
HaTen2: Billion-scale Tensor Decompositions -
Supplementary Document

Abstract—In this supplementary document, we give additional
preliminaries, analyses, and discoveries all of which supplement
the main paper.

I. PRELIMINARIES: TENSOR

Tensor. Tensor is a multi-dimensional array. An N -
dimensional tensor is denoted by X ∈ RI1×I2×···×IN .
Fibers and Slices. A fiber is defined by fixing all indices but
one index. In 3-way tensor, It is denoted by x:jk,xi:k, and
xij:. A slice is defined by fixing all indices but two indices.
In 3-way tensor, it is denoted by Xi::,X:j: and X::k.
Matricization of tensor. The mode-n matricization of a tensor
X ∈ RI1×I2×···×IN is denoted by X(n) ∈ RIn×(

∏
k 6=n Ik) and

arranges the mode-n fibers to be the columns of the resulting
matrix.
n-mode matrix product. The n-mode matrix product of a
tensor X ∈ RI1×I2×···×IN with a matrix U ∈ RJ×In is
denoted by X×nU and is of size I1×···In−1×J×In+1···×IN .
It is defined as

(X×n U)i1...in−1jin+1...iN =

In∑
in=1

xi1i2...iNujin .

n-mode vector product. The n-mode vector product of a
tensor X ∈ RI1×I2×···×IN with a vector v ∈ RIn is denoted
by X×̄nv and is of size I1 × · · ·In−1 × In+1 · · · ×IN . It is
defined as

(X×̄nv)i1...in−1in+1...iN =

In∑
in=1

xi1i2...iN vin .

Kronecker product. The Kronecker product of matrices A ∈
RI×J and B ∈ RK×L is denoted by A ⊗B. The result is a
matrix of size (IK)× (JL) and defined by

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB


=
[
a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL

]
Khatri-Rao product. The Khatri-Rao product (or column-
wise Kronecker product) (A�B), where A,B have the same
number of columns, say R, is defined as:

A�B =
[
A(:, 1)⊗B(:, 1) · · ·A(:, R)⊗B(:, R)

]
If A is of size I × R and B is of size J × R then (A�B)
is of size IJ ×R.

Hadamard product. The Hadamard product A ∗ B is the
elementwise matrix product, where A and B have the same
size (I × J), and is defined as:

A ∗B =


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ


II. ANALYSIS

We provide additional analysis results on HATEN2.

A. Cost Comparison

We compare the costs of the steps of all HATEN2 meth-
ods in terms of the intermediate data size, the number of
MAPREDUCE jobs, and the number of the floating point
operations in Tables I and II. Note that HATEN2-Tucker-
DRI which contains all the proposed ideas, has the minimum
intermediate data size. In PARAFAC, the intermediate data
size of HATEN2-PARAFAC-DNN seems smaller than that
of HATEN2-PARAFAC-DRI. However, HATEN2-PARAFAC-
DNN has lower scalability than HATEN2-PARAFAC-DRI
because of the skewness of Tr, which may lead to out of
memory in the corresponding machine. Since Tr, the result
of multiplication of a sparse tensor and a fully-dense matrix,
is dense, there is high probability of skewness when computing
Tr∗̄3cTr in HATEN2-PARAFAC-DNN. In contrast, HATEN2-
PARAFAC-DRI scales well by exploiting the sparsity of
real-world tensors with the idea in Section III-B3. For both
decompositions, HATEN2-DRI has the minimum number of
jobs.

B. Equivalence of Operations

We give proofs to the equivalences of operations in Tucker
and PARAFAC. In the following, bin(X) is a function which
converts the non-zero elements of a tensor X to 1.

Lemma 1 (CrossMerge): Given X ∈ RI×J×K , B ∈ RJ×Q,
and C ∈ RK×R,

X×2 B
T ×3 C

T ⇔ CrossMerge(T′,T′′)(1)

where T′ ∈ RI×J×K×Q is a tensor whose qth subtensor T′
:::q

is given by X∗̄2bT
q , and T′′ ∈ RI×J×K×R is a tensor whose

rth subtensor T′
:::r is given by bin(X)∗̄3cTr .

