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Abstract

Establishing consistent correspondences between two sets of features is a fundamental problem in computer vision.

This problem can be well formulated as graph matching in which nodes and edges represent feature points and pairwise

relationships between feature points, respectively. Spectral matching [19] is the state-of-the-art eigenvector-based

method for graph matching. The spectral matching algorithm has been used successfully for small data, but its heavy

memory requirement limited the maximum data sizes and contexts it can be used. In this paper, we propose FASM,

a fast and scalable approximate spectral matching algorithm. The main ideas are two-fold. First, we exploit the

redundancy in the data generation process to approximate the affinity matrix with the linear combination of Kronecker

products between bases and index matrices. The bases and index matrices are highly compressed representation of

the approximated affinity matrix, requiring much smaller memory than in previous works which store the whole

affinity matrix. Second, we compute the eigenvector of the approximated affinity matrix using the small bases and

index matrices without explicitly materializing the approximated matrix. Experimental results show that our proposed

method is up to 33× faster, requiring up to 645× smaller memory than the exact algorithm, with little or no loss of

accuracy.
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1. Introduction

Establishing consistent correspondences between two sets of features is a fundamental problem in computer vision.

Those include object recognition [5], object category discovery [20], robot localization [23, 26], 2D/3D registration [4,

32], shape matching [1], wide baseline stereo [25], and feature tracking [27]. Given two sets of features P and Q,
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(a) Query image (b) Query points (c) Model image (d) Model points (e) Matching

Figure 1: Example of the correspondence problem. Given a query image (a), query features (points) are extracted as
in (b). The query features are then compared with model features (d), which are extracted from a model image (c), to
find corresponding pairs as in (e), where horizontal lines indicate matches.

each having nP and nQ features respectively, the correspondence problem is to find a set C of corresponding pairs

(i, i′) where i ∈ P and i′ ∈ Q. Fig. 1 shows an example of the correspondence problem. For instance, a robot

navigating inside a building extracts features from the current image that it sees, and compares the extracted features

with the feature sets in the object database to identify the nature of the object (e.g., door, desk, clock, etc). The

correspondence problem can be formulated as graph matching in which nodes can represent the feature points and

edges can encode their pairwise relationships such as distances or angles. Correspondences between the nodes of two

graphs are established by considering how well both the unary information on the nodes and the pairwise relationships

associated with the edges are satisfied.

Spectral matching [19] is the state-of-the-art eigenvector-based graph matching algorithm successfully used in

various tasks [15, 20, 24]. This method builds the affinity matrix M of a graph whose nodes represent the potential

correspondences a = (i, i′) while the weights on the edges measure the similarity between pairs of potential corre-

spondences. The principal eigenvector of the matrix M is then computed to find corresponding pairs. The spectral

matching method, however, has the problem of scalability: the matrixM is very large, and thus the construction ofM ,

as well as the eigenvector computation takes very long. In this paper, we address the research challenge of scalability

- we show how to perform efficient spectral matching on a very large matrix with billions of nonzero elements by our

proposed FASM (FAst Spectral Matching) algorithm. Our contributions are the followings:

1. We observe that there exists high redundancy in the affinity matrix used for the spectral matching. Based on

the observation, we approximate the matrix by the linear combination of the Kronecker product of ‘bases’ and

index matrices which are highly compressed representation of the approximated affinity matrix, requiring much

smaller memory than in previous works.

2. We develop an efficient algorithm to compute the principal eigenvector of the approximated affinity matrix

using the compressed representation without explicitly materializing the approximated matrix.
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Symbol Definition

P Set of nP features (points) from the query image.
Q Set of nQ features (points) from the model image.
M nPnQ × nPnQ original affinity matrix whose element

M(a, b) represents how compatible the pair a = (i, i′) is
with the pair b = (j, j′).

Mij nQ × nQ submatrix of M , containing the rows
(i− 1)nQ + 1 : i · nQ and the columns
(j − 1)nQ + 1 : j · nQ.

M̂ Approximated matrix of M by FASM.
dij Distance of two points i and j.
d̂ij Approximated distance of dij by FASM.
w Bin width used in FASM.
σd Parameter to control the sensitivity of matching in spectral

matching algorithms.

Table 1: Table of symbols.

3. We perform extensive experiments, and show that our FASM is up to 33× faster, requires up to 645× smaller

memory than the exact algorithm, with little or no loss of accuracy.

The rest of this paper is organized as follows. Section 2 reviews the standard spectral matching [19]. Section 3

describes our proposed method of approximating the affinity matrix for spectral matching with few bases and index

matrices, and explains our proposed method of computing the principal eigenvector using the matrices. Section 4

provides experimental evaluations and comparisons. After reviewing the related works in Section 5, we conclude in

Section 6.

