
Inference of Beliefs on Billion-Scale Graphs

U Kang, Duen Horng “Polo” Chau, Christos Faloutsos
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave. Pittsburgh, PA, USA
{ ukang, dchau, christos }@cs.cmu.edu

ABSTRACT
How do we scale up the inference of graphical models to
billions of nodes and edges? How do we, or can we even,
implement an inference algorithm for graphs that do not fit
in the main memory? Can we easily implement such an
algorithm on top of an existing framework? How would we
run it? And how much time will it save us? In this paper, we
tackle this collection of problems through an efficient parallel
algorithm for Belief Propagation(BP) that we developed for
sparse billion-scale graphs using the Hadoop platform.

Inference problems on graphical models arise in many sci-
entific domains; BP is an efficient algorithm that has suc-
cessfully solved many of those problems. We have discovered
and we will demonstrate that this useful algorithm can be
implemented on top of an existing framework — the crucial
observation in the discovery is that the message update pro-
cess in BP is essentially a special case of GIM-V(Generalized
Iterative Matrix-Vector multiplication) [10], a primitive for
large scale graph mining, on a line graph induced from the
original graph.

We show how we formulate the BP algorithm as a variant
of GIM-V, and present an efficient algorithm. We experi-
ment with our parallelized algorithm on the largest publicly
available Web Graphs from Yahoo!, with about 6.7 billion
edges, on M45, one of the top 50 fastest supercomputers
in the world, and compare the running time with that of a
single-machine, disk-based BP algorithm.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms; Experimentation.

Keywords
Belief Propagation, Hadoop, GIM-V

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD-LDMTA’10, July 25, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0215-9/10/07 ...$10.00.

1. INTRODUCTION
Belief Propagation(BP) [17, 21] is a popular algorithm

for inferring the states of nodes in Markov Random fields.
BP has been successfully used for social network analysis,
computer vision, error correcting codes, etc. One of the
current challenges in BP is the issue of scalability; it is not
trivial to run BP on a very large graph with billions of nodes
and edges.

To address the problem, we propose an efficient Hadoop
algorithm for computing BP on a very large scale. The con-
tributions are the following.

1. We show that the Belief Propagation algorithm is es-
sentially a special case of GIM-V [10], a primitive for
parallel graph mining in Hadoop.

2. We provide an efficient algorithm for the Belief Prop-
agation in Hadoop.

3. We run experiments on a Hadoop cluster and analyze
the running time.

The rest of the paper is organized as follows. Section 2
explains the related works on the Belief Propagation and
Hadoop. Section 3 describes our formulation of the Belief
Propagation in terms of GIM-V, and Section 4 provides a
fast algorithm in Hadoop. Section 5 shows the experimental
results. We conclude in Section 6. Table 1 lists the symbols
used in this paper.

Symbol Definition

V Set of nodes in a graph

E Set of edges in a graph

n Number of nodes in a graph

l Number of edges in a graph

S Set of states

φi(s) Prior of node i being in state s

ψij(s
′, s) Edge potential when nodes i and j being

in states s′ and s, respectively

mij(s) Message that node i sends to node j expressing

node i’s belief of node j’s being in state s

bi(s) Belief of node i being in state s

Table 1: Table of symbols

2. BACKGROUND
The related work forms two groups, belief propagation

and MapReduce/Hadoop.

2.1 Belief Propagation(BP)
Belief Propagation(BP) [17] is an efficient inference algo-

rithm for probabilistic graphical models. Since its proposal,
it has been widely, and successfully, used in a myriad of
domains to solve many important problems (some are seem-
ingly unrelated at the first glance). For example, BP is
used in some of the best error-correcting codes, such as the
Turbo code and low-density parity-check code, that approach
channel capacity. In computer vision, BP is among the top
contenders for stereo shape estimation and image restora-
tion (e.g., denoising) [5]. BP has also been used for fraud
detection, such as for unearthing fraudsters and their ac-
complices lurking in online aunctions [3], and pinpointing
misstated accounts in general ledger data for the financial
domain [13].