Proof:



TABLE I: Summary of costs in the steps of all methods for computing X×2 B×3 C in Tucker decomposition. T denotes X×2 B.

Method Step Intermediate Data Jobs

HATEN2-Tucker-Naive X×̄2b
T
q nnz(X) + IJK Q

T×̄3c
T
r nnz(T) + IQK R

HATEN2-Tucker-DNN X∗̄2bT
q nnz(X) + J Q

Collapse nnz(X)Q 1
T∗̄3cTr nnz(T) + K R

Collapse nnz(T)R 1
HATEN2-Tucker-DRN X∗̄2bT

q nnz(X) + J Q

bin(X)∗̄3cTr nnz(X) + K R
CrossMerge nnz(X)Q + nnz(X)R 1

HATEN2-Tucker-DRI IMHP 2nnz(X) + JQ + KR 1
CrossMerge nnz(X)Q + nnz(X)R 1

TABLE II: Summary of costs in the steps of all methods for computing X(1)(C�B) in PARAFAC decomposition. Tr denotes X×̄2b
T
r .

Method Step Intermediate Data Jobs

HATEN2-PARAFAC-Naive X×̄2b
T
r nnz(X) + IJK R

Tr×̄3c
T
r nnz(Tr) + IK R

HATEN2-PARAFAC-DNN X∗̄2bT
r nnz(X) + J R

Collapse nnz(X) R
T∗̄3cTr nnz(Tr) + K R

Collapse nnz(Tr) R

HATEN2-PARAFAC-DRN X∗̄2bT
r nnz(X) + J R

bin(X)∗̄3cTr nnz(X) + K R
PairwiseMerge 2nnz(X)R 1

HATEN2-PARAFAC-DRI IMHP 2nnz(X) + JR + KR 1
PairwiseMerge 2nnz(X)R 1

The (i, q, k)-th element Miqk of M = X ×2 B
T is given

by

Miqk =

J∑
j=1

X(i, j, k)B(j, q).

Then the (i, q, r)-th element of (X×2 B
T )×3 C

T is
K∑

k=1

M(i, q, k)C(k, r)

=

K∑
k=1

(

J∑
j=1

X(i, j, k)B(j, q))C(k, r)

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, q)C(k, r) (1)

The (i, j, k, q)-th element of subtensor T′
:::q is given by

X(i, j, k)bT
q (j),

and (i, j, k, r)-th element of subtensor T′′
:::r is given by

(bin(X)(i, j, k))cTr (k).

Therefore, the (i, j, k, q)-th element of T′ is

T′
ijkq = X(i, j, k)B(j, q),

and the (i, j, k, r)-th element of T′′ is

T′′
ijkr = (bin(X)(i, j, k))C(k, r).

The (i, q, r)-th element of CrossMerge(T′,T′′)(1) is

(J,K)∑
(j,k)=(1,1)

T′(i, j, k, q)T′′(i, j, k, r).

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, q)(bin(X)(i, j, k))C(k, r).

Since X(i, j, k)× (bin(X)(i, j, k)) = X(i, j, k),

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, q)C(k, r) (2)

The equation (1) for (i, q, r)-th element of X×2B
T ×3C

T

is exactly the same as the equation (2) for (i, q, r)-th element
of CrossMerge(T′,T′′)(1).

Lemma 2 (PairwiseMerge): Given X ∈ RI×J×K , B ∈
RJ×R, and C ∈ RK×R,

X(1) (C�B)⇔ PairwiseMerge(F′,T′′)(1)

where F′ ∈ RI×J×K×R is a tensor whose r-th subtensor
F′

:::r is given by X∗̄2bT
r , and T′′ ∈ RI×J×K×R is a tensor

whose r-th subtensor T′
:::r is given by bin(X)∗̄3cTr .