To enhance the readability of this paper, we listed the symbols frequently used in this paper in Table 1.

2. Preliminaries; Spectral Matching

In this section, we review the standard spectral matching [19] whose fast solution will be proposed in Section 3.

We consider two sets of features P and Q, each having nP and nQ features respectively. Following the original

work on spectral matching [19], we use the 2D or 3D coordinates of points as features, and the pairwise distances

between feature points as the pairwise relationships in this paper, but extending our work to other pairwise relation-

ships (e.g. angles [15, 20, 24]) is straightforward. The spectral matching first considers all possible correspondence

candidates (i ∈ P, i′ ∈ Q), and builds the affinity matrix MnPnQ×nPnQ whose element M(a, b) represents how

compatible the pair a = (i, i′) is with the pair b = (j, j′). The pairwise score M(a, b), representing the amount of

deformation between two candidate correspondences a = (i, i′) and b = (j, j′), is determined by
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M(a, b) =


4.5− (dij−di′j′ )

2

2σ2
d

, if |dij − di′j′ | < 3σd;

0 otherwise.
(1)

where dij and di′j′ are the distances between the points i and j, and between their candidate matches i′ and j′,

respectively. σd is a parameter to control the sensitivity of the matching: larger σd allows more deformations of the

data, and more pairwise relationships to have positive scores in the matrix M .

Note that M is a symmetric matrix, and all of its elements are in the range of 0 and 4.5. Intuitively, M(a, b) is big

if the two pairs a and b are consistent. For example, in Figs. 2a and 2b, the pairs (1, A) and (4, D) have high value

in M since 1 and A, as well as 4 and D, are exact corresponding pairs, making the difference between d14 and dAD

to almost 0. However, the pairs (1, A) and (4, C) have low value in M since 4 doesn’t correspond to C, making the

difference between d14 and dAC to a nontrivial value. Fig. 2c shows the affinity matrix M of the example graphs in

Figs. 2a and 2b.

Given the matrix M , we want to find the best cluster C∗ of assignments (i, i′) that maximizes the matching score

S:

S =
∑

a,b∈C∗
M(a, b) = xTMx, (2)

where x is a binary indicator vector with an element for each correspondence pair a = (i, i′) such that x(a) = 1 if i

in P is matched with i′ in Q, and 0 otherwise. The vector x∗ maximizing (2) is given by the solution of an Integer

Quadratic Program (IQP):

x∗ = argmax(xTMx). (3)

Relaxing the integral constraints on x by interpreting the value of x(a) as the association of a with the best

cluster, and requiring the norm of x to be 1, the solution of (3) is given by the eigenvector of M associated with the

largest eigenvalue according to the Rayleigh quotient theorem [17]. Since M contains only nonnegative elements,

the elements of x∗ will be in [0, 1] by Perron-Frobenius theorem [14]. This is the relaxed and continuous vector, so

we need to binarize x∗ to find discrete assignments. The binarization is performed by repeating the following greedy

steps:

1. Find a∗ = argmaxa∈L(x∗(a)), where L is the set of all tentative correspondences. If x∗(a∗) = 0, stop the

binarization. Otherwise set x(a∗) = 1 and remove a∗ from L.
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(a) Query (scene)

(b) Model (object in DB) (c) Affinity matrix

Figure 2: [Best viewed in color.] Example feature sets and their affinity matrix. (a-b): both the query and the
model have four points (features) whose pairwise distances are annotated on edges between them. (c): M is a
symmetric matrix, with each of its row or column (i, i′) representing a pair derived from the two feature sets. Note
that submatrices with the red bounding rectangles contain almost the same values as the submatrices with the blue
bounding rectangles, reflecting the main idea of Lemma 1.

2. Remove from L all potential correspondences which conflict with a∗ = (i, i′). These have the form of (i, ∗) or

(∗, i′).

3. If L is empty, return the solution x. Otherwise go back to step 1.

There is a scalability issue, however, in computing the eigenvector of M . Notice that M is a matrix with nPnQ

rows and columns, which means that the number of nonzero elements inM can grow in proportion to n4
Q at maximum

(see Section 3.3 for more details), assuming nP ∼ nQ, which is typically the case in real world data as described in

Section 4. Thus, constructing M explicitly in memory is prohibitive. In the next section, we show how to solve this

problem.

3. Proposed Method

In this section, we propose FASM (FAst Spectral Matching), a fast, scalable, and accurate approximation method

for spectral matching. FASM comprises two steps.

1. Affinity Matrix Approximation. Compute the approximated affinity matrix M̂ .

2. Eigenvector Computation. Compute the principal eigenvector of M̂ .
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We first describe our proposed method of approximating the affinity matrix used for the spectral matching, and

the fast method for computing the eigenvector of the affinity matrix.