BP is typically used for computing the marginal distribu-
tion for the unobserved nodes in a graph, conditional on the
observed ones; we will only discuss this version in this pa-
per, though with slight and trivial modifications to our im-
plementation, the most probable distribution of node states
can also be computed.

BP was first proposed for trees [17] and it could com-
pute the exact marginal distributions; it was later applied
on general graphs [18] as an approximate algorithm. When
the graph contains cycles or loops, the BP algorithm applied
on it is called loopy BP, which is also the focus of this work.

BP is generally applied on graphs whose nodes have finite
number of states (treating each node as a discrete random
variable). Gaussian BP is a variant of BP where its under-
lying distributions are Gaussian [20]. Generalized BP [21]
allows messages to be passed between subgraphs, which can
improve accuracy in the computed beliefs and promote con-
vergence.

BP is computationally-efficient; its running time scales
linearly with the number of edges in the graph. However,
for graphs with billions of nodes and edges — a focus of
our work — this cost becomes significant. There are several
recental works that investigated parallel BP on multicore
shared memory [7] and MPI [6, 14]. However, all of them
assume the graphs would fit in the main memory (of a single
computer, or a computer cluster). Our work specifically
tackles the important, and increasingly prevelant, situation
where the graphs would not fit in main memory.

2.2 MapReduce and Hadoop
MapReduce is a parallel programming framework [4] for

processing web-scale data. MapReduce has two advan-
tages: (a) The data distribution, replication, fault-tolerance,
load balancing is handled automatically; and furthermore
(b) it uses the familiar concept of functional programming.
The programmer needs to define only two functions, a map
and a reduce. The general framework is as follows [12]: (a)
the map stage reads the input file and emits (key, value)
pairs; (b) the shuffling stage sorts the output and distributes
them to reducers; (c) the reduce stage processes the values
with the same key and emits another (key, value) pairs which
become the final result.

Hadoop [1] is the open source version of MapReduce.
Hadoop uses its own distributed file system HDFS, and pro-

vides a high-level language called PIG [15]. Due to its excel-
lent scalability and ease of use, Hadoop is a very promising
tool for large scale graph mining(see [16] [10] [9]). Other
variants which provide advanced MapReduce-like systems
include SCOPE [2], Sphere [8], and Sawzall [19].

3. BP AND GIM-V
In this section, we describe our parallel algorithm for BP

on billion-scale graphs on Hadoop.

3.1 Belief Propagation
Now, we provide a quick overview of the Belief Propaga-

tion(BP) algorithm, which briefly explains the key steps in
the algorithm and their formulation; this information will
help our readers better understand how our implementation
nontrivially captures and optimizes the algorithm in latter
sections. For detailed information regarding BP, we refer
our readers to the excellent article by Yedidia et al. [21].

The BP algorithm is an efficient method to solve infer-
ence problems for probabilistic graphical models, such as
Bayesian networks and pairwise Markov random fields (MRF).
In this work, we focus on pairwise MRF, which has seen em-
pirical success in many domains (e.g., Gallager codes, image
restoration) and is also simpler to explain; the BP algo-
rithms for other types of graphical models are mathemati-
cally equivalent [21].

When we view an undirected simple graph G = (V,E) as
a pairwise MRF, each node i in the graph becomes a random
variable Xi, which can be in a discrete number of states S.
The goal of the inference is to find the marginal distribution
P (xi) for all node i, which is an NP-complete problem.

Fortunately, BP may be used to solve this problem ap-
proximately (for MRF; exactly for trees). At a high level,
BP infers the “true” (or so-called “hidden”) distribution of a
node from some prior (or “observed”) knowledge about the
node, and from the node’s neighbors. This is accomplished
through iterative message passing between all pairs of nodes
vi and vj . We use mij(xj) to denote the message sent from
i to j, which intuitively represents i’s opinion about j’s like-
lihood of being in state xj . The prior knowledge about a
node i, or the prior probabilities of the node being in each
possible state are expressed through the node potential func-
tion φ(xi). This prior probability may simply be called a
prior. The message-passing procedure stops if the messages
no longer change much from one iteration to the another —
or equivalently when the nodes’ marginal probabilities are
no longer changing much. The estimated marginal proba-
bility is called belief, or symbolically bi(xi) (≈ P (xi)).

