
PEGASUS: MINING BILLION-SCALE GRAPHS IN THE CLOUD

U Kang, Duen Horng “Polo” Chau, and Christos Faloutsos

School of Computer Science, Carnegie Mellon University

ABSTRACT
We have entered in an era of big data. Graphs are now

measured in terabytes or even petabytes; analyzing them has
become increasingly challenging. How do we find patterns
and anomalies in these graphs that no longer fit in memory?
How should we exploit parallel computation to boost our
analysis capabilities? We present PEGASUS, the first open-
source, peta-scale graph mining library, for the HADOOP
platform (open-source implementation of MAPREDUCE).

By observing that many graph mining operations can be
described by repeated matrix-vector multiplications, we de-
vised an important primitive called GIM-V for PEGASUS that
applies to all such operations. GIM-V (Generalized Iterative
Matrix-Vector multiplication) is highly optimized, achieving
(1) good scale-up with the number of machines, (2) linear run
time on the number of edges, and (3) more than 9 times faster
performance over the non-optimized version. We ran exper-
iments for PEGASUS on M45, one of the largest HADOOP
clusters in the world. We report our findings on several real
graphs with billions of nodes and edges. Selected findings
include (a) the discovery of adult advertisers in the who-
follows-whom on Twitter, and (b) the 7-degrees of separation
in the Web graph.

Index Terms— PEGASUS, graph mining, HADOOP

1. INTRODUCTION

Graphs are ubiquitous: computer networks, social networks,
mobile call networks, and the World Wide Web, to name a
few. Spurred by the lower cost of storage, the success of so-
cial networking websites and Web 2.0 applications, and the
high availability of data sources, graph data are being gener-
ated at unprecedented size. They are now measured in ter-
abytes or even petabytes, with billions of nodes and edges.
Historically, however, most graph mining algorithms were

Research was sponsored by the Defense Threat Reduction Agency un-
der contract No. HDTRA1-10-1-0120, and by the Army Research Labora-
tory under Cooperative Agreement Number W911NF-09-2-0053. This work
is also partially supported by an IBM Faculty Award, a Google Focused Re-
search Award, and a Yahoo Research Alliance Gift. The views and conclu-
sions contained in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or implied, of
the Army Research Laboratory, the U.S. Government, or other funding par-
ties. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation here on.

designed under the assumption that the graphs would fit in
the main memory of a workstation, or a single disk at its
largest. The above graphs violate these assumptions. They
require us to confront our long-held assumption, and to re-
design the algorithms so they can work with these new breed
of massive graphs. We surveyed promising frameworks that
supported parallel computation, on which we could develop
such massively-scalable algorithms. We selected HADOOP,
an open-source implementation of MAPREDUCE.

We first address the research question: how to design ef-
ficient MAPREDUCE algorithms which can handle such mas-
sive graphs? There are several challenges. First, can we for-
mulate graph mining algorithms using simple operations that
can be efficiently implemented on MAPREDUCE? Second,
how to store the graphs efficiently to minimize storage space
and to enable fast graph queries?

The second question we investigate: what patterns and
anomalies can we discover in huge, real-world graphs with
billions of nodes and edges? Huge graphs have interest-
ing patterns or regularities, such as those in their connected
components, radii, triangles, etc. Discovering these pat-
terns helps us spot anomalies, a capability useful in a wide
spectrum of applications, such as cyber-security (computer
networks), phone companies (fraud detection), and social
networks (spammer detection).

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 describes the algorithms
for large graph mining. In Section 4 we present the per-
formance results and our findings in real world, large scale
graphs. We conclude in Section 5.

2. RELATED WORKS

In this section, we review related work on MAPREDUCE,
HADOOP, and large scale graph mining with HADOOP.

MAPREDUCE is a programming framework [1] for pro-
cessing huge amounts of unstructured data in a massively par-
allel way. MAPREDUCE has two major advantages: (a) the
programmer is oblivious of the details of the data distribution,
replication, load balancing etc. and furthermore (b) the pro-
gramming concept is familiar, i.e., the concept of functional
programming. Briefly, the programmer needs to provide two
functions, a map and a reduce. The typical framework is as
follows [2]: (a) the map stage sequentially passes over the in-



put files and outputs (key, value) pairs; (b) the shuffling stage
groups of all values by key, and (c) the reduce stage processes
the values with the same key and outputs the final result.