3.1. Affinity Matrix Approximation

As described in Section 2, explicitly materializing M and computing the first eigenvector of M are hopeless due

to the heavy storage requirement of M . Our proposed idea to solve this problem is to exploit the redundancy pattern

in the affinity matrix. We observe that some areas of the matrix M have almost the same elements which we formally

describe as follows.

Lemma 1 (Redundancy in Affinity Matrix). Let i1, i2, j1, j2 be the points in P , with the pairwise distances following

the condition di1j1 = di2j2 . The four points are distinct, with the exception that i1 and i2 can be the same. Let i′ and

j′ be the arbitrary points inQ, satisfying i′ 6= j′. Let ak = (ik, i
′) and bk = (jk, j

′), for k = 1, 2. Then, the submatrix

of M involving i1 and j1 is identical to the submatrix of M involving i2 and j2. That is, M(a1, b1) = M(a2, b2).

Proof: Let |di1j1 − di′j′ | < 3σd. Then,

M(a1, b1) = 4.5− (di1j1 − di′j′)2

2σd2

= 4.5− (di2j2 − di′j′)2

2σd2

= M(a2, b2)

where we used the assumption di1j1 = di2j2 in the second equality. The same analysis applies to the case when

|di1j1 − di′j′ | ≥ 3σd.

Lemma 1 says that if there are two pairs of points in P whose pairwise distances are the same, then the submatrices

of M involving the two pairs are exactly the same. Furthermore, if |di1j1 − di2j2 | is very small, Lemma 1 implies

that M(a1, b1) ∼ M(a2, b2). Thus, if we have many pairs of points whose pairwise distances are the same or close,

then we have many redundancies in the matrix M . For example, the distance between the points 1 and 2 is almost the

same as that between the points 1 and 4 in Figs. 2a and 2b, which resulted in the submatrices with the red bounding

rectangles containing almost the same values as the submatrices with the blue bounding rectangles in Fig. 2c.

To make the observation into something useful, it is necessary to check whether there are many pairs of points

with same pairwise distances in real world data. For the purpose, we analyze the distance distribution from real world

data in Fig. 3. We see that the distribution is highly skewed, and many pairs of points have same or similar pairwise

distances.
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(a) Clock (b) TV (c) Refrigerator (d) Frame (e) Sofa

(f) Pairwise distance (g) Pairwise distance (h) Pairwise distance (i) Pairwise distance (j) Pairwise distance
distribution of clock distribution of TV distribution of refrigerator distribution of frame distribution of sofa

Figure 3: [Best viewed in color.] Objects and their distance distributions. (a-e): red dots indicate feature points
sampled from edges extracted with an edge detector [6]. (f-j): x-axis: the pairwise distance, y-axis: the number of
pairs with such distance. We use 1mm for the bin width.

Figure 4: Distance distribution of the frame object shown in Fig. 3d, divided by bins whose width w is 100. All the
distances within a bin are approximated to the center distance of the bin: for example, all the distances from 200 to
300 mm (the rectangle 3) are approximated to 250 mm. In real applications, the bin width is much smaller than 100
(typically, 5 mm).

Given this observation, our proposed idea is to approximate the elements of M using approximate distances d̂ij

instead of exact distances dij . Let dmax be the maximum distance of the points in P . We divide the total distance

range into k = dmax

w bins, where w is the width of a bin. Then, all the distances within the range from w · i to w(i+1)

is approximated by d̂ij = w(2i+1)
2 . That is, dij is approximated by

d̂ij = w(bdij
w
c+

1

2
), (4)

where the function bxc maps a real number x to the largest integer not greater than x.

For example, see Fig. 4 for the distance distribution of the frame object shown in Fig. 3d. We divide the total
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distance range into 12 bins of width 100. All the distances within a bin are approximated to the center distance of the

bin: e.g., all the distances from 200 to 300 mm (the rectangle 3) are approximated to 250 mm.

How does this approximation of dij by d̂ij change the affinity matrix M? Let Mij be the nQ by nQ submatrix of

M , containing the rows (i− 1)nQ + 1 : i · nQ and the columns (j − 1)nQ + 1 : j · nQ. If we think of filling M with

nQ by nQ blocks, then Mij is the area of M covered with the block with the block row id i and the block column id

j. That is, M can be represented by

M =



0 M12 · · · M1nP

M21 0 · · · M2nP

...
...

. . .
...

MnP 1 MnP 2 · · · 0


.

Recall from (1) that for two points i, j ∈ P whose pairwise distance is dij , the (i′, j′)th element Mij(i
′, j′) of

Mij is determined by

Mij(i
′, j′) =


4.5− (dij−di′j′ )

2

2σd
2 , if |dij − di′j′ | < 3σd;

0 otherwise.