In detail, messages are obtained as follows. Each edge eij

is associated with messages mij(xj) and mji(xi) for each
possible state. Provided that all messages are passed in ev-
ery iteration, the order of passing can be arbitrary. Each
message vector mij is normalized, so that it sums to one.
Normalization also prevents numerical underflow (or zeroing-
out values). Each outgoing message from a node i to a neigh-
bor j is generated based on the incoming messages from
the node’s other neighbors. Mathematically, the message-
update equation is:

mij(xj) =
∑
xi

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mki(xi) (1)

where N (i) is the set of nodes neighboring node i, and

ψij (xi, xj) is called the edge potential ; intuitively, it is a
function that transforms a node’s incoming messages col-
lected into the node’s outgoing ones. Formally, ψij (xi, xj)
equals the probability of a node i being in state xi and that
its neighbor j is in state xj .

The algorithm stops when the beliefs converge (within
some threshold, e.g., 10−5), or a maximum number of it-
erations has finished. Although convergence is not guaran-
teed theoretically for general graphs, except for those that
are trees, the algorithm often converges in practice, where
convergence is quick and the beliefs are reasonably accurate.
When the algorithm ends, the node beliefs are determined
as follows:

bi(xi) = kφi(xi)
∏

j∈N(i)

mji(xi) (2)

where k is a normalizing constant.

3.2 GIM-V
GIM-V(Generalized Iterative Matrix-Vector multiplication) [10]

is a primitive for parallel graph mining algorithms in Hadoop.
It is based on the observation that many graph mining algo-
rithms, including PageRank, RWR, radius estimation, and
connected components, are essentially repeated matrix-vector
multiplication. GIM-V generalizes the matrix-vector multi-
plication by customizing the sub-operations in the matrix-
multiplication, thereby resulting in multiple algorithms. The
main idea of GIM-V is as follows. Given a n by n matrix M
and a n-vector v, the matrix-vector multiplication is repre-
sented by

M × v = v′ where v′i =
∑n

j=1mi,jvj .

By careful observation, we notice three implicit operations
in the above formula:

1. combine2: multiply mi,j and vj .

2. combineAll: sum n multiplication results.

3. assign: overwrite previous value of vi with new result
to make v′i.

GIM-V customizes the three operations by defining a gen-
eralized multiplication operator ×G so that the multiplica-
tion becomes

v′ = M ×G v
where v′i = assign(vi,combineAlli({xj | j = 1..n,
xj =combine2(mi,j , vj)})).

Different customizations lead to various algorithms which
seem unrelated at first sight. For example, computing the
PageRank and the connected components are special cases
of GIM-V, as we show below.

PageRank.
The Pagerank score can be computed by a power iteration

which is represented in GIM-V by
pnext = M ×G p

cur

where M is an adjacency matrix, p is a vector of length n
which is updated by
pnext

i =assign(pcur
i ,combineAlli({xj | j = 1..n,

xj =combine2(mi,j , p
h
j)})),

and the three operations are defined as follows:

1. combine2(mi,j , vj) = c×mi,j × vj

2. combineAlli(x1, ..., xn) = (1−c)
n

+
∑n

j=1 xj

3. assign(vi, vnew) = vnew

Connected Components.
Another example is the computation of connected com-

ponents of graph. The component membership vector c is
updated in GIM-V by

ch+1 = A×G c
h

where A is an adjacency matrix, ch+1 is the component
membership vector at (h + 1)th iteration. The c vector is
updated by
ch+1

i =assign(chi ,combineAlli({xj | j = 1..n,
xj =combine2(Ai,j , c

h
j)})),

and the three operations are defined as follows:

1. combine2(Ai,j , vj) = Ai,j × vj .
2. combineAlli(x1, ..., xn) = MIN{xj | j = 1..n}
3. assign(vi, vnew) = MIN(vi, vnew).

