
Leveraging Memory Mapping for Fast and Scalable Graph Computation on a PC

Zhiyuan Lin
College of Computing

Georgia Tech
Atlanta, GA, USA
zlin48@gatech.edu

Duen Horng (Polo) Chau
College of Computing

Georgia Tech
Atlanta, GA, USA
polo@gatech.edu

U Kang
Computer Science Department

KAIST
Republic of Korea

ukang@cs.kaist.ac.kr

Abstract—Large graphs with billions of nodes and edges are
increasingly common, calling for new kinds of scalable compu-
tation frameworks. Although popular, distributed approaches
can be expensive to build, or require many resources to manage
or tune. State-of-the-art approaches such as GraphChi and
TurboGraph recently have demonstrated that a single machine
can efficiently perform advanced computation on billion-node
graphs. Although fast, they both use sophisticated data struc-
tures, memory management, and optimization techniques. We
propose a minimalist approach that forgoes such complexities,
by leveraging the memory mapping capability found on operat-
ing systems. Our experiments on large datasets, such as a 1.5
billion edge Twitter graph, show that our streamlined approach
achieves up to 26 times faster than GraphChi, and comparable
to TurboGraph. We contribute our crucial insight that by
leveraging memory mapping, a fundamental operating system
capability, we can outperform the latest graph computation
techniques.

Keywords-graph mining; scalable algorithms; memory map-
ping; single machine

I. INTRODUCTION

Large graphs with billions of nodes and edges are increas-
ingly common in many domains, ranging from computer
science, physics, chemistry, bioinformatics, to linguistics.
Such graphs’ sheer sizes call for new kinds of scalable
computation frameworks. Distributed frameworks become
popular choices; prominent examples include GraphLab [1],
PEGASUS [2], and Pregel [3]. However, such systems often
demand additional cluster management and optimization
skills from the user; and shared-memory systems can be
expensive to build [4], [5].

Some recent state-of-the-art works, such as GraphChi [4]
and TurboGraph [5] take an alternative approach by, instead,
focusing on pushing the boundaries as to what a single
machine can do. Their impressive results demonstrate that
even for billion-node web-scale graphs, computation can
be performed at a speed that matches that of a distributed
framework, and at times even faster.

We agree that single-machine approaches are promis-
ing, and indeed they can be attractive for researchers and
practitioners who want scalable computation without having
to use computing clusters. However, when analyzing these
works, we observe that they often require sophisticated

techniques [4], [5] to do explicit memory allocation, edge
file partitioning, scheduling, etc., in order to boost speed.

Can we streamline all these, and still achieve the same, or
even better performance than the state-of-the-art approaches?
We believe we can. In the paper, we propose a minimalist
approach that does exactly this and present our initial
results to demonstrate its feasibility. Specifically, our major
contributions and results include:

• We contribute our crucial insight that by leveraging
memory mapping, a fundamental capability from oper-
ating systems, we can conduct high-speed graph com-
putation that outperforms state-of-the-art approaches,
while sidestepping common design complexities.

• We demonstrate through experiments on real, large
graphs, including a 1.47 billion edge Twitter graph,
that our streamlined approach, with only 184 lines of
statements1, can be up to 26 times faster than GraphChi,
and comparable to TurboGraph.

We note that we are not advocating replacing existing
approaches with ours. Rather, we intend to highlight how
much performance gain we can achieve by leveraging the
memory mapping capability alone. We believe other ap-
proaches can greatly benefit from integrating this technique
into their implementations.

The rest of the paper is organized as follows: Section
II briefly surveyed related work. Section III describes our
main Memory Mapping idea for boosting graph computation
speed. Section IV presents experiment results that shows
how our approach compares with GraphChi and Turbo-
Graph. Section V concludes and discusses future work.

II. RELATED WORK

We survey some of the most relevant works, which may
be broadly divided into multi-machine and single-machine
approaches.

Multi-machine. GraphLab [6] is a recent, best-of-the-
breed distributed machine learning library for graphs. It
exploits multiple cores to achieve high computation speed.
However, like many other shared-memory approaches, it
requires the graph to fit in memory. For huge graphs that

1Number of statements measured by Eclipse’s Metrics plugin



do not fit in memory, distributed disk-based approaches are
popular, such as Pegasus [2] (runs on Hadoop), and the
Google Pregel system [3] (similarly, Apache Giraph).