Our idea is to approximate Mij with M̂ij whose (i′, j′)th element M̂ij(i
′, j′) is determined by

M̂ij(i
′, j′) =


4.5− (d̂ij−di′j′ )

2

2σd
2 , if |d̂ij − di′j′ | < 3σd;

0 otherwise.
(5)

Since there are (k = dmax

w ) distinct d̂ijs, the approximation by (5) creates k distinct nQ × nQ submatrices of M̂ .

Let B = {B0, ..., Bk−1} be the set of such matrices, where Bi is created using the approximated distance w(i + 1
2 ).

Let Hi be the nP × nP index matrix containing only the index of the matrix Bi in M̂ . That is, Hi’s (j, k)th element

Hi(j, k) is 1 if M̂jk = Bi, and 0 otherwise. Then, M̂ can be represented by the linear combination of the Kronecker

product of Hi and Bi, for 0 ≤ i ≤ k − 1:

M̂ =

k−1∑
i=0

Hi ⊗Bi, (6)

where the Kronecker product of two matrices Hi and Bi of dimensions nP × nP and nQ × nQ, respectively, is a

matrix with dimensions nPnQ × nPnQ given by
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Hi ⊗Bi =



Hi(1, 1)Bi Hi(1, 2)Bi · · · Hi(1, nP )Bi

Hi(2, 1)Bi Hi(2, 2)Bi · · · Hi(2, nP )Bi
...

...
. . .

...

Hi(nP , 1)Bi Hi(nP , 2)Bi · · · Hi(nP , nP )Bi


.

For example, when we use the bin width 10 to approximate the matrix in Fig. 2, M̂ becomes

M̂ =



0 B4 B5 B4

B4 0 B2 B4

B5 B2 0 B2

B4 B4 B2 0


with H2, H4, and H5 given by

H2 =



0 0 0 0

0 0 1 0

0 1 0 1

0 0 1 0


, H4 =



0 1 0 1

1 0 0 1

0 0 0 0

1 1 0 0


, and H5 =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


.

Note that Hi and Bi matrices are highly compressed representation of the M̂ matrix. Storing Hi and Bi require

much smaller space than explicitly storing the M̂ matrix, as we will see in Section 3.3.

A remaining question is, how accurate is the approximation of Mij(i
′, j′) by M̂ij(i

′, j′)? Since dij and d̂ij

are close, the matrix elements Mij(i
′, j′) and M̂ij(i

′, j′) are expected to be close. We provide the bound of the

approximation as follows.

Lemma 2 (Bound of Approximation). Assume |dij − di′j′ | < 3σd − w
2 . Then, |M̂ij(i

′, j′)−Mij(i
′, j′)| ≤ 1.5w

σd
.

Proof: |M̂ij(i
′, j′)−Mij(i

′, j′)|

= |(4.5− (dij−di′j′ )
2

2σd
2 )− (4.5− (d̂ij−di′j′ )

2

2σd
2 )|

= | (dij+d̂ij−2di′j′ )(dij−d̂ij)

2σd
2 | ≤ 6σd

w
2

2σd
2 = 1.5w

σd
,

where the inequality is derived from the fact that |dij − d̂ij | ≤ w
2 which follows from the definition of d̂ij in (4).

Lemma 2 states that the approximated matrix does not differ much from the original matrix, under the mild

assumption. We verify the accuracy of the approximation with the experiments in Section 4.
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3.2. Eigenvector Computation

The standard method to compute the principal eigenvector of a matrix is called the power method [13]. In the

power method, we multiply the matrix with a randomly initialized vector repeatedly until the normalized vector

converges. The converged vector is the principal eigenvector of the matrix.

A naive method to compute the principal eigenvector of M̂ is to explicitly materialize M̂ and run a standard power

method to compute the principal eigenvector. However, such method lacks scalability since the materialized matrix

M̂ is very large. Our proposed idea, called bases power method, is to use the compressed representation of M̂ for

the power method. Recall that we expressed M̂ using the linear combinations of Kronecker Products of Hi and Bi

matrices in (6). The key observation is that we can perform the power method on M̂ using Hi and Bi. Applying the

power method on M̂ requires the matrix-vector multiplication M̂v for a vector v. Since M̂ =
∑k−1
i=0 Hi⊗Bi, we can

instead compute

M̂v = (

k−1∑
i=0

Hi ⊗Bi)v =

k−1∑
i=0

(Hi ⊗Bi)v

for computing M̂v.

Algorithm 1 describes our proposed bases power method. In line 2, a random vector with norm 1 is initialized.