For details and fast algorithms for GIM-V, see [10].

3.3 BP using GIM-V
We first present the high level idea of the BP algorithm

in Algorithm 1.

Algorithm 1: Belief Propagation

Input : Edge E,
node prior φn×1, and
propagation matrix ψS×(S−1)

Output: Belief matrix bn×S

begin1

while m does not converge do2

for (i, j) ∈ E do3

for s ∈ S do4

mij(s)←5 ∑
s′ φi(s

′)ψij(s′, s)
∏

k∈N(i)\j mki(s
′);

for i ∈ V do6

for s ∈ S do7

bi(s)← kφi(s)
∏

j∈N(i)mji(s);8

end9

The key observation is that the message update process
(line 5 of Algorithm 1) can be represented by GIM-V on an
induced graph from the original graph. To formalize this,
we first define the ‘directed line graph’.

Definition 1 (Directed Line Graph). Given a directed
graph G, its directed line graph L(G) is a graph such that
each node of L(G) represents an edge of G, and there is an
edge from vi to vj of L(G) if the corresponding edges ei and
ej form a length-two directed path from ei to ej in G.

To convert a undirected line graph G to a directed line
graph L(G), we first convert G to a directed graph by con-
verting each undirected edge to two directed edges. Then,
we connect two nodes in L(G) if their corresponding edges

(a) Original graph (b) Directed graph (c) Directed line graph

Figure 1: Converting a undirected graph to a directed line graph. (a to b): replace a undirected edge with
two directed edges. (b to c): for an edge (i, j) in (b), make a node (i, j) in (c). Make a directed edge from
(i, j) to (k, l) in (c) if j = k and i 6= l.

form a directed path in G . For example, see Figure 1 for a
graph and its directed line graph.

Notice that an edge (i, j) ∈ E in the original graph G
correspond to a node in L(G). Thus, line 5 of Algorithm 1
is essentially updating nodes in L(G). Let (V,E) be the
nodes and the edges of the original graph G. Also, let A’ be
the adjacency matrix of L(G). Then the belief propagation
is formulated in GIM-V as follows:

m(s)next = A′ ×G mcur (3)

where m(s) is the message vector of length |E|, and mi(s),
the ith element of m(s), contains the message regarding the
state s. m(s) is updated by
m(s)next

i =assign(mcur
i ,combineAlli({xj | j = 1..r,

xj =combine2(A′i,j ,m
cur
j)})),

and the three operations are defined as follows:

1. combine2(A′i,j ,mj) = A′i,j ×mj .
2. combineAlli(x1, ..., xr) =

∑
s′ φi(s

′)ψij(s′, s)
∏r

j=1 xj(s′)

3. assign(vi, vnew) = vnew.

Thus, GIM-V on the directed line graph leads to the
Hadoop algorithm for BP which is summarized in Algo-
rithm 2.

Algorithm 2: Hadoop-BP using GIM-V

Input : Edge E of a undirected graph,
node prior φn×1, and
propagation matrix ψS×(S−1)

Output: Belief matrix bn×S

begin1

A′ ← directed line graph from E ;2

while m does not converge do3

for s ∈ S do4

m(s)next = A′ ×G mcur;5

for i ∈ V do6

for s ∈ S do7

bi(s)← kφi(s)
∏

j∈N(i)mji(s);8

end9

4. FAST ALGORITHM FOR HADOOP
In this section, we first describe the naive algorithm for

Hadoop-BP and propose an efficient algorithm.