Proof:
The (i, r)-th element of M = X(1)(C�B) is defined by

Mir =

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, r)C(k, r) (3)

The (i, j, k)-th element of subtensor F′
:::r is given by

X(i, j, k)bT
r (j),

and the (i, j, k)-th element of subtensor T′
:::r is given by

(bin(X)(i, j, k))cTr (k).

Therefore, the (i, j, k, r)-th element of F′ is

F′
ijkr = X(i, j, k)B(j, r),

and the (i, j, k, r)-th element of T′′ is

T′′
ijkr = (bin(X)(i, j, k))C(k, r).

The (i, r)-th element of PairwiseMerge(F′,T′′)(1) is

(J,K)∑
(j,k)=(1,1)

F′(i, j, k, r)T′′(i, j, k, r).

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, r)(bin(X)(i, j, k))C(k, r).

Since X(i, j, k)× (bin(X)(i, j, k)) = X(i, j, k),

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, r)C(k, r) · · · (2). (4)

The equation (3) for (i, r)-th element of X(1)(C�B) is
exactly the same as the equation (4) for (i, r)-th element of
PairwiseMerge(F′,T′′)(1).

III. DISCOVERY

Concept discovery on NELL data. NELL is a knowledge
base dataset containing (‘Noun Phrase 1’, ‘Noun Phrase 2’,
‘Context’) triples from the ’Read the Web’ project [1]. We
filter the NELL data by removing entries whose values are
below a threshold; the result is a tensor named NELL-2
whose size is 14545 × 14545 × 28818 with 76 millions of
nonzeros. We discover latent concept groups of NELL-2 by
applying HATEN2-PARAFAC with rank 20, and HATEN2-
Tucker with core tensor size 20 × 20 × 20. Table III shows
the concept discovery results from HATEN2-PARAFAC. We
discovered several concepts: e.g., “Health Care System”, “File
Transfer”, “Internet Service”, and “Shopping”. In PARAFAC
decomposition, because the core tensor is diagonal, each
‘Noun Phrase 1’ group is combined only with a ‘Noun Phrase
2’ group and a ‘Context’ group. On the other hand, Tucker
decomposition provides more diverse concepts compared with
PARAFAC decomposition: e.g., a ‘Noun Phrase 2’ group

may be combined with several ‘Noun Phrase 1’ groups and
‘Context’ groups. Table IV shows the groups in factors from
Tucker decomposition: e.g., “Health”, “Credit”, “Network”,
“Algorithm”, “Project”, and “Information” in the ‘Noun Phrase
1’ mode. Table V shows the discovered concepts each of
which combines the groups from the ‘Noun Phrase 1’, the
‘Noun Phrase 2’, and the ‘Context’ factors. The first concept
represents “Health Care System” which contains the ‘Noun
Phrase 1’ group S1 (“Health”), the ‘Noun Phrase 2’ group O2
(“Service”), and the ‘Context’ group C1 (“Care”). Note that a
group of a factor appears in several concept groups in Tucker
decomposition. For example, the ‘Noun Phrase 2’ group O2
appears in the first, the second, and the third concepts; the
‘Context’ group C6 appears in both the second and the third
concepts.

TABLE III: Concept discovery result using HATEN2-PARAFAC on
NELL-2 dataset.

Concepts Noun Phrase1 Noun Phrase2 Context

Concept1: health providers ‘np1’ ‘care’ ‘np2’
“Health Care System” child systems ‘np1’ ‘insurance’ ‘np2’

skin organizations ‘np1’ ‘and safety’ ‘np2’

Concept2: file protocol ‘np1’ ‘stream’ ‘np2’
“File Transfer” hypertext stack ‘np1’ ‘transfer’ ‘np2’

FTP technology ‘np2’ ‘cable’ ‘np1’

Concept3: internet providers ‘np1’ ‘service’ ‘np2’
“Internet Service” phone web sites ‘np1’ ‘access’ ‘np2’

application roots ‘np1’ ‘hosting’ ‘np2’

Concept4: discount store ‘np1’ ‘food’ ‘np2’
“Shopping” shop service ‘np1’ ‘and nutrition’ ‘np2’

grocery products ‘np1’ ‘supplement’ ‘np2’

TABLE V: Concept discovery result using HATEN2-Tucker on
NELL-2 dataset.