Then, the vector is multiplied with the M̂ repeatedly until convergence, in lines 4 to 11. Note that neither M̂ nor

Hi ⊗ Bi, for i = 0..k − 1, are never explicitly constructed: only the bases matrices Bi and index matrices Hi are

used to compute the matrix-vector multiplication. To compute (Hi ⊗ Bi)v, for each nonzero elements Hi(x, y) we

Algorithm 1: Bases Power Method
Input : Bases matrices Bi and index matrices Hi, for 0 ≤ i ≤ k − 1
Output: Principal eigenvector x̂ of (M̂ =

∑k−1
i=0 Hi ⊗Bi)

begin1

v(0) ← random vector with ||v(0)|| = 1;2

j ← 0;3

while v(j) does not converge do4

j ← j + 1;5

z ← 0;6

for i=0..k-1 do7

z ← z + (Hi ⊗Bi)v(j−1);8

end9

v(j) ← z/||z||;10

end11

x̂← v(j);12

end13
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multiply Bi with v((y − 1)nQ + 1 : y · nQ) and add the resulting vector to the v((x − 1)nQ + 1 : x · nQ)th rows

of the output vector. This method avoids constructing Hi ⊗ Bi and thus requires much less storage than the original

spectral matching (see Section 3.3 for a detailed analysis). Note that one can even decrease the number of floating

point operations by reusing the multiplication result among the nonzero elements of Hi with the same column id,

since the multiplication results are the same for Hi(x1, y1) and Hi(x2, y2) if y1 = y2. Also note that the Bi and Hi

matrices are accessed sequentially (not randomly) in line 7-9 of Algorithm 1, making the algorithm suitable for large

scale, distributed platform like MAPREDUCE [9] which allows only sequential accesses to files.

3.3. Discussion

We discuss the storage, time of FASM, and the perturbation analysis of the principal eigenvector of the affinity

matrix.

Storage Estimation. In this section, we estimate the required memory in the standard spectral matching and in our

approximation. From the definition of M in 1, the matrix M , as well as its submatrices Mij , are symmetric. Thus,

the maximum number of nonzero elements inside a block is given by
∑nQ−1
i=1 i =

nQ(nQ−1)
2 , if we save only upper-

diagonal elements. Applying the same analysis to M , the maximum number of nonzero elements in the matrix M to

store in memory is given by

Maximum nonzeros in M =
nP (nP − 1)

2

nQ(nQ − 1)

2
.

Let ρ be the density of the matrix M , meaning the number of edges divided by the maximum possible number of

edges. Assuming nP ∼ nQ, it follows that

Nonzeros in M = ρ
nP (nP − 1)

2

nQ(nQ − 1)

2
∝ O(n4

Q).

In contrast, storing M̂ requires (k = dmax

w ) distinct bases matrices Bi with dimensions nQ × nQ, and index

matrices Hi with dimensions nP × nP , for 0 ≤ i ≤ k − 1. Notice that the number of nonzero elements in all the

index matrices, in total, is at most n2
P . Thus, the maximum number of nonzero elements to store M̂ is given by

Maximum nonzeros to store M̂ =
dmax
w

nQ(nQ − 1)

2
+ n2

P .

Assuming M̂ has the same density as M , and nP ∼ nQ,

Nonzeros to store M̂ ≤ ρdmax
w

nQ(nQ − 1)

2
+ n2

P ∝ O(n2
Q).
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Thus, the quadratic growth rate of our approximation is much smaller than the quartic growth rate of the standard

spectral matching. We verify this growth rate in Section 4.3.

Time Analysis. FASM runs faster than the standard spectral matching for two reasons. First, FASM requires much

less memory than the standard spectral matching, thereby benefits much more from the cache functionality of modern

computer system. Especially, computing (Hi ⊗ Bi)v for each i (line 8 of Algorithm 1) requires the repetitive use

of Bi some (or all) of which can be contained in the cache. Second, FASM allows an optimization of reducing the

number of floating point operations by reusing multiplication results, as described in the last paragraph of Section 3.2.

We will see that these two advantages lead to the running time differences up to 33×, in Section 4.

Perturbation Analysis. An interesting question is how the principal eigenvector x̂ of the approximated matrix M̂

differs from the principal eigenvector x of the original matrix M . Let the matrix ∆ = M̂ −M be the difference of

the two matrices M̂ and M , and γ1 be the eigengap (difference of the first and the second largest eigenvalues) of M .

From the standard matrix perturbation theory [22, 30], the difference of the eigenvectors is bounded by

||x̂− x||2 ≤
4||∆||F

γ1 −
√

2||∆||F
. (7)

where the eigenvector changes little if the eigengap is large and the perturbation is small. As we will see in Section 4,

the left and the right hand term of (7) is small for real data.

4. Experiments

We present experimental results to answer the following questions:

Q1 Accuracy. What is the accuracy of our FASM compared to the exact algorithm?