4.1 Naive Algorithm
The formulation of BP in terms of GIM-V provides an

intuitive way to understand the computation. However, a
naive algorithm without careful design is not efficient for
the following reason. In a naive algorithm, we first build
the matrix for the line graph L(G) and the message vector,
and apply the GIM-V on them. The problem is that a node
in G with degree d will generate d(d − 1) edges in L(G).
Since there exists many nodes with a very large degree in
real-world graphs due to the well-known power-law degree
distribution, the number of nonzero elements will grow too
large. For example, the YahooWeb graph in Section 5 has
several nodes with the several-million degree. Then, the
number of nonzero elements in the corresponding line graph
will be more than 1 trillion. Thus, we need an efficient
algorithm for dealing with the problem.

4.2 Lazy Multiplication
The main idea to solve the problem in the previous section

is not to build the line graph explicitly: instead, we do the
same computation on the original graph, or perform a ‘lazy’
multiplication. The crucial observation is that the edges
in the original graph G contains all the edge information in
L(G): each edge e ∈ E of G is a node in L(G), and e1, e2 ∈ G
are adjacent in L(G) if and only if they share the node in
G. Thus, grouping all the edges by nodes in G allows us
to work on adjacent nodes in L(G). Since we encodes the
message value by adding an additional field to each edge,
the message update operation(line 5 of Algorithm 1) can be
computed after the grouping.

A computational issue in computing
∏

k∈N(i)\j mki(s
′) is

that a straightforward implementation requires N(i)(N(i)−
1) multiplication which is prohibitively large. However, we
decrease the number of multiplication to 2N(i) by first com-
puting t =

∏
k∈N(i)mki(s

′), and for each j ∈ N(i) comput-

ing t/mji(s
′).

The only remaining pieces of the computation is to in-
corporate the prior φ and the propagation matrix ψ. The
propagation matrix ψ is a tiny bit of information, so it can
be sent to every reducer by a variable passing functional-
ity of Hadoop. The prior vector φ can be large, since
the length of the vector can be the number of nodes in the
graph. In the Hadoop algorithm, we also group the φ by
the node id: each node prior is grouped together with the
edges(messages) whose source id is the node id. Algorithm 3
and 4 shows the Hadoop algorithm for the BP message ini-

Algorithm 3: Hadoop-BP Initialization

Input : Edge E = {(idsrc, iddst)},
Set of states S = {s1, ..., sp}

Output: Message Matrix M =
{(idsrc, iddst,mdst,src(s1), ...,mdst,src(sp))}

Initialize-Map(Key k, Value v);1

begin2

Output((k, v), (1
|S| , ..., 1

|S|)); // (k: idsrc, v: iddst)3

end4

Algorithm 4: Hadoop-BP Message Update

Input : Set of states S = {s1, ..., sp},
Current Message Matrix Mcur =
{(sid, did,mdid,sid(s1), ...,mdid,sid(sp))},
Prior Matrix Φ = {(id, φid(s1), ..., φid(sp))},
Propagation Matrix ψ

Output: Updated Message Matrix Mnext =
{(idsrc, iddst,mdst,src(s1), ...,mdst,src(sp))}

Stage1-Map(Key k, Value v);1

begin2

if (k, v) is of type M then3

Output(k, v); // (k: sid, v:4

did,mdid,sid(s1), ...,mdid,sid(sp))
5

else if (k, v) is of type Φ then6

Output(k, v); // (k: id, v: φid(s1), ..., φid(sp))7

8

end9

Stage1-Reduce(Key k, Value v[1..r]);10

begin11

temps[1..p]← [1..1];12

saved prior ←[];13

HashTable<int, double[1..p]> h;14

foreach v ∈ v[1..r] do15

if (k, v) is of type Φ then16

saved prior[1..p]← v;17

18

else if (k, v) is of type M then19

(did,mdid,sid(s1), ...,mdid,sid(sp))← v;20

h.add(did, (mdid,sid(s1), ...,mdid,sid(sp)));21

foreach i ∈ 1..p do22

temps[i] = temps[i]×mdid,sid(si);23

24

foreach (did, (mdid,sid(s1), ...,mdid,sid(sp))) ∈ h do25

outm[1..p]← 0;26

foreach u ∈ 1..p do27

foreach v ∈ 1..p do28

outm[u] = outm[u] +29

saved prior[v]ψ(v, u)temps[v]/mdid,sid(sv);

Output(did, (sid, outm[1], ..., outm[p]));30

end31

tialization and the message update which implements the
algorithm described above.