HADOOP is the open source implementation of MAPRE-
DUCE. HADOOP provides the Distributed File System
(HDFS) and PIG, a high level language for data analysis [3].
Large scale graph mining using HADOOP has attracted sig-
nificant interests [4, 5, 6] due to its simplicity, fault tolerance,
and low maintenance costs, compared to graph mining based
on MPI [7] and Bulk Synchronous Parallel model [8].

3. ALGORITHMS FOR LARGE GRAPH MINING

Our proposed PEGASUS package1 comprises large scale
graph mining algorithms which we describe in this section.
For each of the algorithm, we provide the motivating ques-
tions and our answers.

3.1. Structure Analysis

Problem 1 How can we find connected components, diam-
eter, PageRank, and node proximities of very large graphs
quickly? Furthermore, how can we design a general primi-
tive which can be applied to many different algorithms?

We observe that many graph mining algorithms, like con-
nected components, diameter, PageRank, and node proxim-
ities, can be unified via the GIM-V primitive, standing for
Generalized Iterative Matrix-Vector multiplication [9]. In the
GIM-V, we generalize the three internal operations(multiply,
sum, and assign) in the standard matrix-vector multiplications
to define many different algorithms.

Having defined GIM-V, the next question is to design ef-
ficient methods for the generalized matrix-vector multiplica-
tion in MAPREDUCE. Our first main idea is to put together
several nonzero elements into square blocks, and perform the
block-wise matrix-vector multiplication instead of element-
wise multiplication. Our second main idea is to cluster the
graph so that nonzero elements in the adjacency matrix are
closely located, and then compress the nonzero bit strings
of each block by standard compression algorithms like gzip.
This compression greatly saves space, which leads to faster
running time of block-wise matrix-vector multiplication.

3.2. Eigensolver

Problem 2 How can we design a scalable eigensolver? How
can we handle skewed matrix-matrix multiplication where
one matrix is much larger than the other?

Given a billion-scale graph, how can we find near-cliques,
the count of triangles, and related graph properties? All
of them can be found quickly if we have the first several

1available at http://www.cs.cmu.edu/∼pegasus

eigenvalues and eigenvectors of the adjacency matrix of the
graph [10]. Despite their importance, existing eigensolvers do
not scale well. We developed HEIGEN [11], an eigensolver
for billion-scale, sparse symmetric matrices.

A challenge in HEIGEN is to design an efficient method
for skewed matrix-matrix multiplication, where the first ma-
trix is much larger than the second matrix. Our main idea is
to broadcast the smaller matrix to all the mappers, so that the
second matrix can be joined with the elements of the first ma-
trix in the mapper. This greatly reduces the network traffic
and decreases the running time. Experiments show that our
proposed method outperforms naive methods by 76× [11].

3.3. Inference

Problem 3 How to scale-up the inference, or “guilt by as-
sociation” algorithm for very large graphs with billions of
nodes and edges?

Inference in graphs is an important problem, which often
corresponds, intuitively, to “guilt by association” scenarios.
For example, if a person is a drug-abuser, probably his/her
friends are so, too; if a node in a social network is of male
gender, his dates are probably females. The typical way to
handle this is belief propagation [12], and we tackle the scal-
ability issue of the belief propagation.

We observe belief propagation cannot be formulated by a
generalized matrix-vector multiplication on the original adja-
cency matrix and a vector. Instead, we formulate the belief
propagation by a generalized matrix-vector multiplication on
the line graph matrix and the message vector [13]. Our key
contribution is to compute the multiplication without explic-
itly constructing the line graph: instead, we use the original
adjacency matrix to compute the multiplication on the line
graph.

3.4. Storage and Indexing

Problem 4 How to store and index graph edge files so that
graph mining queries can be answered quickly?

We consider targeted graph mining queries whose an-
swers require the access to only parts of the graph. Exam-
ples of targeted queries include k-step in/out-neighbors, and
egonet queries. Our main idea is as follows. In the index-
ing stage, we make rectangular blocks of adjacency matrix,
and store several blocks into grids where each grid corre-
sponds to a square-shaped area in the adjacency matrix. In
the query stage, only relevant grids are selected based on the
queries. Experiments show that this ‘grid selection’ reduces
the running time up to 4× than the naive methods [14].