Q2 Memory and Running Time. How much does our FASM reduce the required memory and the running time?

Q3 Scalability. How does our FASM scale-up with data sizes?

Q4 Parameter. What is the trade-off between the accuracy and the running time/memory size on different values

of the bin width parameter in FASM?

Q5 Perturbation. How does the principal eigenvector change due to the approximation by FASM?

Q6 Practical Implementation. How can we make our FASM faster and reduce the required memory even more?

For the experiments, we use discrete sets of 3D points of image features sampled from the external and internal

contours on objects in Figs. 3 and 5, whose sizes are listed in Table 2. These data are available in http://cs.

cmu.edu/˜ukang/FASM. In order to extract the image features on the objects, we first obtain the edge map from
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(a) Clock (b) TV (c) Refrigerator (d) Frame (e) Sofa

Figure 5: [Best viewed in color.] Query images including clock, TV, refrigerator, frame, and sofa. Red dots indicate
feature points sampled from edges extracted with an edge detector [6].

Object Features in Model Features in Query Number of matrix Number of matrix
(Figure 3) (Figure 5) nonzeros in SM nonzeros in FASM

Clock 79 155 1,928,048 30,794
TV 167 204 11,702,742 138,602

Refrigerator 313 701 315,033,384 488,248
Frame 419 567 1,153,604,736 2,060,794

Sofa 1390 1567 2,094,849,871 4,825,635

Table 2: Size of the data and its affinity matrix.

the Canny edge detector [6]. Next, we remove spurious edges by grouping the edge elements into connected contour

fragments [28]. Then we select image features by evenly sampling the edge contours. We use σd = 5 for all the

experiments, and bin width w = 5 for the experiments from Section 4.1 to 4.3 and 4.6, and vary the bin width for

the experiments from Section 4.4 to 4.5. We use SM to refer to the standard exact spectral matching algorithm. All

experiments are performed in a machine with Intel Core i5 CPU 661 (3.33Ghz) and 8GB DDR3 memory.

4.1. Accuracy

How accurate is our approximated FASM algorithm, compared to the exact SM algorithm? For the evaluation, we

run FASM and SM on the model objects in Table 2, and the perturbed version of the objects to measure the matching

rate defined as the ratio of the correctly matched pairs and the total matched pairs. We use the following perturbations:

• Varying outliers. We add Gaussian noise N(0, 52) to the model points, and rotate/translate them randomly.

Then, we choose p% of the points randomly, where we vary p, and swap their x, y, z coordinates to make them

outliers.

• Varying noise. We choose 20% of the model points randomly, and swap their x, y, z coordinates to make them

outliers. Then, we add Gaussian noise N(0, σ2), where we vary σ, and rotate/translate them randomly.

In Figs. 6a ∼ 6d, we see that FASM has little or no loss of accuracy compared to SM on varying the percentage p

of outliers. Varying the deformation Gaussian noise σ leads to the same conclusion as shown in Figs. 6e∼ 6h: FASM
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Figure 6: [Best viewed in color.] Accuracy comparison between SM (standard spectral matching) and FASM (our
proposed method). FASM and SM are compared on the model objects in Table 2, and the perturbed version of the
objects to measure the matching rate defined as the ratio of the correctly matched pairs and the total matched pairs.
FASM has little or no loss of accuracy compared to SM.

provides little or no loss of accuracy compared to SM.

4.2. Memory and Running Time

How much does our FASM save the required memory and the running time, compared to SM? We compare the

required memory and the running time of FASM and SM using the objects in Table 2. As shown in Fig. 7a, FASM

requires 63× to 645× smaller memory than SM. Furthermore, FASM is 6× to 33× faster than SM, as shown in

Fig. 7b.

4.3. Scalability

How does our FASM scale-up with growing data sizes? To compare the scalability of FASM and SM, we measure

the running time and memory size as the data sizes grow. Specifically, we randomly take m points from the frame

object with 567 points, to make a model object. Then, we add Gaussian noise N(0, 52) to the m points, and swap the

x, y, z coordinates of the 20% of the m points to make the query object. As we see in Fig. 8a, the required memory

in FASM grows much slowly than in SM. The growth rates 2.02 and 3.98 of the memory sizes of FASM and SM,

respectively, are very close to our estimated quadratic and quartic growth rate in Section 3.3.
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(a) Memory usage comparison of FASM and SM. (b) Running time comparison of FASM and SM.

Figure 7: Memory usage and running time comparison between SM and FASM. The y-axis is in log scale. (a): FASM
requires 63× to 645× smaller memory than SM. (b): FASM is 6× to 33× faster than SM.