Single-machine. This category is most related to our
work. GraphChi [4] was one of the first works that demon-
strated how graph computation can be performed on massive
graphs with billions of nodes and edges on a commod-
ity Mac mini computer, with speed matching distributed
frameworks. More recently, Turbograph [5], improves on
GraphChi, with greater parallelism, to achieve speed orders
of magnitude faster. These systems use sophisticated data
structures and memory management techniques. Our work
aims to achieve an even greater speed, with a simpler
design; the experiment results in Section IV demonstrate
our success.

III. OUR APPROACH

A. Overview and Motivations

In this section, we describe our fast, scalable approach that
leverages memory mapping to speed up graph computation.
Memory mapping is a fundamental capability in operating
system (commonly used to support virtual memory). How-
ever, it has not been exploited extensively by state-of-the-
art approaches such as GraphChi and TurboGraph. Instead,
they divide the edges into logical sections or separate files
on disk, and selectively load them into memory.

Although fast, these approaches require explicit memory
management and optimization in order to achieve high
throughput and speed. They may also be harder to develop
and maintain. For example, the GraphChi package contains
about 8000 lines of code [4].

Can we streamline all these, and still achieve the same, or
even better performance than the state-of-the-art approaches?
We believe we can. And this motivated us to investigate
to the idea of leveraging memory mapping to achieve a
minimalist approach that is not only faster, but also simpler
than GraphChi and TurboGraph. Our implementation has
only 184 lines of statements.

In the next few subsections, we briefly describe what
memory mapping does, its benefits and how it can help with
graph computation. We refer the reader to [7], [8], [9] for
more details on memory mapping.

B. Memory Mapping and Its Advantages

Memory mapping is a mechanism that maps a file or
part of a file into the main memory. By doing so, files
on disk can be accessed the same way as if they were in
memory [9]. This makes it possible to do I/O operations
faster than accessing disk directly. The basic idea of the
mechanism of memory mapping is illustrated in Figure 1.

1) Fast I/O Operations: The benefit of faster I/O speed
provided by memory mapping is especially apparent when
an application needs to execute a good number of operations
on the same chunks of address space on disk. The OS

Figure 1: The mechanism of memory mapping. A portion of
a file on disk is mapped into memory for use (blue); potions
no longer needed are unmapped (yellow). In our approach,
our file is a large edge list (on the left) which typically does
not fit in the main memory (on the right). Our algorithm
treats the edge file as if it were fully loaded into memory;
programatically, it is accessed like an array. Each “row” of
the edge file describes an edge, identified by its source node
ID (left) and target node ID (right).

typically keeps these frequently accessed chucks in memory
automatically, so subsequent “reads” from disk become
high-speed reads from memory. In addition, as the OS does
most of the work, additional low level optimization can be
more directly provided by the hardware.

2) Less Overhead: Many programs that process large
files requires a lot of manual optimization to reach good
performance. Nevertheless, the OS does most of the work
for memory mapping and depends less the developers for
optimization. For example, as a rough comparison, GraphChi
was written in more than 8000 lines of code [4]; our imple-
mentation has only 184 lines, while achieving significantly
better performance.

C. Our Idea: Memory-map Edge File for Fast Computation

As identified by GraphChi and TurboGraph researchers
[4], [5], the crux in enabling fast graph computation is to
design efficient techniques to store and access the graph’s
edges, because many widely used graph algorithms eventu-
ally boil down to become repeated matrix-vector multiplica-
tions at their cores. The matrix concerned here is often the
graph’s adjacency matrix (or its variants), which we store as
an edge list (see Figure 1).

GraphChi and TurboGraph, among others, designed so-
phisticated methods such as parallel sliding windows [4]
and pin-and-slide [5] to efficiently access the edges. We
show that we can forgo them and still achieve high speed,



Table I: Networks used in experiment

Name Nodes Edges
LiveJournal 4,847,571 68,993,773
Twitter 41,652,230 1,468,365,182

at times significantly faster (up to 26 times faster) as shown
in Section IV.

In more details, we first convert the raw, text-base edge
list into a binary file, which consists of m integer pairs
where m is the number of edges in the graph. Then we map
the whole file into the main memory, even though we may
not have enough main memory. For example, the Twitter
network’s binary edge file is 11GB on disk, while we only
have 8GB main memory. The reason is that the OS only
reads sections from the file (and map them to memory)
when they are needed, or expected to be needed by the
process. Portions that are no longer needed are automatically
unmapped by the OS (see Figure 1). To the algorithm
users, and the algorithm authors, all these mapping and un-
mapping operations are transparent. They can view the edge
file as one large, contiguous file, and access it as if it were
in memory.

