series of lower rank factoriza-
tion. CDTF and SALS have advantages over each
other in terms of memory usage and convergence
speed, respectively. We compared our methods with
other state-of-the-art distributed methods both analyt-
ically and experimentally. Only CDTF and SALS are
scalable with all aspects of data (i.e., order, the number
of observable entries, mode length, and rank) and suc-
cessfully factorized a 5-order tensor with 1B observ-
able entries, 10M mode length, and 1K rank with up
to 493x less memory requirement. We implemented
our methods on top of MAPREDUCE with two widely-
applicable optimization techniques, which accelerated
not only CDTF and SALS (up to 98.2x), but also the
competitors (up to 5.9x).



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(1]

[12]

(13]
(14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P-L. Chen, C.-T. Tsai, Y.-N. Chen, K.-C. Chou, C.-L. Li, C.-H.
Tsai, K.-W. Wu, Y.-C. Chou, C.-Y. Li, W.-S. Lin, et al., “A linear
ensemble of individual and blended models for music rating
prediction,” KDDCup 2011 Workshop, 2011.

Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” Computer, vol. 42, no. 8,
pp- 30-37, 2009.

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale
parallel collaborative filtering for the netflix prize,” in AAIM,
pp- 337-348, 2008.

R. Gemulla, E. Nijkamp, P. Haas, and Y. Sismanis, “Large-
scale matrix factorization with distributed stochastic gradient
descent,” in KDD, 2011.

H.-E. Yu, C.-]. Hsieh, S. Si, and I. S. Dhillon, “Scalable coor-
dinate descent approaches to parallel matrix factorization for
recommender systems,” in ICDM, 2012.

A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver,
“Multiverse recommendation: N-dimensional tensor factoriza-
tion for context-aware collaborative filtering,” in RecSys, 2010.
A. Nanopoulos, D. Rafailidis, P. Symeonidis, and
Y. Manolopoulos, “Musicbox: Personalized music
recommendation based on cubic analysis of social tags,”
IEEE TASLP, vol. 18, no. 2, pp. 407-412, 2010.

V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang, “Collabo-
rative filtering meets mobile recommendation: A user-centered
approach.,” in AAAI, 2010.

H. Lamba, V. Nagarajan, K. Shin, and N. Shajarisales, “In-
corporating side information in tensor completion,” in WWW
Companion, 2016.

R. McDonald, K. Hall, and G. Mann, “Distributed training
strategies for the structured perceptron,” in HLT-NAACL, 2010.
A. Beutel, A. Kumar, E. E. Papalexakis, P. P. Talukdar,
C. Faloutsos, and E. P. Xing, “Flexifact: Scalable flexible fac-
torization of coupled tensors on hadoop.,” in SDM, 2014.

D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link pre-
diction using matrix and tensor factorizations,” ACM TKDD,
vol. 5, no. 2, p. 10, 2011.

J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen, “Cubesvd: a
novel approach to personalized web search,” in WWW, 2005.
A. Smilde, R. Bro, and P. Geladi, Multi-way analysis: applications
in the chemical sciences. John Wiley & Sons, 2005.

T. Kolda and B. Bader, “Tensor decompositions and applica-
tions,” SIAM review, vol. 51, no. 3, 2009.

K. Shin and U. Kang, “Distributed methods for high-
dimensional and large-scale tensor factorization,” in ICDM,
2014.

G. Tomasi and R. Bro, “Parafac and missing values,”
Chemometr. Intell. Lab. Syst., vol. 75, no. 2, pp. 163-180, 2005.
“Supplementary document (proofs, implementation details,
and additional experiments).” Available at http://www.cs.
cmu.edu/~kijungs/codes/cdtf/supple.pdf.

A. Cichocki and P. Anh-Huy, “Fast local algorithms for large
scale nonnegative matrix and tensor factorizations,” IEICE
Trans. Fundamentals, vol. 92, no. 3, pp. 708-721, 2009.

E. Acar, T. G. Kolda, and D. M. Dunlavy, “All-at-once op-
timization for coupled matrix and tensor factorizations,” in
MLG, 2011.

E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Merup, “Scalable
tensor factorizations for incomplete data,” Chemometr. Intell.
Lab. Syst., vol. 106, no. 1, pp. 41-56, 2011.

L. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2:
Billion-scale tensor decompositions,” in ICDE, 2015.

U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gi-
gatensor: scaling tensor analysis up by 100 times-algorithms
and discoveries,” in KDD, 2012.

F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” NIPS,
2011.

M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, “Parallelized
stochastic gradient descent,” in NIPS, 2010.

N. D. Sidiropoulos and A. Kyrillidis, “Multi-way compressed
sensing for sparse low-rank tensors,” IEEE Signal Processing
Letters, vol. 19, no. 11, pp. 757-760, 2012.