(a) Memory vs. data size (b) Running time vs. data size

Figure 8: Scalability comparison of SM and FASM, on the frame object shown in Fig. 5d. The growth rates 2.02
and 3.98 of the memory sizes of FASM and SM, respectively, are very close to our estimated quadratic and quartic
growth rate in Section 3.3. The difference of the growth rate of the running times is smaller than that of the memory
sizes, since the bases power method in FASM still requires similar number of floating point operations, compared to
the power method in SM.

The result in Fig 8b shows that the running time of FASM grows slower than SM. However, the difference of the

growth rate of the running times is smaller than that of the memory sizes, since the bases power method in FASM still

requires similar number of floating point operations, compared to the power method in SM.

4.4. Parameter

How does the bin width parameter affect the performance of FASM? For the evaluation, we run FASM on the

model objects in Table 2 and the perturbed version of the objects to measure the matching rate, the required memory,

and the running time. We perturb the model points with Gaussian noise N(0, 52), and add outliers by swapping the

x, y, z coordinates of the 20% of the model points. Fig. 9 shows the trade-off results with regard to the bin width

parameter on the objects shown in Fig. 3. The result on the bin width 0 is from the standard spectral matching

algorithm SM, and all other results are from the FASM. We see that increasing the bin width slightly decrease the
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Figure 9: The effect of the bin width parameter on the performance of FASM tested on the objects shown in Fig. 3. The
result on the bin width 0 is from the standard spectral matching algorithm SM, and all other results are from the FASM.
Increasing the bin width slightly decrease the accuracy, while decreasing the memory requirement dramatically. The
running time also decreases as the bin width increase, but not as quickly as the rate of the memory size decrease since
the number of floating point operations didn’t change much.
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Figure 10: Perturbation analysis on the TV object shown in Fig. 3b. (c) is the full dataset, while (a) and (b) are
randomly sampled dataset from the full dataset. LH=||x̂ − x||2, and RH= 4||∆||F

γ1−
√

2||∆||F
of (7). Note that the actual

difference (labeled ‘LH’) of the eigenvector is very small (at most 0.1241 for the largest bin width 18). Also note
that the actual difference is much smaller than the theoretical upper bound (labeled ‘RH’), which explains the high
accuracy of the experiments shown in Section 4.1.

accuracy, while decreasing the memory requirement dramatically. The running time also decreases as the bin width

increase, but not as quickly as the rate of the memory size decrease since the number of floating point operations does

not change much. Fig. 9 suggests how to choose the bin width parameter. Increasing the bin width has advantages for

decreasing the memory and running time, but it has the disadvantage of decreasing the accuracy. Thus, the bin width

parameter should be determined based on the desired accuracy, memory size, and the running time.

4.5. Perturbation

How does the principal eigenvector change due to the approximation by FASM? We obtain the ideal matrixM and

the approximated matrix M̂ experimentally, in matching sets of feature points from the TV object shown in Fig. 3b.

We rotate and translate a set of feature points, without adding Gaussian noise and outliers, to obtain the other set.
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(a) Accuracy (b) Memory Size (c) Running Time

Figure 11: Performance analysis on the effect of the number of nearest neighbors for building the pairwise rela-
tionships per feature point, on the sofa object. The accuracy of FASM quickly increases up to 10%, while slightly
increases from 10% to 100%. The memory size and running time of FASM linearly increase as the number of nearest
neighbors increase. SM failed to show the matching results when the number of nearest neighbors is larger than 10%
since the required memory to store the affinity matrix of SM exceeds the physical memory size of our machine.

We then compute the difference of the eigenvector (||x̂− x||2), and the upper bound of the difference 4||∆||F
γ1−
√

2||∆||F
of

Equation (7). Fig. 10 shows that the actual difference of the eigenvector (labeled ‘LH’) is very small (at most 0.1241

for the largest bin width 18). We also see that the actual difference is much smaller than the theoretical upper bound

(labeled ‘RH’), which explains the high accuracy of FASM in practice as shown in Fig 6.

4.6. Practical Implementation

How can we make our FASM method faster and reduce the required memory even more? When the number

of feature points is very large, it is very time consuming to use all the pairwise relationships of feature points. A

simple and practical solution for this problem is to build the pairwise relationships per feature point with its nearest

neighbors. To do that we first store the model and query feature points in a kd-tree [2]. Then we only find and sample

the n nearest neighbors per feature point in both model and query objects, and compute their pairwise distances.

How does the number of nearest neighbors affect the performance of our FASM method, compared to the SM

method? For the evaluation, we run FASM and SM on the model object of sofa in Table 2 and the perturbed version

of the object to measure the matching rate, the required memory, and the running time. We disturbed the model points

with Gaussian noise N(0, 52), and add outliers by swapping the x, y, z coordinates of the 20% of the model points.