IV. EXPERIMENT

A. Goal and Overview

We compare our Memory Mapping approach with
two state-of-the-art approaches, GraphChi [4] and Turbo-
Graph [5], by measuring the elapsed times of two classic
graph algorithms: Connected Component and PageRank.

We first describe the graph datasets used for this experi-
ment and our setup, then we present and discuss our results.

B. Datasets and Experimental Setup

Datasets: To understand how the three approaches per-
form at different scales, we selected one smaller and one
larger graph: a LiveJournal network [10] with 69 million
edges, and a Twitter network [11] with 1.47 billion edges.
Table I shows the exact statistics of these two graphs.

Test computer: All tests are conducted on the same laptop
computer with Intel i7-2620M quad-core CPU at 2.70GHz,
8GB RAM and 512GB SSD of Samsung 840 Series.

Since TurboGraph can only be run on Windows and
GraphChi requires a library missing on Windows, we con-
duct the tests for TurboGraph and Memory Mapping on
Windows 8 (x64), and the tests for GraphChi on Linux Mint
15 (x64).

Implementations tested:
• GraphChi: v0.2.6 C++ version with default configura-

tions. The full GraphChi package contains about 8000
lines of code [4].

• TurboGraph: v0.1 Enterprise Edition We have varied its
buffer size from 1GB to 4GB and report the best times
recorded. TurboGraph’s source code is not available.

• Our Memory Mapping approach: Java 1.7 implementa-
tion; 184 lines of statements.

Test Protocol: Each test is run under the same configu-
ration for 3 times and the average is reported, as shown in
Figure 2a and b. Page caches are cleared before each test.

C. Results on 69M edge LiveJournal Network

Figure 2a shows the elapsed times of finding connected
components and running 1 and 5 iterations of PageRank on
the LiveJournal Network with 69 million edges. Our Memory
Mapping approach (in orange) shows great performance
in all three tests. For 1-iteration PageRank, our approach
is up to 26x faster than GraphChi and 3.4x faster than
TurboGraph. We believe our significant speedup is due to the
LiveJournal graph being relatively small (its binary edge file
is around 526MB), so that the operating system can memory-
map the entire file and keep it in the physical memory at all
times, eliminating many loading and unloading operations
that the other approaches may require.

This result suggests that low-level optimizations per-
formed by the operating system may significantly out-
perform explicit memory management that typical graph
computation packages are employing.

D. Results on 1.47B edge Twitter Network

After testing on the LiveJournal graph, we test on a
much larger graph—a Twitter graph with 1.47 billion edges.
Figure 2b shows the results. Similar to those for the Live-
Journal network, Memory Mapping outperforms GraphChi,
by at least 3 times for each test (e.g. 1,173s vs. 246s for 5
iterations of PageRank; 4.77 times as fast), and matches the
speed of TurboGraph.

We were unable to run TurboGraph’s PageRank algorithm
for more than 1 iteration. To estimate its 5-iteration timing,
we extrapolate from its 1-iteration time, which gives 207 sec-
onds. We use the formula 47×164400÷37200 = 207 where
47 is the elapsed time, in seconds, we measured for one
iteration, and 37200 and 164400 are respectively the elapsed
time, in ms, of running 1 and 5 iterations of PageRank listed
on TurboGraph’s website (http://wshan.net/turbograph/).

A possible explanation for Memory Mapping matching
TurboGraph on the Twitter network is due to the its much
larger binary edge file (11GB on disk). With only 8GB RAM
total, the system cannot fully load it into memory; instead,
it must load the edges from disk on demand. However, this
behind-the-scene change is transparent to the algorithm user
(or algorithm author). Our code remains the same, and our
edge file remains as one single file on disk; re-sharding is
unnecessary.