L. Sael, I. Jeon, and U. Kang, “Scalable tensor mining,” Big
Data Research, vol. 2, no. 2, pp. 82-86, 2015.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factor-
ization of tensors,” in NIPS, 2014.

B. Jeon, L. Jeon, L. Sael, and U. Kang, “Scout: Scalable coupled
matrix-tensor factorization - algorithm and discoveries,” in
ICDE, pp. 811-822, 2016.

A. H. Phan and A. Cichocki, “Parafac algorithms for large-
scale problems,” Neurocomputing, vol. 74, no. 11, pp. 1970-
1984, 2011.

A. L. De Almeida and A. Y. Kibangou, “Distributed large-scale
tensor decomposition,” in ICASSP, 2014.

A. L. de Almeida and A. Y. Kibangou, “Distributed computa-
tion of tensor decompositions in collaborative networks,” in
CAMSAP, pp. 232-235, 2013.

J. E. Cohen, R. C. Farias, and P. Comon, “Fast decomposition
of large nonnegative tensors,” IEEE Signal Processing Letters,
vol. 22, no. 7, pp. 862-866, 2015.

J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion
for estimating missing values in visual data,” IEEE TPAMI,
vol. 35, no. 1, pp. 208-220, 2013.

N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer,
“Breaking the curse of dimensionality using decompositions of
incomplete tensors: Tensor-based scientific computing in big
data analysis,” IEEE Signal Processing Magazine, vol. 31, no. 5,
pp- 71-79, 2014.

J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-
cessing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp- 107-113, 2008.

C. Teflioudi, F. Makari, and R. Gemulla, “Distributed matrix
completion.,” in ICDM, 2012.

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop:
efficient iterative data processing on large clusters,” PVLDB,
vol. 3, no. 1-2, pp. 285-296, 2010.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox, “Twister: a runtime for iterative mapreduce,” in
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, pp. 810-818, ACM, 2010.
M. Zaharia, M. Chowdhury, M. ]J. Franklin, S. Shenker, and
I. Stoica, “Spark: cluster computing with working sets,” in
USENIX, 2010.

Kijung Shin is a Ph.D. student in the Com-
puter Science Department of Carnegie Mel-
lon University. He received B.S. in Com-
puter Science and Engineering at Seoul Na-
tional University. His research interests in-
clude graph mining and scalable machine
learning.

Lee Sael, aka Sael Lee, holds a joint posi-
tion as an assistant professor in the Depart-
ment of Computer Science at SUNY Korea
and an assistant research professor in the
Department of Computer Science at Stony
Brook University. She received her Ph.D. in
Computer Science from Purdue University,
West Lafayette, IN in 2010, and her B.S.
in Computer Science from Korea University,
Seoul, Republic of Korea in 2005.

U Kang is an assistant professor in the
Department of Computer Science and En-
gineering of Seoul National University. He
received his Ph.D. in Computer Science at
Carnegie Mellon University, and his B.S. in
Computer Science and Engineering at Seoul
National University. He won 2013 SIGKDD
Doctoral Dissertation Award, 2013 New Fac-
ulty Award from Microsoft Research Asia,
and two best paper awards. His research
interests include data mining.


http://www.cs.cmu.edu/~kijungs/codes/cdtf/supple.pdf
http://www.cs.cmu.edu/~kijungs/codes/cdtf/supple.pdf

	Introduction
	Notations and Preliminaries
	Tensor and the Notations
	Tensor Factorization
	Distributed Methods for Tensor Factorization
	ALS: Alternating Least Square
	PSGD: Parallelized Stochastic Gradient Descent
	FlexiFaCT: Flexible Factorization of Coupled Tensors


	Proposed Methods
	Coordinate Descent for Tensor Factorization
	Update Rule
	Update Sequence

	Subset Alternating Least Square
	Theoretical Analysis
	Convergence Analysis
	Complexity Analysis

	Parallelization in Distributed Environments
	Distributed Version of CDTF
	Distributed Version of SALS
	Row Assignment

	Loss Functions and Updates
	PARAFAC with L1 Regularization
	PARAFAC with Weighted L2 Regularization
	PARAFAC with Non-negativity Constraint
	Coupled Tensor Factorization
	Bias Model


	Optimization on MapReduce
	Local Disk Caching
	Direct Communication
	Greedy Row Assignment

	Experiments
	Experimental Settings
	Data Scalability
	Scalability with Each Factor (Figures 4-7)
	Overall scalability (Figure 1 in Section 1)

	Machine Scalability (Figure 8)
	Convergence (Figure 9)
	Optimization (Figure 10)
	Effects of C and Tin (Figures 11 and 12)

	Related Work
	Conclusion
	References
	Biographies
	Kijung Shin
	Lee Sael,
	U Kang