4. EXPERIMENTS

In this section, we present experimental results including the
performance of our proposed method, and the discoveries on



large, real world graphs. Table 1 lists the graphs used. The
experiments were performed in Yahoo!’s M45 HADOOP clus-
ter, one of the largest HADOOP clusters available to academia
with 480 machines, 1.5 petabyte storage and 3.5 Terabyte
memory in total.

Name Nodes Edges Description

YahooWeb 1,413 M 6,636 M Web links in 2002
Twitter 63 M 1,838 M Who follows whom

in Nov. 2009
Random 177 K 1,977 M Synthetic graphs

Table 1. Order and size of networks.

4.1. Performance

Figure 1 shows the disk space and the running time compar-
isons of GIM-V variants. Note that the ‘Proposed’ method,
which combines the clustering and the compression, provides
up to 43× smaller storage and 9.2× faster running time com-
pared to the ‘Naive’ method which does not have the cluster-
ing and the compression.

(a) File size (b) Running time

Fig. 1. (a) File size comparison after clustering and com-
pression. The Y-axis is in log scale. Note our proposed
method reduces the data size up to 43× smaller than the orig-
inal(‘Naive’). The ‘Random’ graph has better performance
gain than real-world graphs since the density is much higher.
(b) Running time comparison of PageRank queries. Our pro-
posed method outperforms the baseline by 9.2×.

4.2. Discoveries

We report interesting discoveries in large, real-world graphs.
They include the patterns and anomalies in radius plots, con-
nected components, and triangle counting.

4.2.1. Radius Plots

What are the central nodes and outliers in graphs? How
closely are nodes in graphs connected? These questions are
answered by radius plot, which is the distribution of the radius
of nodes. The radius r(v) of node v is the distance between v
and a reachable node farthest away from v. The diameter of
a graph is the maximum radius of nodes. The effective radius
and the effective diameter are defined as the 90% percentile

of the radius and the diameter, respectively [15, 16]. We ana-
lyze the effective diameter and radii of YahooWeb in Figure 2
(a). We have the following observations.

Small Web. The effective diameter of the YahooWeb
graph (year: 2002) is surprisingly small (≈ 7 ∼ 8).

Multi-modality of Web graph. The radius distribution
of the YahooWeb graph has a multi-modal structure, which
is possibly due to a mixture of relatively smaller subgraphs
which got loosely connected recently.

4.2.2. Connected Components

What are the patterns and anomalies in the connected com-
ponents of a Web graph? Figure 2 (b) shows the size dis-
tribution of connected components in YahooWeb graph. We
have the following observation which shows the patterns of
anomalous web pages [9].

Anomalous connected components. Figure 2(b) shows
two outstanding spikes which deviate significantly from the
‘power-law’ like size distributions of small disconnected
components. In the first spike at size 300, more than half of
the components have exactly the same structure and they were
made from a domain selling company where each component
represents a domain to be sold. The spike happened because
the company replicated sites using the same template. In the
second spike at size 1101, more than 80 % of the components
are adult sites disconnected from the giant connected com-
ponent. Again, the adult sites are generated from a template.
To summarize, the distribution plot of connected components
reveals interesting communities with special purposes which
are disconnected from the rest of the Internet.

4.2.3. Triangle Counting

What are the patterns and anomalies in the triangle counts
and the degrees in social network graphs? Figure 2 (c) shows
the degree and the number of participating triangles in the
Twitter ‘who follows whom’ graph at year 2009 [11]. We
have the following observation which can be used to spot and
eliminate harmful accounts such as those of adult advertisers
and spammers.

Anomalous triangles vs. degree ratio. In Figure 2 (c),
celebrities have high degrees and mildly connected followers,
while adult accounts have many fewer, but extremely well
connected, followers. The reason is that adult accounts are
often from the same provider, and they follow each other to
possibly boost their rankings or popularities.

5. CONCLUSION

We presented PEGASUS, a graph mining library for finding
patterns and anomalies in massive, real-world graphs. Our
major contributions include:

• Scalable algorithms for mining billion-scale graphs.



(a) Radius plot of YahooWeb (b) Connected components of YahooWeb (c) Triangle counts in Twitter

Fig. 2. Discoveries in large, real world graphs. (a) Radius plot of the YahooWeb graph. Notice the effective diameter is
surprisingly small. Also notice the multi-modality which is possibly due to a mixture of relatively smaller subgraphs. (b)
Connected components size distribution of the YahooWeb. Notice the two anomalous spikes which deviate significantly from
the constant-slope tail. (c) The degree vs. participating triangles of some ‘celebrities’ in Twitter accounts. Also shown are
accounts of adult sites which have smaller degree, but belong to an abnormally large number of triangles. The reason of the
large number of triangles is that adult accounts are often from the same provider, and they follow each other to form a clique,
to possibly boost their rankings or popularities.