V. CONCLUSION AND FUTURE WORK

We contribute our crucial insight that by leveraging mem-
ory mapping, a fundamental operating system capability,

http://wshan.net/turbograph/


Connected Comp 1-PageRank 5-PageRank

0

20

40
40.4

10

49.1

6.82

2.38
6.07

1.72 0.43 1.8E
la

ps
ed

Ti
m

e
(s

ec
on

ds
)

GraphChi TurboGraph Memory Mapping

(a) LiveJournal graph (69 million edges)

Connected Comp 1-PageRank 5-PageRank

0

500

1,000

762

225

1,173

170

47

168

52

246

E
la

ps
ed

Ti
m

e
(s

)

GraphChi TurboGraph Memory Mapping

(b) Twitter graph (1.47 billion edges)

Figure 2: Comparing the elapsed times (in seconds) of three approaches: GraphChi, TurboGraph, and our Memory Mapping,
on (a) 69 million edge LiveJournal network, and (b) 1.47 billion edge Twitter graph. Graph algorithms evaluated are, from
left to right: connected components, 1 iteration of PageRank, and 5 iterations of PageRank. Our approach, in orange, is up
to 27 times as fast as GraphChi, for 5 iterations of PageRank on the LiveJournal graph (3.37 times vs. TurboGraph), and
4.77 times on the Twitter graph.

we can outperform state-of-the-art graph computation ap-
proaches. Using large, real graphs of up to 1.5 billion edges,
we compare our approach with two state-of-the-art single-
machine computing systems: GraphChi and TurboGraph.
We demonstrate that our minimalist approach—one that
forgoes explicit memory management and data structure
design employed by other approaches—is up to 26 times
faster than GraphChi, and comparable to TurboGraph. Our
streamlined implementation has only 184 lines of statements.

Our work has shown us to an exciting, new direction that
could push the single-machine graph computation speed to
a new height. We look forward to seeing other approaches
integrate our work. For the road ahead, we plan to explore
several related ideas, such as to (1) port our Java implemen-
tation to C++ for even greater speed; (2) investigate how
using space-efficient data structures such as Compressed
Sparse Row for storing the edges may help boost speed;
and (3) explore how to support time-evolving graphs.

REFERENCES

[1] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein, “Graphlab: A new framework for parallel
machine learning,” arXiv preprint arXiv:1006.4990, 2010.

[2] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus:
A peta-scale graph mining system implementation and ob-
servations,” in Data Mining, 2009. ICDM’09. Ninth IEEE
International Conference on. IEEE, 2009, pp. 229–238.

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-
scale graph processing,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data.
ACM, 2010, pp. 135–146.

[4] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-
scale graph computation on just a pc,” in Proceedings of the
10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012, pp. 31–46.

[5] W.-S. Han, L. Sangyeon, K. Park, J.-H. Lee, M.-S. Kim,
J. Kim, and H. Yu, “Turbograph: A fast parallel graph engine
handling billion-scale graphs in a single pc,” in Proceedings of
the 19th ACM SIGKDD Conference on Knowledge Discovery
and Data mining. ACM, 2013.

[6] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on nat-
ural graphs,” in Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2012, pp. 17–30.

[7] MathWorks. Overview of memory-mapping. Accessed: 2013-
07-31. [Online]. Available: http://www.mathworks.com/help/
matlab/import export/overview-of-memory-mapping.html

[8] MSDN. Memory-mapped files. Accessed: 2013-07-31.
[Online]. Available: http://msdn.microsoft.com/en-us/library/
dd997372.aspx

[9] A. Tevanian, R. F. Rashid, M. Young, D. B. Golub, M. R.
Thompson, W. J. Bolosky, and R. Sanzi, “A unix interface
for shared memory and memory mapped files under mach.”
in USENIX Summer. Citeseer, 1987, pp. 53–68.

[10] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan,
“Group formation in large social networks: membership,
growth, and evolution,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2006, pp. 44–54.

[11] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a
social network or a news media?” in Proceedings of the 19th
international conference on World wide web. ACM, 2010,
pp. 591–600.

http://www.mathworks.com/help/matlab/import_export/overview-of-memory-mapping.html
http://www.mathworks.com/help/matlab/import_export/overview-of-memory-mapping.html
http://msdn.microsoft.com/en-us/library/dd997372.aspx
http://msdn.microsoft.com/en-us/library/dd997372.aspx

	Introduction
	Related Work
	Our Approach
	Overview and Motivations
	Memory Mapping and Its Advantages
	Fast I/O Operations
	Less Overhead

	Our Idea: Memory-map Edge File for Fast Computation

	Experiment
	Goal and Overview
	Datasets and Experimental Setup
	Results on 69M edge LiveJournal Network
	Results on 1.47B edge Twitter Network

	Conclusion and Future Work
	References