Fig. 11 shows the evaluation results with respect to the number of nearest neighbors on the sofa object shown in

Fig. 3e. We determine the number of nearest neighbors as p% of the model points. We see that increasing the number

of nearest neighbors increase the accuracy, memory, and running time. As we see in Fig. 11a, the accuracy of FASM

quickly increases until p is 10%, while slightly increases when p is from 10% to 100%. The memory and running time

of FASM linearly increase as shown in Figs. 11b and 11c. We also see that SM failed to show the matching results

when the number of nearest neighbors is larger than 10% since the required memory to store the affinity matrix of SM
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exceeds the physical memory size of our machine. The above experimental results show that SM cannot establish and

complete the matching process for huge data, while our FASM method is able to complete its matching process even

if the number of feature points is very large.

5. Related Work

In this section, we review related works on graph matching-based correspondence problems.

Correspondence problems have been formulated by graph matching problems: each feature set is considered as a

clique graph whose edges represent the pairwise relationship (e.g. pairwise distance) of two features.

The goal of graph matching is to find correspondences between the nodes of two feature graphs such that both

the unary information on the nodes and the pairwise information associated with the edges are preserved as much as

possible. Graph matching can be formulated as the optimization problem of a certain cost function that includes both

the node-to-node (or unary, first-order) [16, 21] as well as the edge-to-edge (or pairwise, second-order) [3, 8, 19, 20]

similarities. Most recently, the hyper-graph matching problem has also been studied [10, 18, 31], by considering

higher-order relationships between tuples of features. The Integer Quadratic Programming (IQP) problem formulated

as (2) and (3) is a recent and generalized definition of graph matching, which can be applied to almost all types of

graph matching problems. Since the IQP problem is NP-hard [11], various relaxation methods have been studied to

solve the problem. Gold and Rangarajan [12] presented one of the first of second-order matching methods solving

the IQP problem by the spectral relaxation with power iteration, in which Sinkhorn’s bistochastic normalization [29]

is employed to satisfy two-way assignment constraints for one-to-one mapping. Maciel and Costeira [21] proposed

a global optimization solution for an IQP problem by maximizing all possible correlation computed with unary in-

formation, in which a concave objective function is constructed and the discrete search domain is relaxed into its

convex hull. Berg et al. [3] presented fast-approximate techniques to address NP-hard problem of the IQP whose cost

function embeds the similarity of both unary and pairwise information, in which the minimum of a linear bounding

problem is first found and then a locally minimal assignment is detected with a manner of local gradient descent.

Leordeanu and Hebert [19] used similar cost function to [3] while they approximated the IQP problem as an eigen-

vector problem, such as described in Section 2. Cour et al. [8] presented similar spectral matching algorithm to [19],

in which they used the modified cost function xTMx/xTx and imposed affine constraints on the relaxed solution.

Cho et al. [7] proposed a random walk view for graph matching, in which they incorporated one-to-one mapping

constraints by a reweighting jump scheme. Zass and Shashua [31] proposed the hyper-graph matching algorithm, in

which they marginalize the affinity tensor into a one-dimensional vector and refines the vector by projecting it onto

the space of soft assignment vectors. Duchenne et al. [10] extended the spectral matching method [19] to higher-order
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relationships by using a multi-dimensional power method for tensors, in which the cost function is formulated by a

tensor encoding the similarity between feature tuples. Lee et al. [18] generalized their second-order method [7] using

the random walk approach to higher-order graph. These matching methods solve the IQP problem with an affinity

matrix [3, 7, 8, 12, 19] or an affinity tensor [10, 18, 31] as an input, but the time complexity of matching algorithms

and the storage size of each affinity depend on the number of feature points. Therefore, it could happen that a com-

plete computation of the affinity is impracticable or unwarrantable when the matching methods find correspondences

between large feature sets. In this paper, we solve this problem with the use of bases and index matrices as well as the

bases power method.

6. Conclusions

In this paper, we propose FASM (FAst Spectral Matching), an approximate spectral matching algorithm for cor-

respondence problems with large feature sets whose affinity matrix contains billions of nonzero elements. The main

contributions are the followings.

1. Approximation. Exploiting the high redundancy in the affinity matrix used for the spectral matching, we

propose an accurate approximation of the matrix by the linear combination of Kronecker products between

‘bases’ and index matrices which require much smaller memory than in previous works.

2. Fast Algorithm. Using the bases and index matrices, we develop an efficient algorithm to compute the principal

eigenvector of the approximated matrix.

3. Experiments. Extensive experiments show that our FASM is up to 33× faster, requires up to 645× smaller

memory than the exact algorithm, with little or no loss of accuracy.

Future research directions include extending our method to higher-order graph matching which utilizes tensors for

encoding the affinity between feature tuples.
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