5. EXPERIMENTS

In this section, we present experimental results to answer
the following questions:

Q1 How fast is our algorithm, compared to a single-machine
disk-based Belief Propagation algorithm?

Q2 How does our Hadoop Belief Propagation algorithm
scales up?

We performed experiments in the M45 Hadoop cluster
by Yahoo!. The cluster has total 480 machines 1.5 Petabyte
total storage and 3.5 Terabyte memory. The single-machine
experiment was done in a machine with 3 Terabyte of disk
and 48 GB memory. The single-machine BP algorithm is
a scaled-up version of a memory-based BP which reads all
the nodes and the edges into a memory. That is, the single-
machine BP loads only the node information into a memory,
but it reads the edges sequentially from the disk for every
message update, instead of loading all the edges into a mem-
ory once for all.

For the data, we used the YahooWeb graph, a snapshot
of the Web at the year 2002 with 1.4 billion nodes and 6.7
billion edges saved in a 120-GB file.

5.1 Results
Between Hadoop-BP and the single-machine BP, which

one runs faster? At which point does the Hadoop-BP out-
perform the single-machine BP? Figure 2 (a) shows the com-
parison of running time of the Hadoop-BP and the single-
machine BP. Notice that Hadoop-BP outperforms the single-
machine BP when the number of machines exceeds 40. The
Hadoop-BP requires more machines to beat the single-machine
BP due to the fixed costs for writing and reading the inter-
mediate results to and from the disk. However, for larger
graphs which do not fit into a memory, Hadoop-BP is the
only solution.

The next question is, how does our Hadoop-BP scale up?
Figure 2 (b) shows the scalability of our algorithm with the
increasing number of machines. We see that our Hadoop-
BP scales up linearly close to the ideal scale-up.

5.2 Discussion
Based on the experimental results, what are the advan-

tages of Hadoop-BP? In what situations should it be used?
For a small graph whose nodes and edges fit in the memory,
the single-machine BP is recommended since it runs faster.
For a medium-to-large graph whose nodes fit in the mem-
ory but the edges do not fit in the memory, Hadoop-BP
gives the reasonable solution since it runs faster than the
single-machine BP. For a very large graph whose nodes do
not fit in the memory, Hadoop-BP is the only solution. We
summarize the advantages of the Hadoop-BP here:

• Scalability: Hadoop-BP is the only solution when
the nodes information can not fit in memory. More-
over, Hadoop-BP scales up near-linearly.

• Running Time: Even for a graph whose node infor-
mation fits into a memory, Hadoop-BP ran 2.4 times
faster.

• Fault Tolerance: Hadoop-BP enjoys the fault toler-
ance that Hadoop provides: data are replicated, and
the failed programs due to machine errors are restarted
in working machines.

 0

 200

 400

 600

 800

 1000

 1200

 1 25 50 75 100

R
un

 ti
m

e
in

 m
in

ut
es

Number of machines

Hadoop-BP
Single-machine-BP

 1

 1.5

 2

 2.5

 3

 3.5

 25 50 75 100

’’S
ca

le
 u

p’
’:

1/
T

M

Number of machines

Hadoop-BP
Ideal Scale Up

(a) Running Time (b) Scale-Up

Figure 2: Running time of BP with 10 iterations on the YahooWeb graph with 1.4 billion nodes and 6.7
billion edges. (a) Comparison of the running times of the parallel BP and the single-machine BP. Notice
that Hadoop-BP outperforms the single-machine BP when the number of machines exceed 4̃0. (b) “Scale-up”
(throughput 1/TM) versus number of machines M , for the YahooWeb graph. Notice the near-linear scale-up
close to the ideal(dotted line).