Concepts Noun Phrase1 Noun Phrase2 Context

Concept1: (S1, O2, C1) health providers ‘np1’ ‘care’ ‘np2’
“Health Care System” child system ‘np1’ ‘insurance’ ‘np2’

skin professionals ‘np1’ ‘service’ ‘np2’

Concept2: (S3, O2, C6) internet providers ‘np1’ ‘service’ ‘np2’
“Internet Service” application system ‘np1’ ‘access’ ‘np2’

email professionals ‘np1’ ‘hosting’ ‘np2’

Concept3: (S6, O2, C6) information providers ‘np2’ ‘service’ ‘np1’
“Information Access” details system ‘np2’ ‘access’ ‘np1’

news professionals ‘np2’ ‘hosting’ ‘np1’

Concept4: (S4, O3, C3) optimization search ‘np2’ ‘engine’ ‘np1’
“Web Search Algorithm” rankings website ‘np2’ ‘returned’ ‘np1’

marketing performance ‘np2’ ‘results’ ‘np1’

Concept5: (S5, O4, C5) agency research ‘np2’ ‘projects’ ‘np1’
“Research Project Funding” grants training ‘np2’ ‘funding’ ‘np1’

proposal study ‘np1’ ‘sponsoring’ ‘np2’

REFERENCES

[1] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M.
Mitchell, “Toward an architecture for never-ending language learning,” in
AAAI, 2010.



TABLE IV: Discovered factors from HATEN2-Tucker on NELL-2 dataset.

NP S1: Health NP S2: Credit NP S3: Network NP S4: Algorithm NP S5: Project NP S6: Information

health credit internet optimization agency information
child charge phone rankings proposal details

Noun Phrase1 skin bank email listings management news
eye ID contact algorithms activities material
patient account network indexing manager pictures

NP O1: Region NP O2: Service NP O3: Web search NP O4: Research NP O5: Loan NP O6: Network

world providers search research loan roots
state system website experience rates speeds

Noun Phrase2 planet service page work mortgage proxies
region insurance industry training lender ports
globe organization performance study refinancing routers

Context C1: Care Context C2: Credit Context C3: Function Context C4: Transfer Context C5: Support Context C6: Service

‘np1’ ‘care’ ‘np2’ ‘np1’ ‘card’ ‘np2’ ‘np2’ ‘engine’ ‘np1’ ‘np1’ ‘stream’ ‘np2’ ‘np2’ ‘project’ ‘np1’ ‘np1’ service’ ‘np2’
‘np1’ ‘insurance’ ‘np2’ ‘np1’ ‘report’ ‘np2’ ‘np2’ ‘returned’ ‘np1’ ‘np1’ ‘transfer’ ‘np2’ ‘np2’ ‘and development’ ‘np1’ ‘np1 ‘access np2

Context ‘np1’ ‘service’ ‘np2’ ‘np2’ ‘management’ ‘np1’ ‘np2’ ‘results’ ‘np1’ ‘np1’ ‘communication’ ‘np2’ ‘np2 ‘funding’ ‘np1’ ‘np1’ ‘hosting’ ‘np2’
‘np1’ ‘safety’ ‘np2’ ‘np1’ ‘account’ ‘np2’ ‘np2’ ‘returns’ ‘np1’ ‘np1’ ‘protocol’ ‘np2’ ‘np1’ ‘sponsoring’ ‘np2’ ‘np1’ ‘broadband ‘np2
‘np1’ ‘and fitness’ ‘np2’ ‘np1’ ‘debt’ ‘np2’ ‘np2’ ‘machine’ ‘np1’ ‘np2’ ‘cable’ ‘np1’ ‘np1’ ‘supporting’ ‘np2’ ‘np1’ ‘infrastructure’ ‘np2’