• Performance analysis of our proposed method, which
achieves up to 43× smaller storage and 9.2× faster run-
ning time.

• Discovery of patterns and anomalies of structural pat-
terns in huge, real-world graphs. Some of our most
impressive findings are (a) the discovery of adult ad-
vertisers in the who-follows-whom on Twitter, and (b)
the 7-degrees of separation in the Web graph.

As we are only at the dawn of the era of big data, many
exciting research directions await us. We have begun work-
ing on extending PEGASUS to support massive-scale tensor
analysis and unsupervised anomaly detection.

References

[1] Jeffrey Dean and Sanjay Ghemawat, “MapRe-
duce: Simplified Data Processing on Large Clusters,”
OSDI’04, Dec. 2004.

[2] Ralf Lämmel, “Google’s mapreduce programming
model – revisited,” Science of Computer Programming,
vol. 70, pp. 1–30, 2008.

[3] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, and Andrew Tomkins, “Pig latin: a not-so-
foreign language for data processing,” in SIGMOD ’08,
2008, pp. 1099–1110.

[4] Spiros Papadimitriou and Jimeng Sun, “Disco: Dis-
tributed co-clustering with map-reduce,” ICDM, 2008.

[5] “Mahout,” http://lucene.apache.org/mahout/.
[6] Amol Ghoting, Rajasekar Krishnamurthy, Edwin

P. D. Pednault, Berthold Reinwald, Vikas Sindhwani,
Shirish Tatikonda, Yuanyuan Tian, and Shivakumar
Vaithyanathan, “Systemml: Declarative machine learn-
ing on mapreduce,” in ICDE, 2011, pp. 231–242.

[7] Aydin Buluç and John R. Gilbert, “The combinatorial

blas: design, implementation, and applications,” IJH-
PCA, vol. 25, no. 4, pp. 496–509, 2011.

[8] Grzegorz Malewicz, Matthew H. Austern, Aart J. C.
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski, “Pregel: a system for large-scale
graph processing,” in SIGMOD Conference, 2010, pp.
135–146.

[9] U Kang, C.E Tsourakakis, and C. Faloutsos, “Pegasus:
A peta-scale graph mining system - implementation and
observations,” ICDM, 2009.

[10] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller,
and Christos Faloutsos, “Doulion: counting triangles in
massive graphs with a coin,” in KDD, 2009, pp. 837–
846.

[11] U. Kang, Brendan Meeder, and Christos Faloutsos,
“Spectral analysis for billion-scale graphs: Discoveries
and implementation,” in PAKDD (2), 2011, pp. 13–25.

[12] J. Pearl, “Reverend Bayes on inference engines: A dis-
tributed hierarchical approach,” in Proceedings of the
AAAI National Conference on AI, 1982, pp. 133–136.

[13] U. Kang, Duen Horng Chau, and Christos Faloutsos,
“Mining large graphs: Algorithms, inference, and dis-
coveries,” in ICDE, 2011, pp. 243–254.

[14] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung
Lin, and Christos Faloutsos, “Gbase: a scalable and
general graph management system,” in KDD, 2011, pp.
1091–1099.

[15] U. Kang, Charalampos E. Tsourakakis, Ana Paula Ap-
pel, Christos Faloutsos, and Jure Leskovec, “Radius
plots for mining tera-byte scale graphs: Algorithms, pat-
terns, and observations,” in SDM, 2010, pp. 548–558.

[16] U. Kang, Charalampos E. Tsourakakis, Ana Paula Ap-
pel, Christos Faloutsos, and Jure Leskovec, “Hadi: Min-
ing radii of large graphs,” ACM Trans. Knowl. Discov.
Data, vol. 5, pp. 8:1–8:24, February 2011.


	 Introduction
	 Related Works
	 Algorithms for Large Graph Mining
	 Structure Analysis
	 Eigensolver
	 Inference
	 Storage and Indexing

	 Experiments
	 Performance
	 Discoveries
	 Radius Plots
	 Connected Components
	 Triangle Counting


	 Conclusion