6. CONCLUSION
In this paper we proposed a Hadoop-BP for the inferences

of graphical models in a billion-scale graphs. The main con-
tributions are the followings:

• We show that the inference problem in graphical mod-
els is a special case of GIM-V which is a tractable prim-
itive for large scale graph mining in Hadoop.
• We carefully design an efficient algorithms for Hadoop-

BP.
• We do the experiments to compare the running time of

the Hadoop-BP and the single-machine BP. We also
gives the scalability results and show that Hadoop-BP
has a near-linear scale up.

One major research direction is to apply our Hadoop-BP
for inferences on large, real-world data. Another directions
is the tensor analysis on Hadoop ([11]), since tensor is a
multi-dimensional extension of matrix.

7. ACKNOWLEDGEMENTS
This work was partially funded by the National Science

Foundation under Grants No. IIS-0705359, IIS-0808661, and
under the auspices of the U.S. Dept. of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-
07NA27344. We would like to thank YAHOO! for the web
graph and access to the M45. The opinions expressed are
those of the authors and do not necessarily reflect the views
of the funding agencies.

8. REFERENCES
[1] Hadoop information. http://hadoop.apache.org/.

[2] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets.
VLDB, 2008.

[3] D. H. Chau, S. Pandit, and C. Faloutsos. Detecting
fraudulent personalities in networks of online
auctioneers. PKDD, 2006.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI, 2004.

[5] P. Felzenszwalb and D. Huttenlocher. Efficient belief
propagation for early vision. International journal of
computer vision, 70(1):41–54, 2006.

[6] J. Gonzalez, Y. Low, C. Guestrin, and D. O’Hallaron.
Distributed parallel inference on large factor graphs.
In Conference on Uncertainty in Artificial Intelligence
(UAI), Montreal, Canada, July 2009.

[7] J. E. Gonzalez, Y. Low, and C. Guestrin. Residual
splash for optimally parallelizing belief propagation.
AISTAT, 2009.

[8] R. L. Grossman and Y. Gu. Data mining using high
performance data clouds: experimental studies using
sector and sphere. KDD, 2008.

[9] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos,
and J. Leskovec. Radius plots for mining tera-byte
scale graphs: Algorithms, patterns, and observations.
SIAM International Conference on Data Mining, 2010.

[10] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus:
A peta-scale graph mining system - implementation
and observations. IEEE International Conference on
Data Mining, 2009.

[11] T. G. Kolda and J. Sun. Scalable tensor decompsitions
for multi-aspect data mining. ICDM, 2008.

[12] R. Lämmel. Google’s mapreduce programming model
– revisited. Science of Computer Programming,
70:1–30, 2008.

[13] M. McGlohon, S. Bay, M. Anderle, D. Steier, and
C. Faloutsos. Snare: a link analytic system for graph
labeling and risk detection. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 1265–1274. ACM,
2009.

[14] A. Mendiburu, R. Santana, J. Lozano, and
E. Bengoetxea. A parallel framework for loopy belief
propagation. GECCO, 2007.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD ’08, pages 1099–1110,
2008.

[16] S. Papadimitriou and J. Sun. Disco: Distributed
co-clustering with map-reduce. ICDM, 2008.

[17] J. Pearl. Reverend Bayes on inference engines: A
distributed hierarchical approach. In Proceedings of
the AAAI National Conference on AI, pages 133–136,
1982.

[18] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann,
1988.

[19] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with sawzall.
Scientific Programming Journal, 2005.

[20] Y. Weiss and W. Freeman. Correctness of belief
propagation in Gaussian graphical models of arbitrary
topology. Neural Computation, 13(10):2173–2200,
2001.

[21] J. S. Yedidia, W. T. Freeman, and Y. Weiss.
Understanding belief propagation and its
generalizations. Exploring Artificial Intelligence in the
New Millenium, 2003.

